CS 5614: (Big) Data Management Systems

B. Aditya Prakash

Lecture #2: The Relational Model, and SQL/Relational Algebra
Data Model

- A Data Model is a notation for describing data or information.
 - Structure of data (e.g. arrays, structs)
 • Conceptual model: In databases, structures are at a higher level.
 - Operations on data (Modifications and Queries)
 • Limited Operations: Ease of programmers and efficiency of database.
 - Constraints on data (what the data can be)

- Examples of data models
 - The Relational Model
 - The Semistructured-Data Model
 • XML and related standards
 - Object-Relational Model
The Relational Model

- **Structure:** Table (like an array of structs)
- **Operations:** Relational algebra (selection, projection, conditions, etc)
- **Constraints:** E.g., grades can be only {A, B, C, F}

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermione Grainger</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Draco Malfoy</td>
<td>Potions</td>
<td>B</td>
</tr>
<tr>
<td>Harry Potter</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Ron Weasley</td>
<td>Potions</td>
<td>C</td>
</tr>
</tbody>
</table>
The Semi-structured model

- **Structure**: Trees or graphs, tags define role played by different pieces of data.
- **Operations**: Follow paths in the implied tree from one element to another.
- **Constraints**: E.g., can express limitations on data types

```xml
<CoursesTaken>
  <Student>Hermione Grainger</Student>
  <Course>Potions</Course>
  <Grade>A</Grade>
  <Student>Draco Malfoy</Student>
  <Course>Potions</Course>
  <Grade>B</Grade>
  ...
</CoursesTaken>
```
Comparing the two models

- Flexibility: XML can represent graphs
- Ease of use: SQL enables programmer to express wishes at high level.
The Relational Model

- Simple: Built around a single concept for modeling data: the relation or table.
 - A relational database is a collection of relations.
 - Each relation is a table with rows and columns.

- Supports high-level programming language (SQL).
 - Limited but very useful set of operations

- Has an elegant mathematical design theory.
- Most current DBMS are relational (Oracle, IBM DB2, MS SQL)
A relation is a two-dimensional table:

- Relation == table.
- Attribute == column name.
- Tuple == row (not the header row).

Database == collection of relations.

A relation has two parts:

- **Schema** defines column heads of the table (attributes).
- **Instance** contains the data rows (tuples, rows, or records) of the table.
The schema of a relation is the name of the relation followed by a parenthesized list of attributes.

CoursesTaken(Student, Course, Grade)

- A **design** in a relational model consists of a set of schemas.
- Such a set of schemas is called a relational database schema.
CoursesTaken:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermione Grainger</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Draco Malfoy</td>
<td>Potions</td>
<td>B</td>
</tr>
<tr>
<td>Harry Potter</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Ron Weasley</td>
<td>Potions</td>
<td>C</td>
</tr>
</tbody>
</table>

CoursesTaken (Student, Course, Grade)

- Relation is a **set** of tuples and not a list of tuples.
 - Order in which we present the tuples does not matter.
 - Very important!
- The attributes in a schema are also a **set** (not a list).
 - Schema is the same irrespective of order of attributes.

CoursesTaken (Student, Grade, Course)

- We specify a “standard” order when we introduce a schema.

How many equivalent representations are there for a relation with m attributes and n tuples? $m! \times n!$
Degree and Cardinality

CoursesTaken:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermione Grainger</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Draco Malfoy</td>
<td>Potions</td>
<td>B</td>
</tr>
<tr>
<td>Harry Potter</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Ron Weasley</td>
<td>Potions</td>
<td>C</td>
</tr>
</tbody>
</table>

- **Degree/Arity** is the number of fields/attributes in schema (=3 in the table above)
- **Cardinality** is the number of tuples in relation (=4 in the table above)
Keys of Relations

- Keys are one form of integrity constraints (IC)
 - No pair of tuples should have identical keys
- What is the key for CoursesTaken?
 - *Student* if only one course in the relation
 - Pair *(Student, Course)* if multiple courses
 - What if student takes same course many times?

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermione Grainger</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Draco Malfoy</td>
<td>Potions</td>
<td>B</td>
</tr>
<tr>
<td>Harry Potter</td>
<td>Potions</td>
<td>A</td>
</tr>
<tr>
<td>Ron Weasley</td>
<td>Potions</td>
<td>C</td>
</tr>
</tbody>
</table>
Keys of Relations

- Keys help associate tuples in different relations

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>15-401</td>
<td>A</td>
</tr>
<tr>
<td>111</td>
<td>15-401</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>14-501</td>
<td>B</td>
</tr>
<tr>
<td>...</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>Student</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Hermione Grainger</td>
<td>3.9</td>
</tr>
<tr>
<td>111</td>
<td>Draco Malfoy</td>
<td>3.0</td>
</tr>
<tr>
<td>234</td>
<td>Harry Potter</td>
<td>3.7</td>
</tr>
<tr>
<td>456</td>
<td>Ron Weasley</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Example

- Create a database for managing class enrollments in a single semester. You should keep track of all students (their names, IDs, and addresses) and professors (name, ID, department). Do not record the address of professors but keep track of their ages. Maintain records of courses also. Like what classroom is assigned to a course, what is the current enrollment, and which department offers it. At most one professor teaches each course. Each student evaluates the professor teaching the course. Note that all course offerings in the semester are unique, i.e. course names and numbers do not overlap. A course can have ≥ 0 pre-requisites, excluding itself. A student enrolled in a course must have enrolled in all its pre-requisites. Each student receives a grade in each course. The departments are also unique, and can have at most one chairperson (or dept. head). A chairperson is not allowed to head two or more departments.
Example

- Create a database for managing class enrollments in a single semester. You should keep track of all **students** (their names, Ids, and addresses) and **professors** (name, Id, department). Do not record the address of professors but keep track of their ages. Maintain records of **courses** also. Like what classroom is assigned to a course, what is the current enrollment, and which department offers it. At most one professor **teaches** each course. Each student **evaluates** the professor teaching the course. Note that all course offerings in the semester are unique, i.e. course names and numbers do not overlap. A course can have \(\geq 0 \) **pre-requisites**, excluding itself. A student enrolled in a course must have enrolled in all its pre-requisites. Each student receives a **grade** in each course. The **departments** are also unique, and can have at most one chairperson (or dept. head). A chairperson is not allowed to head two or more departments.
Relational Design for the Example

- Students (PID: string, Name: string, Address: string)

- Professors (PID: string, Name: string, Office: string, Age: integer, DepartmentName: string)

- Courses (Number: integer, DeptName: string, CourseName: string, Classroom: string, Enrollment: integer)

- Teach (ProfessorPID: string, Number: integer, DeptName: string)

- Take (StudentPID: string, Number: integer, DeptName: string, Grade: string, ProfessorEvaluation: integer)

- Departments (Name: string, ChairmanPID: string)

- PreReq (Number: integer, DeptName: string, PreReqNumber: integer, PreReqDeptName: string)
Relational Design Example: Keys?

- Students (PID: string, Name: string, Address: string)
- Professors (PID: string, Name: string, Office: string, Age: integer, DepartmentName: string)
- Courses (Number: integer, DeptName: string, CourseName: string, Classroom: string, Enrollment: integer)
- Teach (ProfessorPID: string, Number: integer, DeptName: string)
- Take (StudentPID: string, Number: integer, DeptName: string, Grade: string, ProfessorEvaluation: integer)
- Departments (Name: string, ChairmanPID: string)
- PreReq (Number: integer, DeptName: string, PreReqNumber: integer, PreReqDeptName: string)
Relational Design: Keys?

- **Students** \((\text{PID}: \text{string}, \text{Name}: \text{string}, \text{Address}: \text{string})\)

- **Professors** \((\text{PID}: \text{string}, \text{Name}: \text{string}, \text{Office}: \text{string}, \text{Age}: \text{integer}, \text{DepartmentName}: \text{string})\)

- **Courses** \((\text{Number}: \text{integer}, \text{DeptName}: \text{string}, \text{CourseName}: \text{string}, \text{Classroom}: \text{string}, \text{Enrollment}: \text{integer})\)

- **Teach** \((\text{ProfessorPID}: \text{string}, \text{Number}: \text{integer}, \text{DeptName}: \text{string})\)

- **Take** \((\text{StudentPID}: \text{string}, \text{Number}: \text{integer}, \text{DeptName}: \text{string}, \text{Grade}: \text{string}, \text{ProfessorEvaluation}: \text{integer})\)

- **Departments** \((\text{Name}: \text{string}, \text{ChairmanPID}: \text{string})\)

- **PreReq** \((\text{Number}: \text{integer}, \text{DeptName}: \text{string}, \text{PreReqNumber}: \text{integer}, \text{PreReqDeptName}: \text{string})\)
Issues to Consider in the Design

- Can we merge Courses and Teach since each professor teaches at most one course?
- Do we need a separate relation to store evaluations?
- How can we handle pre-requisites that are “or”s, e.g., you can take CS 4604 if you have taken either CS 3114 or CS 2606?
- How do we generalize this schema to handle data over more than one semester?
- What modifications does the schema need if more than one professor can teach a course?
SQL AND RELATIONAL ALGEBRA
Relational Algebra

- Relational algebra is a notation for specifying queries about the contents of relations

- Notation of relational algebra eases the task of reasoning about queries

- Operations in relational algebra have counterparts in SQL
What is SQL

- SQL = Structured Query Language (pronounced “sequel”).
- Language for defining as well as querying data in an RDBMS.
- Primary mechanism for querying and modifying the data in an RDBMS.
- SQL is declarative:
 - Say what you want to accomplish, without specifying how.
 - One of the main reasons for the commercial success of RDBMSs.
- SQL has many standards and implementations:
 - ANSI SQL
 - SQL-92/SQL2 (null operations, outerjoins)
 - SQL-99/SQL3 (recursion, triggers, objects)
 - Vendor-specific variations.
What is an Algebra?

- An algebra is a set of operators and operands
 - Arithmetic: operands are variables and constants, operators are +, -, *, ÷, /, etc.
 - Set algebra: operands are sets and operators are ∩, U, -

- An algebra allows us to
 - **construct expressions** by combining operands and expression using operators
 - has **rules for reasoning** about expressions

 \[
 a^2 + 2 \times a \times b + 2b, \quad (a + b)^2 \\
 R - (R - S), \quad R \cap S
 \]
FUNDAMENTAL

Relational operators

- selection
 \[\sigma_{\text{condition}} (R) \]
- projection
 \[\pi_{\text{att–list}} (R) \]
- cartesian product
 \[R \times S \]
- set union
 \[R \cup S \]
- set difference
 \[R - S \]
Projection

- The projection operator produces from a relation R a new relation containing only **some of R’ s columns**

- “Delete” (i.e. not show) attributes not in projection list
- Duplicates eliminated (sets vs *multisets*)

- To obtain a relation containing only the columns A$_1$, A$_2$, ... A$_n$ of R

 RA: \(\pi \ A_1,A_2, \ldots A_n \ (R) \)

 SQL: \(\text{SELECT DISTINCT } A_1,A_2, \ldots A_n \ \text{FROM } R; \)
Projection Example

\[S_2 \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{sid} & \text{name} & \text{rating} & \text{age} \\
\hline
28 & \text{yuppy} & 9 & 35.0 \\
31 & \text{lubber} & 8 & 55.5 \\
44 & \text{guppy} & 5 & 35.0 \\
58 & \text{rusty} & 10 & 35.0 \\
\hline
\end{array}
\]

\[\pi_{\text{name}, \text{rating}}(S_2) \]

\[
\begin{array}{|c|c|}
\hline
\text{name} & \text{rating} \\
\hline
\text{yuppy} & 9 \\
\text{lubber} & 8 \\
\text{guppy} & 5 \\
\text{rusty} & 10 \\
\hline
\end{array}
\]

\[\pi_{\text{age}}(S_2) \]

\[
\begin{array}{|c|}
\hline
\text{age} \\
\hline
35.0 \\
55.5 \\
\hline
\end{array}
\]
Selection

- The selection operator applied to a relation R produces a new relation with a **subset of R’s tuples**

- The tuples in the resulting relation satisfy some condition C that involves the attributes of R
 - with duplicate removal

 $$\text{RA}: \sigma_C(R)$$

 $$\text{SQL}: \text{SELECT * FROM R WHERE } C;$$

- The WHERE clause of a SQL command corresponds to $\sigma()$
Selection: Syntax of Conditional

- Syntax of conditional (C): similar to conditionals in programming languages.

- Values compared are constants and attributes of the relations mentioned in the FROM clause.

- We may apply usual arithmetic operators to numeric values before comparing them.

RA Compare values using standard arithmetic operators.

SQL Compare values using =, <>, <, >, <=, >=.
Selection Example

\[S_2 \]

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>uppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[\sigma_{ \text{rating} > 8} (S_2) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>uppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[\pi_{\text{sname, rating}} (\sigma_{ \text{rating} > 8} (S_2)) \]

<table>
<thead>
<tr>
<th>sname</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>uppy</td>
<td>9</td>
</tr>
</tbody>
</table>
rusty | 10 |

Combining Operators
Set Operations: Union

- Standard definition: The union of two relations \(R \) and \(S \) is the set of tuples that are in \(R \), or \(S \) or in both.

- When is it valid?
 - \(R \) and \(S \) must have identical sets of attributes and the types of the attributes must be the same.
 - The attributes of \(R \) and \(S \) must occur in the same order.
Set Operations: Union

- **RA** \[R \cup S \]
- **SQL** \[
(SELECT * FROM R)

UNION

(SELECT * FROM S);

Prakash 2014
Set Operations: Intersection

- The intersection of R and S is the set of tuples in both R and S
- Same conditions hold on R and S as for the union operator
- RA \(R \cap S \)
- SQL

 \[
 \text{(SELECT * FROM R) INTERSECT (SELECT * FROM S)};
 \]
Set Operations: Difference

- Set of tuples in R but NOT in S
- Same conditions on R and S as union
- $\text{RA} \quad R \cap S$
- $\text{SQL} \quad (\text{SELECT } * \text{ FROM } R)$
 \text{EXCEPT}
 (SELECT * FROM S);
- $R - (R - S) = R \cap S$
Difference

$S1$

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

$S2$

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

$S1 - S2$

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
</tbody>
</table>
What about strings?

find student ssns who live on “main” (st or str or street - ie., “main st” or “main str” ...)
What about strings?

find student ssns who live on “main” (st or str or street)

 select ssn
 from student
 where address like “main%”

%: variable-length don’t care
_: single-character don’t care
Relational operators

Are we done yet?

Q: Give a query we can not answer yet!
Relational operators

A: any query across **two** or more tables, eg., ‘find names of students in 4604’

Q: what extra operator do we need??

<table>
<thead>
<tr>
<th>STUDENT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ssn</td>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>123</td>
<td>smith</td>
<td>main str</td>
</tr>
<tr>
<td>234</td>
<td>jones</td>
<td>forbes ave</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>c-id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>4604</td>
<td>A</td>
</tr>
<tr>
<td>234</td>
<td>3114</td>
<td>B</td>
</tr>
</tbody>
</table>
Plural operators

A: any query across two or more tables, eg., ‘find names of students in 4604’

Q: what extra operator do we need??

A: surprisingly, cartesian product is enough!

<table>
<thead>
<tr>
<th>STUDENT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ssn</td>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>123</td>
<td>smith</td>
<td>main str</td>
</tr>
<tr>
<td>234</td>
<td>jones</td>
<td>forbes ave</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>c-id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>4604</td>
<td>A</td>
</tr>
<tr>
<td>234</td>
<td>3114</td>
<td>B</td>
</tr>
</tbody>
</table>
The Cartesian product (or cross-product or product) of two relations R and S is a the set of pairs that can be formed by *pairing each tuple of R with each tuple of S*.

- The result is a relation whose schema is the **schema for R** followed by the schema for S.

RA: \(R \times S \)

SQL: `SELECT * FROM R, S ;`
Cartesian Product

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

S1 x R1

<table>
<thead>
<tr>
<th>(sid)</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

We **rename** attributes to avoid ambiguity or we **prefix attribute** with the name of the relation it belongs to.
REMINDER: FUNDAMENTAL
Relational operators

- selection
- projection
- cartesian product
- set union
- set difference

\[\sigma_{\text{condition}} (R) \]
\[\pi_{\text{att-list}} (R) \]

\[R \times S \]
\[R \cup S \]
\[R - S \]
Relational ops

- Surprisingly, they are enough, to help us answer almost any query we want!
- **derived/convenience operators:**
 - set intersection --- (We have seen this)
 - **join** (theta join, equi-join, natural join)
 - ‘rename’ operator \(\rho_{R'}(R) \)
 - division \(R \div S \)
Theta-Join

The theta-join of two relations R and S is the set of tuples in the Cartesian product of R and S that satisfy some condition C.

$$\text{RA: } R \bowtie_C S$$

$$\text{SQL: } \text{SELECT * FROM } R, S \text{ WHERE } C;$$

$$R \bowtie_C S = \sigma_C (R \times S)$$
Theta-Join

$S1$:

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

$R1$:

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

Theta-Join Operation:

$$S1 \bowtie_{\text{sid} < \text{sid}} R1$$

Result:

<table>
<thead>
<tr>
<th>(sid)</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

Equivalence:

$$R \bowtie_{\text{c}} S = \sigma_{\text{c}} (R \times S)$$

Prakash 2014

VT CS 5614
The natural join of two relations R and S is a set of pairs of tuples, one from R and one from S, that agree on whatever attributes are common to the schemas of R and S.

The schema for the result contains the union of the attributes of R and S. (so duplicate cols. are dropped)

Assume the schemas R(A,B, C) and S(B, C,D)

RA: \[R \bowtie S \]

SQL: \[\text{SELECT R.A, R.B, R.C, S.D} \]
 \[\text{FROM R, S} \]
 \[\text{WHERE R.B = S.B AND R.C = S.C}; \]
Natural Join: Nit-picking

- What if R and S have not attributes in common?

natural join \rightarrow cartesian product

- Some (like Oracle) provide a special single NATURAL JOIN operator, but some (like IBM DB2) don’t.
 - So assume there is no special SQL natural join operator
Operators so far

- Remove parts of single relations
 - Projection: $\pi_{(A,B)}(R)$ and SELECT A, B FROM R
 - Selection: $\sigma_C(R)$ and SELECT * FROM R WHERE C
 - Combining Projection and Selection:
 - $\pi_{(A,B)}(\sigma_C(R))$
 - SELECT A, B FROM R WHERE C
Operations so far

Set operations

- R and S must have the same attributes, same attribute types, and same order of attributes

- Union: $R \cup S$ and $(R) \text{ UNION } (S)$
- Intersection: $R \cap S$ and $(R) \text{ INTERSECT } (S)$
- Difference: $R - S$ and $(R) \text{ EXCEPT } (S)$
Operations so far

- Combine the tuples of two relations
 - Cartesian Product: R \times S, \ldots \text{ FROM R, S } \ldots.
 - Theta Join: R \bowtie_C S, \ldots \text{ FROM R, S WHERE C}
 - Natural Join: R \bowtie S
Ordering

- find student records, sorted in name order
 - select *
 - from student
 - order by name asc

- asc is the default
Ordering

- find student records, sorted in name order; break ties by reverse ssn
 - select *
 - from student
 - order by name, ssn desc
Rename op.

■ Q: why? \(\rho_{\text{AFTER}}(\text{BEFORE}) \)
■ A: shorthand; self-joins; ...
■ for example, find the grand-parents of ‘Tom’, given PC (parent-id, child-id)
Rename op.

- PC (parent-id, child-id)

\[PC \bowtie PC \]

<table>
<thead>
<tr>
<th>PC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-id</td>
<td>c-id</td>
<td></td>
</tr>
<tr>
<td>Mary</td>
<td>Tom</td>
<td></td>
</tr>
<tr>
<td>Peter</td>
<td>Mary</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>Tom</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-id</td>
<td>c-id</td>
<td></td>
</tr>
<tr>
<td>Mary</td>
<td>Tom</td>
<td></td>
</tr>
<tr>
<td>Peter</td>
<td>Mary</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>Tom</td>
<td></td>
</tr>
</tbody>
</table>
Rename op.

- first, WRONG attempt:
 \[PC \bowtie PC \]
 (why? how many columns?)

- Second WRONG attempt:
 \[PC \bowtie_{PC.c-id=PC.p-id} PC \]
Rename op.

- we clearly need two different names for the same table - hence, the ‘rename’ op.

\[\rho_{PC_1}(PC) \bowtie_{PC_1.c-id=PC.p-id} PC \]
Disambiguation and Renaming

RA: give R the name S;
R has n attributes,
which are $\rho_S (A_1, A_2, \ldots A_n) (R)$
called A1, A2, . . . , An in S

SQL: Use the **AS** keyword in the **FROM** clause:
Students AS Students1 renames Students to Students1.

SQL: Use the **AS** keyword in the **SELECT** clause to rename attributes.
Disambiguation and Renaming

- Name pairs of students who live at the same address: Students (Name, Address)

RA: \[\pi_{S1.Name, S2.Name}(\sigma_{S1.Address = S2.Address}(\rho_{S1}(Students) \times \rho_{S2}(Students))) \]

SQL:
```
SELECT S1.name, S2.name
FROM Students AS S1, Students AS S2
WHERE S1.address = S2.address
```
Name pairs of students who live at the same address:

SQL:
```
SELECT S1.name, S2.name
FROM Students AS S1, Students AS S2
WHERE S1.address = S2.address
```

Are these correct?

No!!! the result includes tuples where a student is paired with himself/herself

Solution: Add the condition `S1.name <> S2.name`.
Division

- Rarely used, but powerful.
- Example: find suspicious suppliers, ie., suppliers that supplied all the parts in A_BOMB
Division

SHIPMENT

<table>
<thead>
<tr>
<th>s#</th>
<th>p#</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p1</td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
</tr>
<tr>
<td>s3</td>
<td>p1</td>
</tr>
<tr>
<td>s5</td>
<td>p3</td>
</tr>
</tbody>
</table>

\[\frac{\text{ABOMB}}{\text{BAD}_S} = \]

\[
\begin{array}{c}
p# \\
p1 \\
p2
\end{array}
\]

\[
\begin{array}{c}
s# \\
s1
\end{array}
\]
Division

- Observations: ~reverse of cartesian product
- It can be derived from the 5 fundamental operators (!!)
- How?
Division

- Answer:

\[r \div s = \pi_{(R-S)}(r) - \pi_{(R-S)}[(\pi_{(R-S)}(r) \times s) - r] \]

- Observation: find ‘good’ suppliers, and subtract! (double negation)
Division

- Answer:

$$r \div S = \pi_{(R-S)}(r) - \pi_{(R-S)}[(\pi_{(R-S)}(r) \times S) - r]$$

- Observation: find ‘good’ suppliers, and subtract! (double negation)
Division

Answer:

\[
 r \div S = \pi_{(R-S)}(r) - \pi_{(R-S)}[(\pi_{(R-S)}(r) \times S) - r]
\]

SHIPMENT

<table>
<thead>
<tr>
<th>s#</th>
<th>p#</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p1</td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
</tr>
<tr>
<td>s3</td>
<td>p1</td>
</tr>
<tr>
<td>s5</td>
<td>p3</td>
</tr>
</tbody>
</table>

ABOMB

<table>
<thead>
<tr>
<th>p#</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
</tr>
<tr>
<td>p2</td>
</tr>
</tbody>
</table>

BAD_S

<table>
<thead>
<tr>
<th>s#</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
</tr>
</tbody>
</table>

All suppliers

All bad parts
Division

Answer:

\[
r \div S = \pi_{(R-S)}(r) - \pi_{(R-S)}[(\pi_{(R-S)}(r) \times s) - r]
\]

<table>
<thead>
<tr>
<th>SHIPMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s#</td>
<td>p#</td>
</tr>
<tr>
<td>s1</td>
<td>p1</td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
</tr>
<tr>
<td>s3</td>
<td>p1</td>
</tr>
<tr>
<td>s5</td>
<td>p3</td>
</tr>
</tbody>
</table>

\[
\begin{array}{|c|c|}
\hline
\text{ABOMB} & \text{BAD_S} \\
\hline
\text{p}\# & \text{s}\# \\
p1 & s1 \\
p2 & s1 \\
\hline
\end{array}
\]

all possible suspicious shipments
Division

Answer:

\[r \div S = \pi_{(R-S)}(r) - \pi_{(R-S)}[(\pi_{(R-S)}(r) \times S) - r] \]

\[\text{SHIPMENT} \]

\begin{array}{|c|c|}
\hline
s\# & p\# \\
\hline
s1 & p1 \\
\hline
s2 & p1 \\
\hline
s1 & p2 \\
\hline
s3 & p1 \\
\hline
s5 & p3 \\
\hline
\end{array}

\[\text{ABOMB} \]

\begin{array}{|c|c|}
\hline
p\# & \\
\hline
p1 & \\
\hline
p2 & \\
\hline
\end{array}

\[\text{BAD}_S \]

\begin{array}{|c|}
\hline
s\# \\
\hline
s1 \\
\hline
\end{array}

\[all \ possible \ suspicious \ shipments \ that \ didn't \ happen \]
Answer:

\[\frac{r}{S} = \pi_{(R-S)}(r) - \pi_{(R-S)}[(\pi_{(R-S)}(r) \times S) - r] \]

<table>
<thead>
<tr>
<th>SHIPMENT</th>
<th>ABOMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>s#</td>
<td>p#</td>
</tr>
<tr>
<td>s1</td>
<td>p1</td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
</tr>
<tr>
<td>s3</td>
<td>p1</td>
</tr>
<tr>
<td>s5</td>
<td>p3</td>
</tr>
</tbody>
</table>

all suppliers who missed at least one suspicious shipment, i.e.: ‘good’ suppliers
Quick Quiz: Independence of Operators

\[R \cap S = R - (R - S) \]
\[R \bowtie_C = \sigma_C (R \times S) \]
\[R \bowtie S = ?? \]
Quick Quiz: Independence of Operators

\[R \bowtie S \]

- Suppose R and S share the attributes A1, A2, .., An
- Let L be the list of attributes in R \ Union list of attributes in S (so no duplicate attributes)
- Let C be the condition

 \[R.A1 = S.A1 \text{ AND } R.A2 = S.A2 \text{ AND } \ldots \text{ R.An} = S.An \]

\[R \bowtie S = \pi_L(\sigma_C(R \times S)) \]
Linear Notation for Relational Algebra

- Relational algebra expressions can become very long.

- Use linear notation to store results of intermediate expressions.
 - A relation name and a parenthesized list of attributes for that relation
 - Use Answer as the conventional name for the final result
 - The assignment symbol :=
 - Any expression in relational algebra on the right
Example of Linear Notation

- Name pairs of students who live at the same address.
- Normal expression:

\[
\pi S_1.Name, S_2.Name \\
\sigma S_1.Address = S_2.Address \\
(\rho_{S_1}(Students) \times \rho_{S_2}(Students))
\]
Example of Linear Notation

- **Normal expression:**

\[
\pi_{S1.Name,S2.Name}(\\
\sigma_{S1.Address=S2.Address} (\rho_{S1}(Students) \times \rho_{S2}(Students)))
\]

- **Linear Notation:**

Pairs(P1, N1, A1, P2, N2, A2) := \(\rho_{S1}(Students) \times \rho_{S2}(Students)\)

Matched(P1, N1, A1, P2, N2, A2) := \(\sigma_{A1=A2}(Pairs(P1, N1, A1, P2, N2, A2))\)

Answer(Name1, Name2) := \(\pi_{N1,N2}(Matched(P1, N1, A1, P2, N2, A2))\)
Interpreting Queries Involving Multiple Relations

- SELECT A, B FROM R, S WHERE C;
- Nested loops:
 for each tuple t1 in R
 for each tuple t2 in S
 if the attributes in t1 and t2 satisfy C
 output the tuples involving attributes A and B
Interpreting Queries Involving Multiple Relations

- SELECT A, B FROM R, S WHERE C;
- Conversion to relational algebra:
 \[\pi_{A,B}(\sigma_C(R \times S)) \]

Compute R X S
Apply selection operator \(\sigma() \) to R X S
Project the result tuples to attributes A and B