Handout 1 Solution

Note: There may be more than one right answer

1. What are the PIDs of the students whose name is "Suri"?

 SQL:
   ```sql
   SELECT PID
   FROM Students
   WHERE Name = "Suri";
   ```

 Relational Algebra:
   ```sql
   π₁₋₃(σ_Name = "Suri"(Students));
   ```

2. Which pairs of students live at the same address? It is enough to return the names of such student pairs.

 SQL:
   ```sql
   SELECT S1.Name, S2.Name
   FROM Students S1, Students S2
   WHERE S1.PID < S2.PID AND S1.Address = S2.Address;
   ```

 Relational Algebra:
   ```sql
   π₁₋₂(σ_S1.PID < S2.PID ^ S1.Address = S2.Address(ρ₁(S1) × ρ₂(S2)));
   ```
 Here we use \(\sigma\) to eliminate duplicates.

3. Which departments have courses that have pre-requisites in other departments?

 SQL:
   ```sql
   SELECT DISTINCT DeptName
   FROM PreReq
   WHERE PreReqDeptName <> DeptName;
   ```

 Relational Algebra:
   ```sql
   π_DeptName(σ_PreReqDeptName ≠ DeptName(PreReq));
   ```

4. Compute the set of all courses that are their own pre-requisites. The purpose of this query is to ensure that the constraint “A course cannot be a pre-requisite for itself” holds in the database. Your query needs to return only the course number and department name.

 SQL:
   ```sql
   SELECT Number, DeptName
   FROM PreReq
   WHERE Number = PreReqNumber AND DeptName = PreReqDeptName;
   ```

 Relational Algebra:
   ```sql
   π_DeptName, Number(σ_PreReqNumber = Number ^ DeptName = PreReqDeptName(Prereq));
   ```

5. What are the names and addresses of the students who are taking “CS4604”?

 SQL:
   ```sql
   ```
SELECT Name, Address
FROM Students, Take
WHERE Number = 4604 AND PID = StudentPID AND DeptName = "CS";
Relational Algebra:
\[\pi_{\text{Name, Address}} \left(\sigma_{\text{Number} = 4604 \land \text{PID} = \text{StudentPID} \land \text{DeptName} = "CS"} \left(\text{Students} \times \text{Take} \right) \right) \]

6. What are the courses (specified by course number and department name) that the head of the CS department is teaching?
SQL:
SELECT Number, DeptName
FROM Departments, Teach
WHERE ChairPID = ProfessorPID AND Name = "CS";
Relational Algebra:
\[\pi_{\text{Number, DeptName}} \left(\sigma_{\text{ChairPID} = \text{ProfessorPID} \land \text{Name} = "CS"} \left(\text{Departments} \times \text{Teach} \right) \right) \]

7. Return the PID and names of any department head who teaches a course in another department?
SQL:
SELECT P.Name, DISTINCT PID
FROM Departments D, Professors P, Teach
WHERE ChairPID = ProfessorPID AND D.Name != DeptName AND ChairPID = PID;
Relational Algebra:
\[\pi_{\text{P.Name, PID}} \left(\sigma_{\text{ChairPID} = \text{ProfessorPID} \land \text{D.Name} \neq \text{DeptName} \land \text{ChairPID} = \text{PID}} \left(\text{ρ}_{\text{D}} \left(\text{Departments} \right) \times \text{ρ}_{\text{P}} \left(\text{Professors} \right) \times \text{Teach} \right) \right) \]

8. Are there any students who are taking at least two courses taught by department heads? Identify these students by their PID and name.
SQL:
SELECT T1.PID, T1.Name
FROM (SELECT S.PID, S.Name, Number, DeptName
 FROM Departments, Teach NATURAL JOIN Take, Students S
 WHERE ChairPID = ProfessorPID AND StudentsPID = S.PID) T1,
 (SELECT S.PID, S.Name, Number, DeptName
 FROM Departments, Teach NATURAL JOIN Take, Students S
 WHERE ChairPID = ProfessorPID AND StudentsPID = S.PID) T2
WHERE T1.PID = T2.PID AND T1.Name = T2.Name AND (T1.Number != T2.Number OR T1.DeptName != T2.DeptName);
Relational Algebra:
\[\pi_{\text{T1.PID, T1.Name}} \left(\sigma_{\text{T1.PID} = \text{T2.PID} \land \text{T1.Name} = \text{T2.Name}} \left(\text{ρ}_{\text{Q}} \left(\text{ρ}_{\text{T1}} \left(\text{ρ}_{\text{T2}} \left(\text{ρ}_{\text{T1}} \left(\text{ρ}_{\text{T2}} \left(\text{Departments} \times \left(\text{Teach} \bowtie \text{Take} \right) \times \text{Students} \right) \right) \right) \right) \right) \right) \right) \]

9. Does the PreReq relation have cycles?
Can’t write a query for finding cycles of any length. For length 2 we can do the following:
SQL:
SELECT *
FROM PreReq P1, PreReq P2
WHERE P1.PreReqNumber = P2.number AND P1.PreReqDeptName = P2.DeptName
AND P2.PreReqNumber = P1.number AND P2.PreReqDeptName = P1.DeptName;

Relational Algebra:
\[\sigma_{P1.PreReqNumber = P2.number \land P1.PreReqDeptName = P2.DeptName \land P2.PreReqNumber = P1.number \land P2.PreReqDeptName = P1.DeptName} (\rho_{P1}(PreReq) \times \rho_{P2}(PreReq)) \]

10. A relation R has one numeric attribute A. What is the largest number in R?
SQL:
SELECT MAX(A)
FROM R;
Relational Algebra:
\[\gamma_{\text{MAX}(A)}(R) \]

11. Which professors (specify PID, Name, and Department) earn salaries more than any department head?
SQL:
SELECT PID, Name, DepartmentName
FROM Professors
WHERE Salary > ALL (SELECT Salary
FROM Departments, Professors
WHERE ChairPID = PID);
Relational Algebra:
\[\pi_{\text{PID, Name, DepartmentName}} (\sigma_{\text{Salary} > \text{maxchairsalary}} (\rho_{\text{DepartmentName}} (\gamma_{\text{MAX}(\text{Salary}) \text{maxchairsalary}} (\rho_{\text{ChairPID} = \text{PID}}(\rho_{\text{Professors} \times \text{Professors})))))) \]

12. Which professor (specify PID, Name, and Department) earns the highest salary in each department?
SQL:
SELECT PID, Name, DepartmentName
FROM (SELECT DepartmentName, MAX(Salary) as maxsalary
FROM Professors
GROUP BY DepartmentName) NATURAL JOIN Professors
WHERE Salary = maxsalary;
Relational Algebra:
\[\pi_{\text{PID, Name, DepartmentName}} (\sigma_{\text{Salary} = \text{maxsalary}} (\gamma_{\text{DepartmentName}} (\gamma_{\text{MAX}(\text{Salary}) \text{maxsalary}} (\rho_{\text{Professors} \times \text{Professors})))))) \]

13. A relation R has one numeric attribute A. The rank of a tuple t in R is the number of tuples in R whose value in A is less than the value of t in A. This question deals with computing the ranks of the tuples in R.

(a) What is the median tuple in R, i.e., if R contains n tuple, what is the tuple with rank n/2.
SQL:
SELECT R1.A
FROM R R1, R R2
WHERE R1.A < R2.A
GROUP BY R1.A
HAVING COUNT(*) = (n/2 - 1);

Relational Algebra:
\[\pi_{R1.A} (\gamma_{R1.A} \sigma_{R1.A < R2.A} (\rho_{R1}(R) \times \rho_{R2}(R))) \];

(b) Compute the rank of each tuple in R.

SQL:
SELECT R1.A, (COUNT(*)+1) AS rank
FROM R R1, R R2
WHERE R1.A < R2.A
GROUP BY R1.A

Relational Algebra:
\[\gamma_{R1.A \times COUNT(*) > 1} \sigma_{R1.A < R2.A} (\rho_{R1}(R) \times \rho_{R2}(R)) \];

14. Assuming we have a table Numbers with a single attribute containing all the natural numbers < 100:

SQL:
SELECT A.n, B.n, C.n
FROM Numbers as A, Numbers as B, Numbers as C
WHERE C.n <= 10 AND (A.n \times A.n + B.n \times B.n = C.n \times C.n);

15. Find the name of the professor who teaches “CS4604.”

(a) Write the query in relational algebra using a natural join.
\[\pi_{Name} (\sigma_{Number = 4604 \land DeptName = “CS”} (Professors \bowtie PID = ProfessorPID Teach)) \];

(b) Write the query in relational algebra using intersection. This version of the query has a counterpart in SQL that uses sub-queries.
\[\pi_{Name} (\sigma_{Number = 4604} (Professors \bowtie PID = ProfessorPID Teach) \cap \sigma_{DeptName = “CS”} (Professors \bowtie PID = ProfessorPID Teach)) \];