CS 5614: (Big) Data Management Systems

B. Aditya Prakash

Lecture #15: Mining Streams 2
More algorithms for streams:

- (1) Filtering a data stream: Bloom filters
 - Select elements with property x from stream

- (2) Counting distinct elements: Flajolet-Martin
 - Number of distinct elements in the last k elements of the stream

- (3) Estimating moments: AMS method
 - Estimate std. dev. of last k elements

- (4) Counting frequent items
(1) FILTERING DATA STREAMS
Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- **Determine which tuples of stream are in S**

- **Obvious solution:** Hash table
 - But suppose we **do not have enough memory** to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest
First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a **bit array B** of n bits, initially all **0s**
- Choose a **hash function h** with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to **1**, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

Creates false positives but no false negatives
- If the item is in S we surely output it, if not we may still output it.

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item.
It hashes to a bucket set to 0 so it is surely not in S.

Item hashes to a bucket that at least one of the items in S hashed to.
First Cut Solution (3)

- $|S| = 1$ billion email addresses
 - $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8$th of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8$th, because more than one address might hash to the same bit
Analysis: Throwing Darts (1)

- More accurate analysis for the number of false positives

- **Consider:** If we throw m darts into n equally likely targets, **what is the probability that a target gets at least one dart?**

- **In our case:**
 - **Targets** = bits/buckets
 - **Darts** = hash values of items
Analysis: Throwing Darts (2)

- We have \(m \) darts, \(n \) targets
- What is the probability that a target gets at least one dart?

\[
1 - (1 - \frac{1}{n})^n = 1 - e^{-m/n}
\]

Probability some target \(X \) not hit by a dart

Probability at least one dart hits target \(X \)

Equals \(1/e \) as \(n \to \infty \)
Analysis: Throwing Darts (3)

- Fraction of 1s in the array $B = 1 - e^{-m/n}$

Example: 10^9 darts, $8 \cdot 10^9$ targets
 - Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: $1/8 = 0.125$
Bloom Filter

- Consider: $|S| = m$, $|B| = n$
- Use k independent hash functions h_1, \ldots, h_k
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing $k \cdot m$ darts at n targets
 - So fraction of 1s is $(1 - e^{-km/n})$

- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

- So, false positive probability $= (1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- \(m = 1 \) billion, \(n = 8 \) billion
 - \(k = 1 \): \(1 - e^{-1/8} = 0.1175 \)
 - \(k = 2 \): \((1 - e^{-1/4})^2 = 0.0493 \)

- What happens as we keep increasing \(k \)?

- “Optimal” value of \(k \): \(n/m \ln(2) \)
 - In our case: Optimal \(k = 8 \ln(2) = 5.54 \approx 6 \)
 - Error at \(k = 6 \): \((1 - e^{-1/6})^2 = 0.0235 \)

Prakash 2017
Bloom Filter: Wrap-up

- **Bloom filters guarantee no false negatives, and use limited memory**
 - Great for pre-processing before more expensive checks

- **Suitable for hardware implementation**
 - Hash function computations can be parallelized

- **Is it better to have 1 big B or k small Bs?**
 - It is the same: $(1 - e^{-km/n})^k$ vs. $(1 - e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler
(2) COUNTING DISTINCT ELEMENTS
Counting Distinct Elements

- **Problem:**
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far

- **Obvious approach:**
 Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Using Small Storage

- **Real problem:** *What if we do not have space to maintain the set of elements seen so far?*

- **Estimate the count in an unbiased way**

- **Accept that the count may have a little error, but limit the probability that the error is large**
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a)$ = position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$

- Record $R = \text{the maximum } r(a) \text{ seen}$
 - $R = \max_a r(a)$, over all the items a seen so far

- Estimated number of distinct elements = 2^R
Why It Works: Intuition

- **Very very rough and heuristic intuition why Flajolet-Martin works:**
 - $h(a)$ hashes a with equal prob. to any of N values
 - Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r
Why It Works: More formally

- Now we show why Flajolet-Martin works

- Formally, we will show that the probability of finding a tail of r zeros:
 - Goes to 1 if $m >> 2^r$
 - Goes to 0 if $m << 2^r$

Where m is the number of distinct elements seen so far in the stream

- Thus, 2^R will almost always be around $m!$
Why It Works: More formally

- What is the probability that a given $h(a)$ ends in at least r zeros is 2^{-r}
 - $h(a)$ hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2^{-r}
- Then, the probability of NOT seeing a tail of length r among m elements:
 $$(1 - 2^{-r})^m$$
 - Prob. all end in fewer than r zeros.
 - Prob. that given $h(a)$ ends in fewer than r zeros
Why It Works: More formally

- **Note:** \((1 - 2^{-r})^m = (1 - 2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}\)

- **Prob. of NOT finding a tail of length** \(r\) **is:**
 - If \(m << 2^r\), then prob. tends to 1
 \[
 (1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1 \quad \text{as} \quad m/2^r \to 0
 \]
 So, the probability of finding a tail of length \(r\) tends to 0
 - If \(m >> 2^r\), then prob. tends to 0
 \[
 (1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0 \quad \text{as} \quad m/2^r \to \infty
 \]
 So, the probability of finding a tail of length \(r\) tends to 1

- **Thus,** \(2^R\) **will almost always be around** \(m\)!
Why It Doesn’t Work

- $E[2^R]$ is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i}?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) COMPUTING MOMENTS
Suppose a stream has elements chosen from a set A of N values.

Let m_i be the number of times value i occurs in the stream.

The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$
Special Cases

\[
\sum_{i \in A} (m_i)^k
\]

- **0th moment** = number of distinct elements
 - The problem just considered

- **1st moment** = count of the numbers of elements = length of the stream
 - Easy to compute

- **2nd moment** = *surprise number* \(S \) = a measure of how uneven the distribution is
Example: Surprise Number

- Stream of length 100
- 11 distinct values

- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 \[\text{Surprise } S = 910 \]

- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 \[\text{Surprise } S = 8,110 \]
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
One Random Variable (X)

- **How to set X.val and X.el?**
 - Assume stream has length \(n \) (we relax this later)
 - Pick some random time \(t \) \((t<n)\) to start, so that any time is equally likely
 - Let at time \(t \) the stream have item \(i \). **We set X.el = i**
 - Then we maintain count \(c \) \((X.val = c)\) of the number of \(i \)s in the stream starting from the chosen time \(t \)

- Then the estimate of the 2nd moment \((\sum_i m_i^2)\) is:
 \[
 S = f(X) = n (2 \cdot c - 1)
 \]

 - Note, we will keep track of multiple \(X \)s, \((X_1, X_2, \ldots, X_k)\) and our final estimate will be
 \[
 S = \frac{1}{k} \sum_{j}^{k} f(X_j)
 \]
Expectation Analysis

- **2nd moment is** \(S = \sum_i m_i^2 \)
- \(c_t \) ... number of times item at time \(t \) appears from time \(t \) onwards (\(c_1 = m_a, c_2 = m_a - 1, c_3 = m_b \))
- \(E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1) \)
 \[= \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1 \right) \]

\(m_i \) ... total count of item \(i \) in the stream (we are assuming stream has length \(n \))

- Group times by the value seen
- Time \(t \) when the last \(i \) is seen (\(c_t = 1 \))
- Time \(t \) when the penultimate \(i \) is seen (\(c_t = 2 \))
- Time \(t \) when the first \(i \) is seen (\(c_t = m_i \))
Expectation Analysis

Stream: a a b b b a b a

\[E[f(X)] = \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1\right) \]

- Little side calculation:
 \[\sum_{i=1}^{m_i}(2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2 \]

Then
\[E[f(X)] = \frac{1}{n} \sum_i n \left(m_i\right)^2 \]

So,
\[E[f(X)] = \sum_i (m_i)^2 = S \]
We have the second moment (in expectation)!
Higher-Order Moments

- For estimating k^{th} moment we essentially use the same algorithm but change the estimate:
 - For $k=2$ we used $n \cdot (2 \cdot c - 1)$
 - For $k=3$ we use: $n \cdot (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

- Why?
 - For $k=2$: Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,...,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
 - For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$
- Generally: Estimate $= n \cdot (c^k - (c - 1)^k)$
Combining Samples

- **In practice:**
 - Compute $f(X) = n(2c - 1)$ for as many variables X as you can fit in memory
 - Average them in groups
 - Take median of averages

- **Problem: Streams never end**
 - We assumed there was a number n, the number of positions in the stream
 - But real streams go on forever, so n is a variable – the number of inputs seen so far
Streams Never End: Fixups

- (1) The variables X have n as a factor – keep n separately; just hold the count in X

- (2) Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - **Objective:** Each starting time t is selected with probability k/n
 - **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
COUNTING ITEMSETS
New Problem: Given a stream, which items appear more than \(s \) times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- \(1 \) = item present; \(0 \) = not present
- Use DGIM to estimate counts of 1s for all items
Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset

- Drawbacks:
 - Only approximate
 - Number of itemsets is way too big
Exponentially Decaying Windows

- Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)
 - What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream
 - If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:
 $$\sum_{i=1}^{t} a_i (1 - c)^{t-i}$$
 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
 - When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
Example: Counting Items

- If each \(a_i \) is an “item” we can compute the \textbf{characteristic function} of each possible item \(x \) as an Exponentially Decaying Window
 - That is: \(\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i} \)
 - where \(\delta_i = 1 \) if \(a_i = x \), and 0 otherwise
 - Imagine that for each item \(x \) we have a binary stream (1 if \(x \) appears, 0 if \(x \) does not appear)
 - New item \(x \) arrives:
 - Multiply all counts by \((1-c) \)
 - Add +1 to count for element \(x \)
 - \textbf{Call this sum the “weight” of item} \(x \)
Important property: Sum over all weights
\[\sum_t (1 - c)^t \text{ is } \frac{1}{[1 - (1 - c)]} = \frac{1}{c} \]
Example: Counting Items

- What are “currently” most popular movies?
- Suppose we want to find movies of weight > ½
 - Important property: Sum over all weights
 \[\sum_t (1 - c)^t \text{ is } 1/[1 - (1 - c)] = 1/c \]
- Thus:
 - There cannot be more than \(2/c\) movies with weight of ½ or more
- So, \(2/c\) is a limit on the number of movies being counted at any time
Extension to Itemsets

- Count (some) itemsets in an E.D.W.
 - What are currently “hot” itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory

- When a basket B comes in:
 - Multiply all counts by $(1-c)$
 - For uncounted items in B, create new count
 - Add 1 to count of any item in B and to any itemset contained in B that is already being counted
 - Drop counts $< \frac{1}{2}$
 - Initiate new counts (next slide)
Initiation of New Counts

- Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B
 - Intuitively: If all subsets of S are being counted this means they are “frequent/hot” and thus S has a potential to be “hot”

- Example:
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
How many counts do we need?

- Counts for single items < \((2/c) \cdot (\text{avg. number of items in a basket})\)

- Counts for larger itemsets = ??

- But we are conservative about starting counts of large sets
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts