Supervised Learning

- **Would like to do prediction:**
 estimate a function \(f(x) \) so that \(y = f(x) \)

- **Where \(y \) can be:**
 - **Real number**: Regression
 - **Categorical**: Classification
 - Complex object:
 - Ranking of items, Parse tree, etc.

- **Data is labeled:**
 - Have many pairs \(\{(x, y)\} \)
 - \(x \) ... vector of binary, categorical, real valued features
 - \(y \) ... class \(\{+1, -1\} \), or a real number

Prakash 2017

VT CS 5614
We will talk about the following methods:

- k-Nearest Neighbor (Instance based learning)
- Perceptron and Winnow algorithms
- Support Vector Machines
- Decision trees

Main question:
How to efficiently train
(build a model/find model parameters)?
Instance Based Learning

- **Instance based learning**

- **Example: Nearest neighbor**
 - Keep the whole training dataset: \{\(x, y\)\}
 - A query example (vector) \(q\) comes
 - Find closest example(s) \(x^*\)
 - Predict \(y^*\)

- **Works both for regression and classification**
 - **Collaborative filtering** is an example of k-NN classifier
 - Find \(k\) most similar people to user \(x\) that have rated movie \(y\)
 - Predict rating \(y_x\) of \(x\) as an average of \(y_k\)
1-Nearest Neighbor

To make Nearest Neighbor work we need 4 things:

- **Distance metric:**
 - Euclidean

- **How many neighbors to look at?**
 - One

- **Weighting function (optional):**
 - Unused

- **How to fit with the local points?**
 - Just predict the same output as the nearest neighbor
k-Nearest Neighbor

- **Distance metric:**
 - Euclidean

- **How many neighbors to look at?**
 - \(k \)

- **Weighting function (optional):**
 - Unused

- **How to fit with the local points?**
 - Just predict the average output among \(k \) nearest neighbors

Prakash 2017
Kernel Regression

- **Distance metric:**
 - Euclidean

- **How many neighbors to look at?**
 - All of them (!)

- **Weighting function:**

 \[w_i = \exp\left(-d(x_i, q)^2 / K_w\right) \]

 - Nearby points to query q are weighted more strongly. \(K_w \) is the kernel width.

- **How to fit with the local points?**
 - **Predict weighted average:**
 \[\frac{\sum_i w_i y_i}{\sum_i w_i} \]
How to find nearest neighbors?

- **Given:** a set P of n points in R^d
- **Goal:** Given a query point q
 - **NN:** Find the nearest neighbor p of q in P
 - **Range search:** Find one/all points in P within distance r from q
Algorithms for NN

- **Main memory:**
 - Linear scan
 - **Tree based:**
 - Quadtree
 - kd-tree
 - **Hashing:**
 - Locality-Sensitive Hashing

- **Secondary storage:**
 - R-trees
The perceptron: a probabilistic model
for information storage and organization in the brain
Psychological Review 65: 386–408
Linear models: Perceptron

- **Example: Spam filtering**

<table>
<thead>
<tr>
<th>viagra</th>
<th>learning</th>
<th>the</th>
<th>dating</th>
<th>nigeria</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{x}_1 = (1, 0, 1, 0, 0, 0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$y_1 = 1$</td>
</tr>
<tr>
<td>$\vec{x}_2 = (0, 1, 1, 0, 0, 0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$y_2 = -1$</td>
</tr>
<tr>
<td>$\vec{x}_3 = (0, 0, 0, 0, 0, 1)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$y_3 = 1$</td>
</tr>
</tbody>
</table>

- **Instance space** $\mathbf{x} \in \mathbf{X}$ ($|\mathbf{X}| = n$ data points)
 - Binary or real-valued feature vector \mathbf{x} of word occurrences
 - d features (words + other things, $d \approx 100,000$)

- **Class** $\mathbf{y} \in \mathbf{Y}$
 - \mathbf{y}: Spam (+1), Ham (-1)
Linear models for classification

- **Binary classification:**

 \[f(x) = \begin{cases}
 +1 & \text{if } w_1 x_1 + w_2 x_2 + \ldots + w_d x_d \geq \theta \\
 -1 & \text{otherwise}
 \end{cases} \]

- **Input:** Vectors \(x^{(i)} \) and labels \(y^{(i)} \)
 - Vectors \(x^{(i)} \) are real valued where \(||x||_2 = 1 \)

- **Goal:** Find vector \(w = (w_1, w_2, \ldots, w_d) \)
 - Each \(w_i \) is a real number

\[w \cdot x = \theta \]
\[w \cdot x = 0 \]

Note:

\(x \Leftrightarrow \langle x, l \rangle \quad \forall x \)

\(w \Leftrightarrow \langle w, -\theta \rangle \)
Perceptron [Rosenblatt ‘58]

- (very) Loose motivation: Neuron
- Inputs are feature values
- Each feature has a weight w_i
- Activation is the sum:
 - $f(x) = \sum_i w_i x_i = w \cdot x$

- If the $f(x)$ is:
 - Positive: Predict +1
 - Negative: Predict -1

Prakash 2017
Perceptron: Estimating \(w \)

- **Perceptron**: \(y' = \text{sign}(w \cdot x) \)
- **How to find parameters \(w \)?**
 - Start with \(w_0 = 0 \)
 - Pick training examples \(x^{(t)} \) **one by one (from disk)**
 - Predict class of \(x^{(t)} \) using current weights
 - \(y' = \text{sign}(w^{(t)} \cdot x^{(t)}) \)
 - If \(y' \) is correct (i.e., \(y_t = y' \))
 - No change: \(w^{(t+1)} = w^{(t)} \)
 - If \(y' \) is wrong: adjust \(w^{(t)} \)
 \[
 w^{(t+1)} = w^{(t)} + \eta \cdot y^{(t)} \cdot x^{(t)}
 \]
 - \(\eta \) is the learning rate parameter
 - \(x^{(t)} \) is the \(t \)-th training example
 - \(y^{(t)} \) is true \(t \)-th class label (\(+1, -1\))

Note that the Perceptron is a conservative algorithm: it ignores samples that it classifies correctly.
Perceptron Convergence

- **Perceptron Convergence Theorem:**
 - If there exist a set of weights that are consistent (i.e., the data is linearly separable) the Perceptron learning algorithm will converge

- **How long would it take to converge?**

- **Perceptron Cycling Theorem:**
 - If the training data is not linearly separable the Perceptron learning algorithm will eventually repeat the same set of weights and therefore enter an infinite loop

- **How to provide robustness, more expressivity?**
Properties of Perceptron

- **Separability:** Some parameters get training set perfectly

- **Convergence:** If training set is separable, perceptron will converge

- **(Training) Mistake bound:**
 Number of mistakes $< \frac{1}{\gamma^2}$
 - where $\gamma = \min_{t,u} |x^{(t)} u|$ and $||u||_2 = 1$
 - Note we assume x Euclidean length 1, then y is the minimum distance of any example to plane u
Updating the Learning Rate

- Perceptron will oscillate and won’t converge
- When to stop learning?
- (1) Slowly decrease the learning rate η
 - A classic way is to: $\eta = c_1/(t + c_2)$
 - But, we also need to determine constants c_1 and c_2
- (2) Stop when the training error stops chaining
- (3) Have a small test dataset and stop when the test set error stops decreasing
- (4) Stop when we reached some maximum number of passes over the data
Multiclass Perceptron

- **What if more than 2 classes?**
- **Weight vector** \(w_c \) **for each class** \(c \)
 - **Train one class vs. the rest:**
 - **Example:** 3-way classification \(y = \{A, B, C\} \)
 - Train 3 classifiers: \(w_A \): A vs. B,C; \(w_B \): B vs. A,C; \(w_C \): C vs. A,B

- **Calculate activation for each class**
 \[
 f(x,c) = \sum_i w_{c,i} x_i = w_c \cdot x
 \]

- **Highest activation wins**
 \[
 c = \arg \max_c f(x,c)
 \]
Issues with Perceptrons

- **Overfitting:**

- **Regularization:** If the data is not separable weights dance around

- **Mediocre generalization:**
 - Finds a “barely” separating solution
Improvement: Winnow Algorithm

- **Winnow**: Predict $f(x) = +1$ iff $w \cdot x \geq \theta$
 - Similar to perceptron, just different updates
 - Assume x is a real-valued feature vector, $\|x\|_2 = 1$

 - Initialize: $\theta = \frac{d}{2}$, $w = \left[\frac{1}{d}, \ldots, \frac{1}{d}\right]$
 - For every training example $x^{(t)}$
 - Compute $y' = f(x^{(t)})$
 - If no mistake ($y^{(t)} = y'$): do nothing
 - If mistake then: $w_i \leftarrow w_i \frac{\exp(\eta y^{(t)} x_i^{(t)})}{Z^{(t)}}$

- w ... weights *(can never get negative!)*

- $Z^{(t)} = \sum_i w_i \exp\left(\eta y^{(t)} x_i^{(t)}\right)$ is the normalizing const.
Improvement: Winnow Algorithm

- **About the update:** \(w_i \leftarrow w_i \frac{\exp(\eta y(t) x_i(t))}{Z(t)} \)
 - If \(x \) is false negative, increase \(w_i \) (promote)
 - If \(x \) is false positive, decrease \(w_i \) (demote)

- **In other words:** Consider \(x_i^{(t)} \in \{-1, +1\} \)

- Then \(w_i^{(t+1)} \propto w_i^{(t)} \cdot \begin{cases} e^\eta & \text{if } x_i^{(t)} = y^{(t)} \\ e^{-\eta} & \text{else} \end{cases} \)

- **Notice:** This is a weighted majority algorithm of “experts” \(x_i \) agreeing with \(y \)
Extensions: Winnow

- **Problem:** All w_i can only be >0

- **Solution:**
 - For every feature x_i, introduce a new feature $x'_i = -x_i$
 - Learn Winnow over $2d$ features

- **Example:**
 - Consider:
 - Then new and are
 - Note this results in the same dot values as if we used original and

- **New algorithm is called Balanced Winnow**
Extensiohs: Balanced Winnow

- In practice we implement Balanced Winnow:
 - 2 weight vectors w^+, w^-; effective weight is the difference

- Classification rule:
 - $f(x) = +1$ if $(w^+ - w^-) \cdot x \geq \theta$
- Update rule:
 - If mistake:
 - $w_i^+ \leftarrow w_i^+ \frac{\exp(\eta y(t) x_i(t))}{Z^+(t)}$
 - $w_i^- \leftarrow w_i^- \frac{\exp(-\eta y(t) x_i(t))}{Z^-(t)}$

$$Z^-(t) = \sum w_i \exp \left(-\eta y(t) x_i(t)\right)$$

Prakash 2017

VT CS 5614

23
Extensions: Thick Separator

- **Thick Separator** (aka Perceptron with Margin) (Applies both to Perceptron and Winnow)
 - Set margin parameter γ
 - Update if $y=+1$
 - but $w \cdot x < \theta + \gamma$
 - or if $y=-1$
 - but $w \cdot x > \theta - \gamma$

Note: γ is a functional margin. Its effect could disappear as w grows. Nevertheless, this has been shown to be a very effective algorithmic addition.
Summary of Algorithms

- **Setting:**
 - **Examples:** $x \in \{0, 1\}$, weights $w \in \mathbb{R}^d$
 - **Prediction:** iff else

- **Perceptron:** Additive weight update
 \[
 w \leftarrow w + \eta \ y \ x
 \]
 - If $y=+1$ but $w \cdot x \leq \theta$ then $w_i \leftarrow w_i + 1$ (if $x_i=1$) (promote)
 - If $y=-1$ but $w \cdot x > \theta$ then $w_i \leftarrow w_i - 1$ (if $x_i=1$) (demote)

- **Winnow:** Multiplicative weight update
 \[
 w \leftarrow w \exp\{\eta \ y \ x\}
 \]
 - If $y=+1$ but $w \cdot x \leq \theta$ then $w_i \leftarrow 2 \cdot w_i$ (if $x_i=1$) (promote)
 - If $y=-1$ but $w \cdot x > \theta$ then $w_i \leftarrow w_i / 2$ (if $x_i=1$) (demote)
Perceptron vs. Winnow

- How to compare learning algorithms?

- Considerations:
 - Number of features d is very large
 - The instance space is sparse
 - Only few features per training example are non-zero
 - The model is sparse
 - Decisions depend on a small subset of features
 - In the “true” model on a few w_i are non-zero
 - Want to learn from a number of examples that is small relative to the dimensionality d
Perceptron vs. Winnow

<table>
<thead>
<tr>
<th>Perceptron</th>
<th>Winnow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online: Can adjust to changing target, over time</td>
<td>Online: Can adjust to changing target, over time</td>
</tr>
<tr>
<td>Advantages</td>
<td>Advantages</td>
</tr>
<tr>
<td>– Simple</td>
<td>– Simple</td>
</tr>
<tr>
<td>– Guaranteed to learn a linearly separable problem</td>
<td>– Guaranteed to learn a linearly separable problem</td>
</tr>
<tr>
<td>– Advantage with few relevant features per training example</td>
<td>– Suitable for problems with many irrelevant attributes</td>
</tr>
<tr>
<td>Limitations</td>
<td>Limitations</td>
</tr>
<tr>
<td>– Only linear separations</td>
<td>– Only linear separations</td>
</tr>
<tr>
<td>– Only converges for linearly separable data</td>
<td>– Only converges for linearly separable data</td>
</tr>
<tr>
<td>– Not really “efficient with many features”</td>
<td>– Not really “efficient with many features”</td>
</tr>
</tbody>
</table>
Online Learning

- **New setting:** Online Learning
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data

- **Idea:** Do slow updates to the model
 - Both our methods Perceptron and Winnow make updates if they misclassify an example
 - **So:** First train the classifier on training data. Then for every example from the stream, if we misclassify, update the model (using small learning rate)
Example: Shipping Service

- **Protocol:**
 - User comes and tell us origin and destination
 - We offer to ship the package for some money ($10 - $50)
 - Based on the price we offer, sometimes the user uses our service ($y = 1$), sometimes they don't ($y = -1$)

- **Task:** Build an algorithm to optimize what price we offer to the users

- **Features x capture:**
 - Information about user
 - Origin and destination

- **Problem:** Will user accept the price?
Example: Shipping Service

- Model whether user will accept our price:
 \[y = f(x; w) \]
 - Accept: \(y = 1 \), Not accept: \(y = -1 \)
 - Build this model with say Perceptron or Winnow

- The website that runs continuously

- Online learning algorithm would do something like
 - User comes
 - She is represented as an \((x, y)\) pair where
 - \(x \): Feature vector including price we offer, origin, destination
 - \(y \): If they chose to use our service or not
 - The algorithm updates \(w \) using just the \((x, y)\) pair
 - Basically, we update the \(w \) parameters every time we get some new data
Example: Shipping Service

- We discard this idea of a data “set”
- Instead we have a continuous stream of data

Further comments:

- For a major website where you have a massive stream of data then this kind of algorithm is pretty reasonable
- Don’t need to deal with all the training data
- If you had a small number of users you could save their data and then run a normal algorithm on the full dataset
 - Doing multiple passes over the data
Online Algorithms

- An online algorithm can adapt to changing user preferences

- For example, over time users may become more price sensitive

- The algorithm adapts and learns this

- So the system is dynamic