CS 5614: (Big) Data Management Systems

B. Aditya Prakash

Lecture #21: Graph Mining 2
We often think of networks being organized into modules, cluster, communities:
Goal: Find Densely Linked Clusters
Micro-Markets in Sponsored Search

- Find micro-markets by partitioning the query-to-advertiser graph:

[Andersen, Lang: Communities from seed sets, 2006]
Movies and Actors

- Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]
Discovering social circles, circles of trust:

- friends under the same advisor
- CS department friends
- college friends
- ‘alters’ v_i
- ‘ego’ u
- family members
- highschool friends

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]
We will work with **undirected** (unweighted) networks.

How to find communities?

COMMUNITY DETECTION
Method 1: Strength of Weak Ties

- **Edge betweenness**: Number of shortest paths passing over the edge
- **Intuition:**

![Edge strengths (call volume) in a real network](image1)

![Edge betweenness in a real network](image2)

Prakash 2017
Method 1: Girvan-Newman

- Divisive hierarchical clustering based on the notion of edge *betweenness*:
 Number of shortest paths passing through the edge

- **Girvan-Newman Algorithm:**
 - Undirected unweighted networks
 - **Repeat until no edges are left:**
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
 - Connected components are communities
 - Gives a hierarchical decomposition of the network
Girvan-Newman: Example

Need to re-compute betweenness at every step
Girvan-Newman: Example

Step 1:

Step 2:

Step 3:

Hierarchical network decomposition:

Prakash 2017

VT CS 561
Girvan-Newman: Results

Communities in physics collaborations

Prakash 2017
Girvan-Newman: Results

- Zachary’s Karate club: Hierarchical decomposition
WE NEED TO RESOLVE 2 QUESTIONS

1. How to compute betweenness?
2. How to select the number of clusters?
How to Compute Betweenness?

- Want to compute betweenness of paths starting at node A

Breath first search starting from A:
How to Compute Betweenness?

- Count the number of shortest paths from \(A \) to all other nodes of the network:
How to Compute Betweenness?

- **Compute betweenness by working up the tree:** If there are multiple paths count them fractionally.

The algorithm:
- **Add edge flows:**
 - node flow = \(1 + \sum \text{child edges}\)
 - split the flow up based on the parent value
- **Repeat the BFS procedure for each starting node** \(U\)

Prakash 2017
How to Compute Betweenness?

- **Compute betweenness by working up the tree**: If there are multiple paths count them fractionally

The algorithm:
- Add edge flows:
 - node flow = $1 + \sum \text{child edges}$
 - split the flow up based on the parent value
- Repeat the BFS procedure for each starting node U
WE NEED TO RESOLVE 2 QUESTIONS

1. How to compute betweenness?
2. How to select the number of clusters?
Network Communities

- **Communities**: sets of tightly connected nodes

- **Define**: Modularity Q
 - A measure of how well a network is partitioned into communities

 Given a partitioning of the network into groups $s \in S$

 $$Q \propto \sum_{s \in S} \left[\text{(# edges within group } s) - \text{(expected # edges within group } s) \right]$$

Need a null model!
Null Model: Configuration Model

- Given real G on n nodes and m edges, construct rewired network G'
 - Same degree distribution but random connections
 - Consider G' as a multigraph

- The expected number of edges between nodes i and j of degrees k_i and k_j equals to: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$
 - The expected number of edges in (multigraph) G':
 - $= \frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in N} k_i (\sum_{j \in N} k_j) = $
 - $= \frac{1}{4m} 2m \cdot 2m = m$

Note: $\sum_{u \in N} k_u = 2m$
Modularity of partitioning S of graph G:

\[Q \propto \sum_{s \in S} \left[(\text{# edges within group } s) - (\text{expected # edges within group } s) \right] \]

\[Q(G, S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \]

Normalizing cost.: $-1 < Q < 1$

Modularity values take range $[-1,1]$

- It is positive if the number of edges within groups exceeds the expected number
- $0.3 - 0.7 < Q$ means significant community structure
Modularity: Number of clusters

- Modularity is useful for selecting the number of clusters:
SPECTRAL CLUSTERING
Graph Partitioning

- Undirected graph

- Bi-partitioning task:
 - Divide vertices into two disjoint groups

- Questions:
 - How can we define a “good” partition of ?
 - How can we efficiently identify such a partition?
Graph Partitioning

- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections
Graph Cuts

- Express partitioning objectives as a function of the “edge cut” of the partition
- **Cut:** Set of edges with only one vertex in a group:

\[
cut(A, B) = \sum_{i \in A, j \in B} w_{ij}
\]

![Diagram showing a graph with two sets A and B, and the calculation of cut(A, B) = 2](image)
Graph Cut Criterion

- **Criterion:** Minimum-cut
 - Minimize weight of connections between groups
 \[\arg \min_{A,B} \, \text{cut}(A,B) \]

- **Degenerate case:**

- **Problem:**
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity
Graph Cut Criteria

- **Criterion: **Normalized-cut [Shi-Malik, ’97]
 - Connectivity between groups relative to the density of each group

 \[ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)} \]

 : total weight of the edges with at least one endpoint in :

 Why use this criterion?
 - Produces more balanced partitions

- **How do we efficiently find a good partition?**
 - **Problem:** Computing optimal cut is NP-hard
Spectral Graph Partitioning

- **A: adjacency matrix of undirected G**
 - $A_{ij} = 1$ if i is an edge, else 0

- **x** is a vector in \mathbb{R}^n with components
 - Think of it as a label/value of each node of

- **What is the meaning of $A \cdot x$?**

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\]

\[
y_i = \sum_{j=1}^{n} A_{ij} x_j = \sum_{(i,j) \in E} x_j
\]

- **Entry y_i is a sum of labels x_j of neighbors of i**
What is the meaning of $A\mathbf{x}$?

- **j^{th} coordinate of $A\cdot\mathbf{x}$:**
 - Sum of the \mathbf{x}-values of neighbors of j
 - Make this a new value at node j

- **Spectral Graph Theory:**
 - Analyze the “spectrum” of matrix representing
 - **Spectrum:** Eigenvectors of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues:

$$
\mathbf{A}\cdot\mathbf{x} = \lambda\cdot\mathbf{x}
$$

$$
\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}
$$

$$
\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n
$$
Example: d-regular graph

- Suppose all nodes in G have degree d and G is connected.

- What are some eigenvalues/vectors of G?

 $A \cdot x = \lambda \cdot x$
 What is λ? What x?

 - Let’s try: $x = (1, 1, \ldots, 1)$
 - Then: $A \cdot x = (d, d, \ldots, d) = \lambda \cdot x$. So: $\lambda = d$
 - We found eigenpair of G: $x = (1, 1, \ldots, 1)$, $\lambda = d$

Remember the meaning of $y = A \cdot x$:

$$y_j = \sum_{i=1}^{n} A_{ij} x_i = \sum_{(j,i) \in E} x_i$$
\(d \) is the largest eigenvalue of \(A \)

- **G** is \(d \)-regular connected, \(A \) is its adjacency matrix
- **Claim:**
 - \(d \) is largest eigenvalue of \(A \),
 - \(d \) has multiplicity of 1 (there is only 1 eigenvector associated with eigenvalue \(d \))
- **Proof:** **Why no eigenvalue \(d' > d \)?**
 - To obtain \(d \) we needed \(x_i = x_j \) for every \(i, j \)
 - This means \(x = c \cdot (1, 1, \ldots, 1) \) for some const. \(c \)
 - **Define:** \(S \) = nodes \(i \) with maximum possible value of \(x_i \)
 - Then consider some vector \(y \) which is not a multiple of vector \((1, \ldots, 1) \). So not all nodes \(i \) (with labels \(y_i \)) are in \(S \)
 - Consider some node \(j \in S \) and a neighbor \(i \notin S \) then node \(j \) gets a value strictly less than \(d \)
 - So \(y \) is not eigenvector! And so \(d \) is the largest eigenvalue!
Example: Graph on 2 components

- **What if** G **is not connected?**
 - G has 2 components, each d-regular
- **What are some eigenvectors?**
 - $x = \text{Put all 1s on } A \text{ and 0s on } B \text{ or vice versa}$
 - $x' = (\underbrace{1, \ldots, 1}_{|A|}, \underbrace{0, \ldots, 0}_{|B|})$ then $A \cdot x' = (d, \ldots, d, 0, \ldots, 0)$
 - $x'' = (0, \ldots, 0, 1, \ldots, 1)$ then $A \cdot x'' = (0, \ldots, 0, d, \ldots, d)$
 - And so in both cases the corresponding $\lambda = d$

- **A bit of intuition:**
 - $\lambda_n = \lambda_{n-1}$
 - $\lambda_n - \lambda_{n-1} \approx 0$
 - 2^{nd} largest eigval.
 - λ_{n-1} now has value very close to λ_n
More Intuition

- More intuition:
 \[\lambda_n = \lambda_{n-1} \]
 \[\lambda_n - \lambda_{n-1} \approx 0 \]

- If the graph is connected (right example) then we already know that \(x_n = (1, \ldots, 1) \) is an eigenvector.
- Since eigenvectors are orthogonal then the components of \(x_{n-1} \) sum to 0.
 - Why? Because \(x_n \cdot x_{n-1} = \sum_i x_n[i] \cdot x_{n-1}[i] \)
- So we can look at the eigenvector of the 2\(^{nd}\) largest eigenvalue and declare nodes with positive label in \(A \) and negative label in \(B \).
- But there is still lots to sort out.
Matrix Representations

- **Adjacency matrix \((A)\):**
 - \(n \times n\) matrix
 - \(A = [a_{ij}], a_{ij} = 1\) if edge between node \(i\) and \(j\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Important properties:**
 - Symmetric matrix
 - Eigenvectors are real and orthogonal
Matrix Representations

- **Degree matrix (D):**
 - $n \times n$ diagonal matrix
 - $D = [d_{ii}], \ d_{ii} = \text{degree of node } i$
Matrix Representations

- **Laplacian matrix** (L):
 - $n \times n$ symmetric matrix

- **What is trivial eigenpair?**
 - then and so

- **Important properties:**
 - **Eigenvalues** are non-negative real numbers
 - **Eigenvectors** are real and orthogonal

$L = D - A$
Facts about the Laplacian L

(a) All eigenvalues are ≥ 0

(b) $x^T L x = \sum_{ij} L_{ij} x_i x_j \geq 0$ for every x

(c) $L = N^T \cdot N$

- That is, L is positive semi-definite

Proof:

- (c)\implies(b): $x^T L x = x^T N^T N x = (xN)^T (N x) \geq 0$
 - As it is just the square of length of $N x$

- (b)\implies(a): Let λ be an eigenvalue of L. Then by (b) $x^T L x \geq 0$ so $x^T L x = x^T \lambda x = \lambda x^T x \implies \lambda \geq 0$

- (a)\implies(c): is also easy! Do it yourself.
λ_2 as optimization problem

- **Fact:** For symmetric matrix \(M \):

\[
\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}
\]

- **What is the meaning of \(\min x^T L x \) on \(G \)?**

\[
x^T L x = \sum_{i,j=1}^{n} L_{ij} x_i x_j = \sum_{i,j=1}^{n} (D_{ij} - A_{ij}) x_i x_j
\]

\[
= \sum_i D_{ii} x_i^2 - \sum_{(i,j)\in E} 2x_i x_j
\]

\[
= \sum_{(i,j)\in E} (x_i^2 + x_j^2 - 2x_i x_j) = \sum_{(i,j)\in E} (x_i - x_j)^2
\]

Node \(i \) has degree \(d_i \). So, value \(x_i^2 \) needs to be summed up \(d_i \) times. But each edge \((i,j)\) has two endpoints so we need \(x_i^2 + x_j^2 \)
Proof

- Write \(x \) in axes of eigenvectors \(w_1, w_2, \ldots, w_n \) of \(M \). So, \(x = \sum_i^n \alpha_i w_i \)
- Then we get: \(Mx = \sum_i \alpha_i Mw_i = \sum_i \alpha_i \lambda_i w_i \)
- So, what is \(x^T Mx \)?
 - \(x^T Mx = (\sum_i \alpha_i w_i)(\sum_i \alpha_i \lambda_i w_i) = \sum_{ij} \alpha_i \lambda_j \alpha_j w_i w_j \)
 - \(= \sum_i \alpha_i \lambda_i w_i w_i = \sum_i \lambda_i \alpha_i^2 \)
- To minimize this over all unit vectors \(x \) orthogonal to: \(w = \min \) over choices of \((\alpha_1, \ldots, \alpha_n)\) so that:
 - \(\sum \alpha_i^2 = 1 \) (unit length) \(\sum \alpha_i = 0 \) (orthogonal to \(w_1 \))
- To minimize this, set \(\alpha_2 = 1 \) and so \(\sum_i \lambda_i \alpha_i^2 = \lambda_2 \)
\(\lambda_2 \) as optimization problem

- **What else do we know about \(x \)?**
 - \(x \) is unit vector: \(\sum_i x_i^2 = 1 \)
 - \(x \) is orthogonal to 1\(^{st} \) eigenvector \((1, \ldots, 1)\) thus:
 \(\sum_i x_i \cdot 1 = \sum_i x_i = 0 \)

- **Remember:**
 \[
 \lambda_2 = \min \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2}
 \]
 All labelings of nodes \(i \) so that \(\sum x_i = 0 \)

 We want to assign values \(x_i \) to nodes \(i \) such that few edges cross 0.
 (we want \(x_i \) and \(x_j \) to subtract each other)

 Balance to minimize
Find Optimal Cut [Fiedler’73]

- Back to finding the optimal cut
- Express partition (A,B) as a vector
 \[y_i = \begin{cases}
 +1 & \text{if } i \in A \\
 -1 & \text{if } i \in B
 \end{cases} \]
- We can minimize the cut of the partition by finding a non-trivial vector \(x \) that minimizes:
 \[\arg \min f(y) = \sum_{(i,j)\in E} (y_i - y_j)^2 \]

 \[y \in [-1, +1]^n \]

Can’t solve exactly. Let’s relax \(y \) and allow it to take any real value.
Rayleigh Theorem

\[
\min_{y \in \mathbb{R}^n} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T Ly
\]

- \(\lambda_2 = \min_y f(y) \): The minimum value of \(f(y) \) is given by the 2\(^{nd}\) smallest eigenvalue \(\lambda_2 \) of the Laplacian matrix \(L \).

- \(x = \arg \min_y f(y) \): The optimal solution for \(y \) is given by the corresponding eigenvector \(x \), referred as the **Fiedler vector**.
Approx. Guarantee of Spectral

- Suppose there is a partition of G into A and B where $|A| \leq |B|$, s.t. $\alpha = \frac{\text{(# edges from } A \text{ to } B)}{|A|}$ then $2\alpha \geq \lambda_2$
 - This is the approximation guarantee of the spectral clustering. It says the cut spectral finds is at most 2 away from the optimal one of score α.
- **Proof:**
 - Let: $a=|A|$, $b=|B|$ and $e=\#$ edges from A to B
 - Enough to choose some x_i based on A and B such that: $\lambda_2 \leq \frac{\sum (x_i-x_j)^2}{\sum_i x_i^2} \leq 2\alpha$ (while also $\sum_i x_i = 0$)

λ_2 is only smaller
Approx. Guarantee of Spectral

Proof (continued):

1) Let’s set: \[x_i = \begin{cases} \frac{-1}{a} & \text{if } i \in A \\ \frac{1}{b} & \text{if } i \in B \end{cases} \]

Let’s quickly verify that \(\sum x_i = 0 \): \(a \left(-\frac{1}{a} \right) + b \left(\frac{1}{b} \right) = 0 \)

2) Then: \(\frac{\sum(x_i - x_j)^2}{\sum x_i^2} = \frac{\sum_{i \in A,j \in B} \left(\frac{1}{b} + \frac{1}{a} \right)^2}{a \left(\frac{1}{a} \right)^2 + b \left(\frac{1}{b} \right)^2} = \frac{e \left(\frac{1}{a} + \frac{1}{b} \right)^2}{\frac{1}{a} + \frac{1}{b}} \)

\(e \left(\frac{1}{a} + \frac{1}{b} \right) \leq e \left(\frac{1}{a} + \frac{1}{a} \right) \leq e \frac{2}{a} = 2a \)

Which proves that the cost achieved by spectral is better than twice the OPT cost

e … number of edges between A and B
Approx. Guarantee of Spectral

- **Putting it all together:**

\[
2\alpha \geq \lambda_2 \geq \frac{\alpha^2}{2k_{\text{max}}}
\]

- where \(k_{\text{max}}\) is the maximum node degree in the graph

 - Note we only provide the 1st part: \(2\alpha \geq \lambda_2\)

 - We did not prove \(\lambda_2 \geq \frac{\alpha^2}{2k_{\text{max}}}\)

- Overall this always certifies that \(\lambda_2\) always gives a useful bound
So far...

- **How to define a “good” partition of a graph?**
 - Minimize a given graph cut criterion

- **How to efficiently identify such a partition?**
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph

- **Spectral Clustering**
Spectral Clustering Algorithms

- Three basic stages:
 - 1) **Pre-processing**
 - Construct a matrix representation of the graph
 - 2) **Decomposition**
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
 - 3) **Grouping**
 - Assign points to two or more clusters, based on the new representation
Spectral Partitioning Algorithm

1) **Pre-processing:**
 - Build Laplacian matrix L of the graph

2) **Decomposition:**
 - Find eigenvalues λ and eigenvectors x of the matrix L
 - Map vertices to corresponding components of λ_2

How do we now find the clusters?
3) **Grouping:**
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two

How to choose a splitting point?
- Naïve approaches:
 - Split at 0 or median value
- More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.6</td>
<td></td>
</tr>
</tbody>
</table>

Split at 0:
- **Cluster A:** Positive points
- **Cluster B:** Negative points

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.6</td>
<td></td>
</tr>
</tbody>
</table>

Prakash 2017
Example: Spectral Partitioning

Value of x_2

Rank in x_2
Example: Spectral Partitioning

Components of x_2
Example: Spectral partitioning

Components of x_1

Components of x_3
k-Way Spectral Clustering

- How do we partition a graph into k clusters?

- **Two basic approaches:**
 - **Recursive bi-partitioning** [Hagen et al., ’92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - **Cluster multiple eigenvectors** [Shi-Malik, ’00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...
Why use multiple eigenvectors?

- **Approximates the optimal cut** [Shi-Malik, ’00]
 - Can be used to approximate optimal \(k \)-way normalized cut

- **Emphasizes cohesive clusters**
 - Increases the unevenness in the distribution of the data
 - Associations between similar points are amplified, associations between dissimilar points are attenuated
 - The data begins to “approximate a clustering”

- **Well-separated space**
 - Transforms data to a new “embedded space”, consisting of \(k \) orthogonal basis vectors

- **Multiple eigenvectors prevent instability due to information loss**
ANALYSIS OF LARGE GRAPHS: TRAWLING
Trawling

- Searching for small communities in the Web graph
- What is the signature of a community / discussion in a Web graph?

Dense 2-layer graph

Intuition: Many people all talking about the same things

Use this to define “topics”: What the same people on the left talk about on the right
Remember HITS!
A more well-defined problem:
Enumerate complete bipartite subgraphs $K_{s,t}$
- Where $K_{s,t}$: s nodes on the “left” where each links to the same t other nodes on the “right”

$|X| = s = 3$
$|Y| = t = 4$

Fully connected $K_{3,4}$
Frequent Itemset Enumeration

- **Market basket analysis.** Setting:
 - **Market:** Universe U of n items
 - **Baskets:** m subsets of U: $S_1, S_2, \ldots, S_m \subseteq U$ (S_i is a set of items one person bought)
 - **Support:** Frequency threshold f

- **Goal:**
 - Find all subsets T s.t. $T \subseteq S_i$ of at least f sets S_i (items in T were bought together at least f times)

- **What’s the connection between the itemsets and complete bipartite graphs?**
From Itemsets to Bipartite $K_{s,t}$

Frequent itemsets = complete bipartite graphs!

How?

- View each node i as a set S_i of nodes i points to
- $K_{s,t} = \text{a set } Y \text{ of size } t$ that occurs in s sets S_i
- Looking for $K_{s,t} \to \text{set of frequency threshold to } s$ and look at layer t – all frequent sets of size t

$s \ldots \text{minimum support (}|X|=s)$
$t \ldots \text{itemset size (}|Y|=t)$
From Itemsets to Bipartite $K_{s,t}$

View each node i as a set S_i of nodes i points to

$S_i=\{a,b,c,d\}$

Find frequent itemsets:
- s ... minimum support
- t ... itemset size

Say we find a frequent itemset $Y=\{a,b,c\}$ of supp s

So, there are s nodes that link to all of $\{a,b,c\}$:

We found $K_{s,t}$!

$K_{s,t}$ = a set Y of size t that occurs in s sets S_i
Example (1)

- **Support threshold** \(s=2 \)
 - \(\{b,d\} \): support 3
 - \(\{e,f\} \): support 2

- **And we just found 2 bipartite subgraphs:**

 Itemsets:
 - \(a = \{b,c,d\} \)
 - \(b = \{d\} \)
 - \(c = \{b,d,e,f\} \)
 - \(d = \{e,f\} \)
 - \(e = \{b,d\} \)
 - \(f = \{\} \)
Example (2)

- **Example of a community from a web graph**

<table>
<thead>
<tr>
<th>Nodes on the right</th>
<th>Nodes on the left</th>
</tr>
</thead>
<tbody>
<tr>
<td>A community of Australian fire brigades</td>
<td></td>
</tr>
<tr>
<td>Authorities</td>
<td>Hubs</td>
</tr>
<tr>
<td>NSW Rural Fire Service Internet Site</td>
<td>New South Wales Fir...ial Australian Links</td>
</tr>
<tr>
<td>NSW Fire Brigades</td>
<td>Feuerwehrlinks Australien</td>
</tr>
<tr>
<td>Sutherland Rural Fire Service</td>
<td>FireNet Information Network</td>
</tr>
<tr>
<td>CFA: County Fire Authority</td>
<td>The Cherrybrook Rur...re Brigade Home Page</td>
</tr>
<tr>
<td>“The National Cente...ted Children’s Ho...</td>
<td>New South Wales Fir...ial Australian Links</td>
</tr>
<tr>
<td>CRAFTI Internet Connexions-INFO</td>
<td>Fire Departments, F... Information Network</td>
</tr>
<tr>
<td>Welcome to Blackwoo... Fire Safety Serv...</td>
<td>The Australian Firefighter Page</td>
</tr>
<tr>
<td>The World Famous Guestbook Server</td>
<td>Kristiansand brannv...dens brannvesener...</td>
</tr>
<tr>
<td>Wilberforce County Fire Brigade</td>
<td>Australian Fire Services Links</td>
</tr>
<tr>
<td>NEW SOUTH WALES FIR...ES 377 STATION</td>
<td>The 911 F,P,M., Fir...mp; Canada A Section</td>
</tr>
<tr>
<td>Woronora Bushfire Brigade</td>
<td>Feuerwehrlinks Australien</td>
</tr>
<tr>
<td>Mongarlowe Bush Fire – Home Page</td>
<td>Sanctuary Point Rural Fire Brigade</td>
</tr>
<tr>
<td>Golden Square Fire Brigade</td>
<td>Fire Trails “I...ghters around the...</td>
</tr>
<tr>
<td>FIREBREAK Home Page</td>
<td>FireSafe – Fire and Safety Directory</td>
</tr>
<tr>
<td>Guises Creek Volunt...ficial Home Page...</td>
<td>Kristiansand Firede...departments of th...</td>
</tr>
</tbody>
</table>

[Kumar, Raghavan, Rajagopalan, Tomkins: Trawling the Web for emerging cyber-communities 1999]
Prakash 2017