CS 6604: Data Mining Large Networks and Time-series

B. Aditya Prakash
Lecture #11: Finding Sources in Epidemics
Virus Propagation

- Susceptible-Infected (SI) Model

Diseases over contact networks

CDC data: Visualization of the first 35 tuberculosis (TB) patients and their 1039 contacts

[AJPH 2007]
Culprits: Problem definition

2-d grid

Q: Who started it?
Culprits: Problem definition

2-d grid

Q: Who started it?
Who are the good effectors [Lappas+, 2010]

- **Input:** a single snapshot of the network and the activation state of nodes

- How do you evaluate a good set of initiators?

Input data

Possible final state

\[S = \{A, B\} \]

Cost(S) = 2
Various Problem Definitions

- Cost(S) can be the **difference** between the observed activations and the expected activations given S [Lappas+, 2010]

Problem 1 (k-Effectors problem). Given a social network graph \(G = (V, E, p) \) and an activation vector \(a \), find a set \(X \) of active nodes (effectors), of cardinality at most \(k \) such that

\[
C(X) = \sum_{v \in V} |a(v) - \alpha(v, X)|
\]

(2)

is minimized.
The **k-Effector** problem in arbitrary graphs is **NP-complete**.

The **k-Effector** problem in arbitrary graphs is **NP-hard to approximate**.

The **k-Effector** problem can be **solved optimally in polynomial time on trees**.
Alternative formulation [Shah and Zaman 2010]

- Best source is the one which maximizes data likelihood (assumed the SI model)

\[\hat{v} = \text{arg max}_{v \in G_N} P(G_N | v^* = v) \]

The infected subgraph
\[\hat{v} = \arg \max_{v \in G_N} P(G_N | v^* = v) \]

Propagation Ripples

Original Graph

Infected Snapshot

Ripple R1

Ripple R2
Rumor Centrality

\[\hat{v} = \arg \max_{v \in G_N} P(G_N | v^* = v) \]

- so

\[P(G_N | v^* = v) = \sum_{\text{all ripples}} R_i \]

Very hard to compute.
#P-hard in general
Rumor Centrality

- But can be computed efficiently for k-regular trees

Ripple == valid Permutation
Rumor Centrality

How to find and compute the probability of each of efficiently?

Ripple == valid Permutation

1 2 4 5 3 6 7 : VALID

1 4 2 5 3 6 7 : NOT VALID
In k-regular trees

Each permutation is equally likely! (due to memoryless-ness)

\[P(\sigma|v^* = v) = \frac{1}{k} \cdot \frac{1}{k + (k - 2)} \cdots \frac{1}{k + (N - 2)(k - 2)} \]

\[\hat{v} = \arg \max_{v \in G_N} P(G_N|v^* = v) = \arg \max_{v \in G_N} R(v, G_N) \]
Number of possible trees

\[R(v, G_N) = N! \prod_{u \in G_N} \frac{1}{T_u} \]
But

\[R(v, G_N) = N! \prod_{u \in G_N} \frac{1}{T_u^v} \]

\[T_u^v = N - T_u^v \]

Number of nodes in the subtree rooted at node \(u \) with \(v \) as the source

Number of nodes in the subtree rooted at node \(v \) with \(u \) as the source
A message passing algorithm

Algorithm 1 Rumor Centrality Message-Passing Algorithm

1: Choose a root node \(v \in G_N \)
2: for \(u \) in \(G_N \) do
3: if \(u \) is a leaf then
4: \(t_{u \rightarrow \text{parent}(u)}^{up} = 1 \)
5: \(p_{u \rightarrow \text{parent}(u)}^{up} = 1 \)
6: else
7: if \(u \) is source \(v \) then
8: \[r_{v \rightarrow \text{child}(v)}^{down} = \frac{N!}{N} \prod_{j \in \text{children}(v)} p_{j \rightarrow v}^{up} \]
9: else
10: \(t_{u \rightarrow \text{parent}(u)}^{up} = \sum_{j \in \text{children}(u)} t_{j \rightarrow u}^{up} + 1 \)
11: \(p_{u \rightarrow \text{parent}(u)}^{up} = t_{u \rightarrow \text{parent}(u)}^{up} \prod_{j \in \text{children}(u)} p_{j \rightarrow u}^{up} \)
12: \[r_{u \rightarrow \text{child}(u)}^{down} = r_{\text{parent}(u) \rightarrow u}^{down} \frac{t_{u \rightarrow \text{parent}(u)}^{up}}{N - t_{u \rightarrow \text{parent}(u)}^{up}} \]
13: end if
14: end if
15: end for
How to extend for general graphs

- Unclear

- May extract a tree, say MST, BFS and then use this
Culprits: Problem definition

2-d grid

Q: Who started it?
Formulation

- How to find both the number and identity?
Culprits: Exoneration

(a) A chain
Culprits: Exoneration

(a) A chain

(b) A chain-star
Who are the culprits

- Two-part solution
 - use MDL for *number* of seeds
 - for a given number:
 - exoneration = centrality + penalty

- Running time = $O(k^*(E_I + E_F + V_I))$
 - linear! (in edges and nodes)

NetSleuth
Modeling using MDL

- Minimum Description Length Principle == Induction by compression
- Related to Bayesian approaches
- MDL = Model + Data
- Model
 - Scoring the seed-set

\[\mathcal{L}(S) = \mathcal{L}_N(|S|) + \log \left(\begin{pmatrix} N \\ |S| \end{pmatrix} \right) \]

- Encoding integer \(|S|\)
- Number of possible \(|S|\)-sized sets
Modeling using MDL

- Data: Propagation Ripples

![Original Graph](image1)

![Infected Snapshot](image2)

![Ripple R1](image3)

![Ripple R2](image4)
Modeling using MDL

- **Ripple cost**

\[
\mathcal{L}(R \mid S) = \mathcal{L}_N(T) + \sum_{t}^{T} \mathcal{L}(\mathcal{F}^t)
\]

- **Total MDL cost**

\[
\mathcal{L}(G_I, S, R) = \mathcal{L}(S) + \mathcal{L}(R \mid S)
\]
How to optimize the score?

- Two-step process
 - Given k, quickly identify high-quality set
 - Given these nodes, optimize the ripple R
Optimizing the score

- High-quality k-seed-set
 - Exoneration

- Best single seed:
 - Smallest eigenvector of Laplacian sub-matrix
 - Analyze a Constrained SI epidemic

- Exonerate neighbors

- Repeat
Optimizing the score

- Optimizing R
 - Get the MLE ripple!

- Finally use MDL score to tell us the best set

- NetSleuth: Linear running time in nodes and edges
 \[O(k^* (E_I + E_F + V_I)) \]
Experiments

- Evaluation functions:
 - MDL based
 \[Q_{\text{MDL}} = \frac{\mathcal{L}(G_I, S, R)}{\mathcal{L}(G_I, S^*, R^*)} \]
 - Overlap based
 \[Q_{\text{JD}} = \frac{\mathbb{E}[JD_S(V_I)]}{\mathbb{E}[JD_{S^*}(V_I)]} \]

 \((JD = \text{Jaccard distance})\)
Experiments: # of Seeds

One Seed

Two Seeds

Three Seeds
Experiments: Quality (MDL and JD)

One Seed

Two Seeds

Three Seeds

Ideal = 1

$$Q_{MDL} = \frac{\mathcal{L}(G_I, S, R)}{\mathcal{L}(G_I, S^*, R^*)}$$

$$Q_{JD} = \frac{\mathbb{E}[JD_{S}(\mathcal{V}_I)]}{\mathbb{E}[JD_{S^*}(\mathcal{V}_I)]}$$
Experiments: Quality (Jaccard Scores)

One Seed

Two Seeds

Three Seeds

Closer to diagonal, the better
Experiments: Scalability