A fundamental question

Strong Virus

Epidemic?
example (static graph)

Weak Virus

Epidemic?
Problem Statement

Find, a condition under which

– virus will die out exponentially quickly
– regardless of initial infection condition
Threshold (static version)

Problem Statement

- **Given:**
 - Graph G, and
 - Virus specs (attack prob. etc.)

- **Find:**
 - A condition for virus extinction/invasion
Threshold: Why important?

- Accelerating simulations
- Forecasting (‘What-if’ scenarios)
- Design of contagion and/or topology
- A great handle to manipulate the spreading
 - Immunization
 - Maximize collaboration

…..
Q: What is the epidemic threshold?

- Background
- Result and Intuition (Static Graphs)
- Proof Ideas (Static Graphs)
- Bonus: Dynamic Graphs
“SIR” model: life immunity (mumps)

- Each node in the graph is in one of three states:
 - Susceptible (i.e. healthy)
 - Infected
 - Removed (i.e. can’t get infected again)
Related Work

All are about either:

- **Structured topologies** (cliques, block-diagonals, hierarchies, random)
- **Specific virus propagation models**
- **Static graphs**

Prakash 2015

CS 6604:DM Large Networks & Time-Series
Q: What is the epidemic threshold?

- Background
- Result and Intuition (Static Graphs)
- Proof Ideas (Static Graphs)
- Bonus: Dynamic Graphs
How should the answer look like?

- Answer should depend on:
 - Graph
 - Virus Propagation Model (VPM)

- But how??
 - Graph – average degree? max. degree? diameter?
 - VPM – which parameters?
 - How to combine – linear? quadratic? exponential?

\[\beta d_{avg} + \delta \sqrt{\text{diameter}} \quad ? \quad (\beta^2 d_{avg}^2 - \delta d_{avg}) / d_{max} \quad ? \quad \ldots \]
Static Graphs: Main Result [Prakash+, 2011]

- Informally,

For,

- any arbitrary topology (adjacency matrix A)
- any virus propagation model (VPM) in standard literature

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(C_{VPM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>No epidemic if (\lambda \cdot C_{VPM} < 1)</td>
<td></td>
</tr>
</tbody>
</table>

the epidemic threshold depends only
1. on the \(\lambda \), first eigenvalue of \(A \), and
2. some constant \(C_{VPM} \), determined by the virus propagation model
Our thresholds for some models

- \(s = \text{effective strength} \)
- \(s < 1 : \text{below threshold} \)

<table>
<thead>
<tr>
<th>Models</th>
<th>Effective Strength ((s))</th>
<th>Threshold (tipping point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS, SIR, SIRS, SEIR</td>
<td>(s = \lambda \cdot \left(\frac{\beta}{\delta} \right))</td>
<td></td>
</tr>
<tr>
<td>SIV, SEIV</td>
<td>(s = \lambda \cdot \left(\frac{\beta \gamma}{\delta (\gamma + \theta)} \right))</td>
<td>(s = 1)</td>
</tr>
<tr>
<td>SI(_1)I(_2)V(_1)V(_2) (H.I.V.)</td>
<td>(s = \lambda \cdot \left(\frac{\beta_1 v_2 + \beta_2 \epsilon}{v_2 (\epsilon + v_1)} \right))</td>
<td></td>
</tr>
</tbody>
</table>
Our result: Intuition for λ

“Official” definition:
- Let A be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of $A \ [\text{det}(A - xI)]$.

- Doesn’t give much intuition!

“Un-official” Intuition 😊
- $\lambda \sim \# \text{ paths in the graph}$

\[
A_k^{(i,j)} = \# \text{ of paths } i \rightarrow j \text{ of length } k
\]

\[
A_k = \begin{array}{ccc}
\vdots \\
0 \\
\vdots \\
A_0 \\
\end{array}
\]

$u \quad u$
Largest Eigenvalue (λ)

better connectivity \rightarrow higher λ

$\lambda \approx 2$

(a) Chain

$\lambda = \sqrt{N}$

(b) Star

$\lambda = N - 1$

(c) Clique

$N = 1000$

Prakash 2015
Examples: Simulations – SIR (mumps)

(a) Infection profile

(b) “Take-off” plot

PORTLAND graph

31 million links, 6 million nodes
Examples: Simulations – SIRS (pertussis)

(a) Infection profile
(b) “Take-off” plot

PORTLAND graph

31 million links, 6 million nodes
Q: What is the epidemic threshold?

- Background
- Result and Intuition (Static Graphs)
- Proof Ideas (Static Graphs)
- Bonus: Dynamic Graphs
Proof Sketch

Model-based

Graph-based

\[\lambda * C_{VPM} < 1 \]

General VPM structure

Topology and stability

Prakash 2015
(A) Unstable
(B) Stable
(C) Neutral (at threshold)

CS 6604:DM Large Networks & Time-Series
Some trivia

- first person in the US identified as a healthy carrier of the pathogen associated with typhoid fever.
- infected some 53 people, over the course of her career as a cook!
- forcibly quarantined by public health authorities
Two “Infected” States

Asymptomatic

Symptomatic

I_1

I_2

Sneezing

Prakash 2015
Ingredient 1: Our generalized model

\[S^* I^2 V^* \quad (S^* I^* V^*) \]

Diagram:
- Susceptible (S\(_1\), S\(_2\), ...)
- Endogenous Transitions
- Infected (I\(_1\), I\(_2\))
- Exogenous Transitions
- Vigilant (V\(_1\), V\(_2\), ...)
- Endogenous Transitions

Prakash 2015
Models and more models

<table>
<thead>
<tr>
<th>Model</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIR</td>
<td>Mumps</td>
</tr>
<tr>
<td>SIS</td>
<td>Flu</td>
</tr>
<tr>
<td>SIRS</td>
<td>Pertussis</td>
</tr>
<tr>
<td>SEIR</td>
<td>Chicken-pox</td>
</tr>
<tr>
<td>..........</td>
<td></td>
</tr>
<tr>
<td>SICR</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>MSIR</td>
<td>Measles</td>
</tr>
<tr>
<td>SIV</td>
<td>Sensor Stability</td>
</tr>
</tbody>
</table>

\(S_1 I_2 V_1 V_2 \) H.I.V.
Our generalized model

\[S^*I^2V^* \ (S^*I^*V^*?) \]
Special case: SIR
Special case: H.I.V.

SI₁₁₂₂VV₁₂

“Non-terminal”

“Terminal”

Multiple Infectious, Vigilant states
Ingredient 2: NLDS + Stability

- View as a NLDS
 \[\vec{P}_{t+1} = \mathcal{G}(\vec{P}_t) \]
 - discrete time
 - non-linear dynamical system (NLDS)

Probability vector

- Specifies the **state of the system** at time \(t \)
- \(size N \) (number of nodes in the graph)
Ingredient 2: NLDS + Stability

- View as a NLDS
 \[\vec{P}_{t+1} = G(\vec{P}_t) \]
 - discrete time
 - non-linear dynamical system (NLDS)

Non-linear function
Explicitly gives the evolution of system

\[G : \mathbb{R}^{mN} \rightarrow \mathbb{R}^{mN} \]
Ingredient 2: NLDS + Stability

- View as a NLDS
 - discrete time
 - non-linear dynamical system (NLDS)

- Threshold \rightarrow Stability of NLDS
Special case: SIR

\[\vec{P}_{t+1} = G \vec{P}_t \]

where

\[G : \mathbb{R}^{3N} \rightarrow \mathbb{R}^{3N} \]

is a function that defines the transition probabilities between states S, I, and R.

- \(P_{S,i,t+1} = P_{S,i,t} \zeta_i(t)(I) \)
- \(P_{I,i,t+1} = P_{S,i,t}(1 - \zeta_i(t)(I)) + (1 - \delta)P_{I,i,t} \)
- \(P_{R,i,t+1} = \delta P_{I,i,t} + P_{R,i,t} \)

\[\zeta_i(t)(I) = \text{probability that node } i \text{ is not attacked by any of its infectious neighbors} \]
Fixed Point

State when no node is infected

Q: Is it stable?
Stability for SIR

Stable
under threshold

Unstable
above threshold
<table>
<thead>
<tr>
<th>Model</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIR</td>
<td>Mumps</td>
</tr>
<tr>
<td>SIS</td>
<td>Flu</td>
</tr>
<tr>
<td>SIRS</td>
<td>Pertussis</td>
</tr>
<tr>
<td>SEIR</td>
<td>Varicella</td>
</tr>
<tr>
<td>..........</td>
<td>..</td>
</tr>
<tr>
<td>SICR</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>MSIR</td>
<td>Measles</td>
</tr>
<tr>
<td>SIV</td>
<td>Sensor Stability</td>
</tr>
<tr>
<td>$SI_1I_2V_1V_2$</td>
<td>H.I.V.</td>
</tr>
</tbody>
</table>

General VPM structure

See paper for full proof

Model-based

$\lambda^* C_{VPM} < 1$

Graph-based

Topology and stability

(A) Unstable

(B) Stable

(C) Neutral (at threshold)

Prakash 2015

CS 6604:DM Large Networks & Time-Series
Outline

- Q: What is the epidemic threshold?
 - Background
 - Result and Intuition (Static Graphs)
 - Proof Ideas (Static Graphs)
 - Bonus: Dynamic Graphs
Dynamic Graphs: Epidemic?

DAY (e.g., work)

Alternating behaviors
Dynamic Graphs: Epidemic?

NIGHT (e.g., home)

Alternating behaviors

adjacency matrix
Model Description

- **SIS model**
 - recovery rate δ
 - infection rate β

- **Set of T arbitrary graphs**

\[
\{ A_1, A_2, \ldots, A_T \}
\]

\[\text{day}\]

\[\text{night}\]

, weekend.....
Obvious result

- No epidemic if \(\frac{\lambda_{\text{max}} \beta}{\delta} < 1 \)

- BUT
 - Too pessimistic!
Main result: Dynamic Graphs Threshold [Prakash+, 2010]

- Informally, NO epidemic if

\[\text{eig} (S) = \lambda_S < 1 \]

Single number! Largest eigenvalue of The system matrix \(S \)
NO epidemic if $eig(S) = \lambda_S < 1$

$$S = \prod_i S_i$$

$$S_i = (1 - \delta)I + \beta A_i$$

Cure rate

Infection rate

Adjacency matrix

Prakash 2015
Infection-profile

$log(fraction\ infected)$

Synthetic

MIT Reality

Time
“Take-off” plots

Footprint (# infected @ “steady state”)

Synthetic

MIT Reality

\[\lambda \prod_i S_i \text{ (log scale)} \]