Modeling Dynamic Behavior in Large Evolving Graphs

R. Rossi, J. Neville, B. Gallagher, and K. Henderson

Presented by: Doaa Altarawy
Outline

- Motivation
- Proposed Model
- Definitions
- Modeling dynamic graphs
- Results
Introduction

Activity Networks:

- Structure change over time

Examples:

- Personal communications (email, phone)
- Social networks (Twitter, Facebook)
- Web traffic
Motivation: Why modeling Dynamic Graphs?

1. Identify dynamic **patterns** in node behavior
Motivation: Why modeling Dynamic Graphs?

1. Identify dynamic **patterns** in node behavior

2. Predict **future** structural changes
Motivation: Why modeling Dynamic Graphs?

1. Identify dynamic **patterns** in node behavior

2. Predict **future** structural changes

3. Detect **unusual** transitions in behavior
Proposed work

- Goal: Modeling behavioral roles of nodes and their evolution over time
Proposed work

- Goal: Modeling behavioral roles of nodes and their evolution over time

- Dynamic behavioral mixed-membership model (DBMM)
 - Discovers graph features for all timesteps
 - Learns behavioral “roles” for nodes at each timestep
The concept of Roles

Communities: set of nodes with more connections inside the set than outside
The concept of Roles

Communities: set of nodes with more connections inside the set than outside

Roles: set of nodes that are more structurally similar to nodes inside the set than outside
Dynamic network $D = (n, E)$
- n is the set of nodes and E is the set of edges in D

Network snapshot $S_t = (n_t, E_t)$
- a subgraph of D
- E_t active edges at time t
- n_t active nodes at time t
Modeling Steps

1- Learn set of features
2- Extract the features of each snapshot → V_1, V_2, \ldots, V_t
3- Learn roles from features using NMF
4- Extract roles from each feature matrix → G_1, G_2, \ldots, G_t
5- Use NMF to estimate transition model
Feature discovery

- Represent each **active node** with a set of features
- Uses the method in (Henderson and Keith et al., 2011) to create a **feature matrix** for each snapshot:

\[V = \{ V_t : t = 1, \ldots, t_{max} \}. \]

\[V_t \text{ is } n_t \times f \]

1. Constructs measures (degrees, clustering coeff, ..),
2. aggregates using sum (or mean), creating recursive features,
3. prune correlated features,
4. proceed aggregation recursively
Role discovery

- automatically discover groups of nodes (representing common behavior) based on their features.
- use Non-negative Matrix Factorization (NMF) to extract roles as in (Henderson and Keith et al., 2012)
- minimize the function:

\[
f(G_t, F) = \frac{1}{2} \| V_t - G_t F \|_F^2
\]

where

\[
G_t \in \mathbb{R}^{n_t \times r} \text{ and } F \in \mathbb{R}^{r \times f}
\]

Result:

\[
G = \{G_t : t = 1, ..., t_{max}\}
\]
Behavioral Transition Model

- Learn a transition matrix T that approximates the change in behavior from time $t-1$ to t.

- T is estimated using NMF such that $G_{t-1}T \approx G_t$.
Behavioral Transition Model

- learn a transition matrix T that approximates the change in behavior from time $t-1$ to t

- T is estimated using NMF such that $G_{t-1}T \approx G_t$

- To predict future behavior:

$$G'_{t+1} = G_t \cdot T$$
| Dataset | Feat. | Roles | |V| | |E| | |T| | length |
|-----------------|-------|-------|------|---|---|------|---|--------|
| TWITTER | 1325 | 12 | 310K | 4M| 41 | 1 day|
| TWITTER-Cop | 150 | 5 | 8.5K | 27.8K| 112 | 3 hours|
| FACEBOOK | 161 | 9 | 46.9K | 183K| 18 | 1 day|
| EMAIL-Univ | 652 | 10 | 116K | 1.2M| 50 | 60 min|
| NETWORK-Tra | 268 | 11 | 183K | 1.6M| 49 | 15 min|
| INTERNET AS | 30 | 2 | 37.6K | 505K| 28 | 3 months|
| ENRON | 173 | 6 | 151 | 50.5K| 82 | 2 weeks|
| IMDB | 45 | 3 | 21.2K | 296K| 28 | 1 year|
| REALITY | 99 | 5 | 97 | 31.6K| 46 | 1 month|
Applying DBMM to a large IP trace network (http://www.ryanrossi.com/talks/wsdm13-dbmm-rossi.pdf)
DBMM model for email network
Anomaly detector captures in an email network
References

Mining Unstable Communities from Network Ensembles

Ahsanur Rahman, Steve Jan, Hyunju Kim, B. Aditya Prakash and T. M. Murali

Presented by: Doaa Altarawy
Outline

- Proposed work
- Definition: Unstable Community
- Definition: Subgraph divergence
- Mining Unstable Community
- Results
Proposed work

- This paper studies the opposite problem of community detection
- Propose to discover maximally \textit{variable regions} of the graphs.
- Capture the main structural variations of the given set of networks
 \(\rightarrow\) called \textit{unstable community} (structural variations)

- Applications: in contact networks, communication networks and citation networks
Contribution

- Formalizing the concept of unstable communities (UC), a new class of problems

- Algorithm to find unstable communities.

- Shows how to use UC to summarize structural variations in phone calls, citations and communication networks
Definition: Unstable Community (UC)

- how many times each distinct graph among the nodes appears as a subgraph in a given ensemble of graphs (close to a uniform distribution)

- a set of nodes is a UC if the relative entropy between the subgraph probabilities of these nodes and the uniform distribution is at most a user-specified threshold.
Dentition: Relative entropy

- Relative entropy between \(p(X) \) and \(q(X) \):

\[
R(p(X) || q(X)) = \sum_{\bar{x} \in \Omega_X, p(X = \bar{x}) \neq 0} \sum_{q(X = \bar{x}) \neq 0} p(X = \bar{x}) \log_2 \left(\frac{p(X = \bar{x})}{q(X = \bar{x})} \right)
\]

- When \(q(X) \) is uniform, i.e., :

\[
q(X) = \frac{1}{2|X|}
\]

\[
R(p(X)) = |X| + \sum_{\bar{x} \in \Omega_X} p(X = \bar{x}) \log_2 p(X = \bar{x}).
\]
Subgraph divergence (SD)

- a way to measure the difference between the observed distribution of subgraphs and the uniform distribution
Subgraph divergence (SD)

- Let \mathcal{G} be a set of n undirected and unweighted graphs.
- Let $G(U)$ denote the subgraph of G induced by a set of nodes U.
- Let $\mathcal{G}(U) = \{G(U) \mid G \in \mathcal{G}\}$ be multiset of subgraphs induced by U in each of the graphs in \mathcal{G}.
- Let $p_{\mathcal{G}}(G)$ be the probability for G to be present in $\mathcal{G}(U)$ (the number of times G is a member of $\mathcal{G}(U)$ divided by $|\mathcal{G}|$)
- Let $\mathcal{P}(U)$ denote the set of 2^{kC_2} possible subgraphs on the nodes in U.

Subgraph divergence (SD) of U in \mathcal{G}, as the relative entropy of the probability distribution \{p_{\mathcal{G}}(G)), G \in \mathcal{P}(U)\} from the uniform distribution, i.e.,

$$S_{\mathcal{G}}(U) = R(p_{\mathcal{G}}(G')) = \binom{|U|}{2} + \sum_{G \in \mathcal{P}(U), p_G(G) \neq 0} p_G(G) \log_2 p_G(G)$$
Scaled subgraph divergence (SSD)

Subgraph divergence depends on the size of the subgraph

\[0 \leq S_g(U) \leq \left(\frac{|U|}{2} \right) \]

Alternative: scaled SD:

\[T_g(U) = \frac{S_g(U)}{\left(\frac{|U|}{2} \right)} \]
Unstable Communities using SD and SSD

1- SD-UC
 - a set of nodes U is a ρ-SD-UC if its subgraph divergence $SG(U) \leq \rho$.

2- SSD-UC
 - a set of nodes U is a σ-SSD-UC if
 a. its scaled subgraph divergence $TG(U) \leq \sigma$ and
 b. every subset of U is a σ-SSD-UC (to be anti-monotone)

Maximal SD-UC: if no proper superset of U is a ρ-SD-UC.
ρ-SD-UC U is bad if it has a subset $W \subset U$ such that

$$T_g(W) > \rho/\left(\frac{|U|}{2}\right) \geq T_g(U)$$
U = \{e, f, g\}
\[U = \{e, f, g\} \]
\[U = \{e, f, g\} \]
$U = \{e, f, g\}$
U = \{e, f, g\} is: 0.1446-SD-UC and 0.0482-SSD-UC
A = \{a, b, d, e\}
$A = \{a, b, d, e\}$, A is a bad 5-SD-UC ($B = \{a, b, e\}$)
Problem 1:
Given a set of graphs \mathcal{G} and a parameter $\rho \geq 0$, enumerate all maximal ρ-SD-UCs.

Problem 2:
Given a set of graphs \mathcal{G} and a parameter $0 \leq \sigma < 1$, enumerate all maximal σ-SSD-UCs.
Lemma 1

“Let \mathcal{G} be a set of graphs and U be a set of nodes. For every node a in U, we have $S_{\mathcal{G}}(U \setminus \{a\}) \leq S_{\mathcal{G}}(U)$”

→ removing a node from U does not increase its subgraph divergence. (SD-UC is anti-monotone)
Lemma 2

“Let \(G \) be a set of graphs and \(Q \) be a set of unordered node pairs. For every node pair \(\{a, b\} \in Q \), \(\mathcal{S}_G(Q\setminus\{a, b\}) \leq \mathcal{S}_G(Q) \)”

→ removing a node pair from \(Q \) does not increase its subgraph divergence.
Computing all maximal ρ-SD-UCs

Algorithm 1 \textsc{ComputeSDUCs} (G, ρ)

\textbf{Require:} A set G of graphs, $0 \leq \rho$.
\textbf{Ensure:} All ρ-SD-UCs.

1: $S \leftarrow \{(u, v) \in V \times V \mid S_G\{u, v\} \leq \rho\}$
2: while S is not empty do
3: \hspace{1em} $T \leftarrow \phi$
4: \hspace{2em} for every set $U \in S$ do
5: \hspace{3em} Compute $S_G(U)$
6: \hspace{3em} if $S_G(U) \leq \rho$ then
7: \hspace{4em} Output U
8: \hspace{4em} Insert U into T
9: \hspace{2em} $S \leftarrow \textsc{Generate-Candidates}(T)$
Computing all maximal ρ-SD-UCs

Algorithm 1 \text{COMPUTE}_{SDUCS}(\mathcal{G}, \rho)

\textbf{Require:} A set \mathcal{G} of graphs, $0 \leq \rho$.
\textbf{Ensure:} All ρ-SD-UCs.

1. $\mathcal{S} \leftarrow \{(u, v) \in V \times V \mid S_{\mathcal{G}}(\{u, v\}) \leq \rho\}$
2. \textbf{while} \mathcal{S} is not empty \textbf{do}
3. \hspace{1em} $\mathcal{T} \leftarrow \phi$
4. \hspace{1em} \textbf{for} every set $U \in \mathcal{S}$ \textbf{do}
5. \hspace{2em} Compute $S_{\mathcal{G}}(U)$
6. \hspace{2em} \textbf{if} $S_{\mathcal{G}}(U) \leq \rho$ \textbf{then}
7. \hspace{3em} Output U
8. \hspace{3em} Insert U into \mathcal{T}
9. \hspace{2em} $\mathcal{S} \leftarrow \text{GENERATE-CANDIDATES}(\mathcal{T})$

Increase the size of the candidates in \mathcal{S} by one
Computing all maximal ρ-SD-UCs

Algorithm 1 COMPUTE_SD_UCS (G, ρ)

Require: A set G of graphs, $0 \leq \rho$.
Ensure: All ρ-SD-UCs.

1: $S \leftarrow \{(u, v) \in V \times V \mid S_G(\{u, v\}) \leq \rho\}$
2: while S is not empty do
3: \hspace{1cm} $T \leftarrow \phi$
4: \hspace{1cm} for every set $U \in S$ do
5: \hspace{2cm} Compute $S_G(U)$
6: \hspace{2cm} if $S_G(U) \leq \rho$ then
7: \hspace{3cm} Output U
8: \hspace{2cm} Insert U into T
9: \hspace{1cm} $S \leftarrow$ GENERATE_CANDIDATES(T)

mark all parents of the UC U for deletion
Datasets

Social Evolution (SE-Prox and SE-Phone):
 timestamped records of MIT reality mining repository: phone communications and proximity, 8 networks

Hospital:
 temporal proximity between patients and/or staff in France, 97 networks

Citation network (HEP-PH):
 from arxiv.org, 11 years, ~20k nodes

TCP (LBNL):
 source and destination over time, creating 61 networks, ~2.7k nodes
Due to this weakness of SD-UCs, they focus on SSD-UCs.

Percentages of bad k-node SD-UCs for different values of ρ
Capturing structural variations
Thanks

Questions?