CS 6604: Data Mining Large Networks and Time-series

B. Aditya Prakash

Lecture #6: Hadoop and Graph Analysis
(some slides from Xiao Yu)

NO SQL
Why No SQL?

HOW TO WRITE A CV

DO YOU HAVE ANY EXPERTISE IN SQL?

NO

geek & poke

DOESN'T MATTER. WRITE: "EXPERT IN NO SQL"

Leverage the NoSQL boom
RDBMS

- The predominant choice in storing data
 - Not so true for data miners since we put much in txt files.
- First formulated in 1969 by Codd
 - We are using RDBMS everywhere
Aside: RDBMS performance

Performance

Data complexity

Salaries List

Majority of Webapps

Social network

Semantic Trading

custom

I DON'T ALWAYS USE RDBMS

BUT WHEN I DO, I DUMP EVERYTHING IN IT

I A NoSQL Overview and the Benefits of Graph Databases

Prakash 2017
When RDBMS met Web 2.0

Slide from Lorenzo Alberton, "NoSQL Databases: Why, what and when"
What to do if data is really large?

- Peta-bytes (exabytes, zettabytes ...)

- Google processed 24 PB of data per day (2009)

- FB adds 0.5 PB per day
BIG data
What’s Wrong with Relational DB?

- Nothing is wrong. You just need to use the right tool.
- Relational is hard to scale.
 - Easy to scale reads
 - Hard to scale writes
What’s NoSQL?

- The misleading term “NoSQL” is short for “Not Only SQL”.
- non-relational, schema-free, non-(quite)-ACID
 - More on ACID transactions later in class
- horizontally scalable, distributed, easy replication support
- simple API
Four (emerging) NoSQL Categories

- **Key-value (K-V) stores**
 - Based on Distributed Hash Tables/ Amazon’s Dynamo paper *
 - Data model: (global) collection of K-V pairs
 - Example: Voldemort

- **Column Families**
 - BigTable clones **
 - Data model: big table, column families
 - Example: HBase, Cassandra, Hypertable

*G DeCandia et al, Dynamo: Amazon's Highly Available Key-value Store, SOSP 07
** F Chang et al, Bigtable: A Distributed Storage System for Structured Data, OSDI 06
Four (emerging) NoSQL Categories

- Document databases
 - Inspired by Lotus Notes
 - Data model: collections of K-V Collections
 - Example: CouchDB, MongoDB

- Graph databases
 - Inspired by Euler & graph theory
 - Data model: nodes, relations, K-V on both
 - Example: AllegroGraph, VertexDB, Neo4j
Focus of Different Data Models

Slide from neo technology, “A NoSQL Overview and the Benefits of Graph Databases"
C-A-P “theorem"

- Partition Tolerance
- Consistency
- Availability

- RDBMS
- NoSQL (most)
When to use NoSQL?

- Bigness
- Massive write performance
 - Twitter generates 7TB / per day (2010)
- Fast key-value access
- Flexible schema or data types
- Schema migration
- Write availability
 - Writes need to succeed no matter what (CAP, partitioning)
- Easier maintainability, administration and operations
- No single point of failure
- Generally available parallel computing
- Programmer ease of use
- Use the right data model for the right problem
- Avoid hitting the wall
- Distributed systems support
- Tunable CAP tradeoffs

from http://highscalability.com/
Key-Value Stores

<table>
<thead>
<tr>
<th>id</th>
<th>hair_color</th>
<th>age</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923</td>
<td>Red</td>
<td>18</td>
<td>6’0”</td>
</tr>
<tr>
<td>3371</td>
<td>Blue</td>
<td>34</td>
<td>NA</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table in relational db

<table>
<thead>
<tr>
<th>user1923_color</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>user1923_age</td>
<td>18</td>
</tr>
<tr>
<td>user3371_color</td>
<td>Blue</td>
</tr>
<tr>
<td>user3371_age</td>
<td>34</td>
</tr>
<tr>
<td>user4344_color</td>
<td>Brackish</td>
</tr>
<tr>
<td>user1923_height</td>
<td>6' 0"</td>
</tr>
</tbody>
</table>

Store/Domain in Key-Value db

Find users whose age is above 18?
Find all attributes of user 1923?
Find users whose hair color is Red and age is 19?
(Join operation) Calculate average age of all grad students?
Voldemort in LinkedIn

People You May Know
- Roshan Sumbaly, Senior Software Engineer at LinkedIn
- Alex Feinberg, Senior Software Engineer at LinkedIn
- Jay Kreps, Principal Staff Engineer at LinkedIn

Viewers of this profile also viewed
- Sam Shah, Principal Engineer at LinkedIn
- Igor Perelis, Director of Engineering; Search...
- Anmol Bhasin, Recommendations, A/B Testing and...
- Jun Rao, Principal Software Engineer at LinkedIn

Related Searches
- Related searches for hadoop: mapreduce, java, big data, hbase, machine learning, lucene, data mining, data warehouse

Events you may be interested in
- Improving Hadoop Performance by up to 100x - A LinkedIn Tech Talk, December 13, 2011 - LinkedIn headquarters - TALK-OPEN TO PUBLIC: Meet the Team
- 2012 Introduction to Machine Learning and Data Mining, January 20-21, 2012 - University of California - Santa Cruz Extension in Santa Clara, and 2 other places
- Hadoop Conference 2013
- Cloudburst 2012 - March 6-17, 2012 - San Jose Marriott

LinkedIn Skills
- Hadoop

Jobs you may be interested in
- Senior Software Engineer - Applications - Modvus - San Francisco, CA
- Senior Software Engineer, CD++ - Slipstream - San Francisco, CA
- Senior Software Engineer - Qualcomm Platforms - Pelco Imaging Corporation - San Francisco Bay Area

Sid Anand, LinkedIn Data Infrastructure (QCon London 2012)
Voldemort vs MySQL

Sid Anand, LinkedIn Data Infrastructure (QCon London 2012)
Column Families – BigTable like

Sparse, distributed, persistent multi-dimensional sorted map indexed by \((row_key, column_key, timestamp)\)
The row name is a reversed URL. The contents column family contains the page contents, and the anchor column family contains the text of any anchors that reference the page.
BigTable Performance

Values read/written per second

Number of tablet servers

- 4M scans
- 3M random reads (mem)
- 2M random writes
- 1M sequential reads
- 1M sequential writes
- 1M random reads

Prakash 2017
Document Database - mongoDB

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUMONT</td>
<td>Jean</td>
<td>43</td>
</tr>
<tr>
<td>PELLERIN</td>
<td>Franck</td>
<td>29</td>
</tr>
<tr>
<td>MATTHIEU</td>
<td>Nicolas</td>
<td>51</td>
</tr>
</tbody>
</table>

Table in relational db

```
{
    "_id": ObjectId("4efa8d2b7d284dad101e4bc9"),
    "Last Name": "DUMONT",
    "First Name": "Jean",
    "Age": 43
},
{
    "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),
    "Last Name": "PELLERIN",
    "First Name": "Franck",
    "Age": 29,
    "Address": "1 chemin des Loges",
    "City": "VERSAILLES"
}
```

Documents in a collection

Open source, document db
Json-like document with dynamic schema

Initial release 2009
mongoDB Product Deployment

And much more...
Graph Database

Data Model Abstraction:
• Nodes
• Relations
• Properties
Neo4j - Build a Graph

```
NeoService neo = ... // Get factory

// Create Thomas 'Neo' Anderson
Node mrAnderson = neo.createNode();
mrAnderson.setProperty( "name", "Thomas Anderson" );
mrAnderson.setProperty( "age", 29 );

// Create Morpheus
Node morpheus = neo.createNode();
morpheus.setProperty( "name", "Morpheus" );
morpheus.setProperty( "rank", "Captain" );
morpheus.setProperty( "occupation", "Total bad ass" );

// Create a relationship representing that they know each other
mrAnderson.createRelationshipTo( morpheus, RelTypes.KNOWS );
// ...create Trinity, Cypher, Agent Smith, Architect similarly
```

Slide from neo technology, “A NoSQL Overview and the Benefits of Graph Databases"
A Debatable Performance Evaluation

Got neo4j to do a do a lookup in 2 seconds, that sql server did in 45 minutes. neo4j rocks!

6:28 AM Jun 30th from web

o_O turboCodr
John Conwell
Conclusion

- Use the right data model for the right problem
MAP-REDUCE AND HADOOP
MapReduce

- **Challenges:**
 - How to distribute computation?
 - Distributed/parallel programming is hard

- **Map-reduce** addresses all of the above
 - Google’s computational/data manipulation model
 - Elegant way to work with big data
Single Node Architecture

Machine Learning, Statistics

“Classical” Data Mining
Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to do something useful with the data!

Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them
Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between any pair of nodes in a rack

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO
Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware

- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to lose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!
Idea and Solution

- **Issue:** Copying data over a network takes time

- **Idea:**
 - Bring computation close to the data
 - Store files multiple times for reliability

- **Map-reduce** addresses these problems
 - Google’s computational/data manipulation model
 - Elegant way to work with big data
 - **Storage Infrastructure – File system**
 - Google: GFS. Hadoop: HDFS
 - **Programming model**
 - Map-Reduce
Hadoop VS NoSQL

- **Hadoop**: computing framework
 - Supports data-intensive applications
 - Includes MapReduce, HDFS etc.
 (we will study MR mainly next)

- **NoSQL**: Not only SQL databases
 - Can be built ON hadoop. E.g. HBase.
Storage Infrastructure

Problem:
- If nodes fail, how to store data persistently?

Answer:
- **Distributed File System:**
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;

Typical usage pattern
- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common
Distributed File System

- **Chunk servers**
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks

- **Master node**
 - a.k.a. Name Node in Hadoop’s HDFS
 - Stores metadata about where files are stored
 - Might be replicated

- **Client library for file access**
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data
Distributed File System

- Reliable distributed file system
- Data kept in “chunks” spread across machines
- Each chunk replicated on different machines
 – Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers
Programming Model: MapReduce

Warm-up task:
- We have a huge text document
- Count the number of times each distinct word appears in the file

Sample application:
- Analyze web server logs to find popular URLs
Task: Word Count

Case 1:
- File too large for memory, but all <word, count> pairs fit in memory

Case 2:
- Count occurrences of words:
 - `words(doc.txt) | sort | uniq -c`
 - where `words` takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of **MapReduce**
 - Great thing is that it is naturally parallelizable
MapReduce: Overview

- Sequentially read a lot of data
- **Map:**
 - Extract something you care about
- **Group by key:** Sort and Shuffle
- **Reduce:**
 - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem
MapReduce: The **Map** Step

Input key-value pairs

- Triangle with key `k`
- Rectangle with value `v`
- Arrow pointing to "map"

- Triangle with key `k`
- Rectangle with value `v`
- Arrow pointing to "map"

- Triangle with key `k`
- Rectangle with value `v`
- Arrow pointing to "map"

- Triangle with key `k`
- Rectangle with value `v`
- Arrow pointing to "map"

Intermediate key-value pairs

- Diamond with key `k`
- Rectangle with value `v`

- Diamond with key `k`
- Rectangle with value `v`

- Diamond with key `k`
- Rectangle with value `v`

- Diamond with key `k`
- Rectangle with value `v`
MapReduce: The Reduce Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

Group by key

reduce

reduce

...
More Specifically

- **Input**: a set of key-value pairs
- Programmer specifies two methods:
 - **Map**\((k, v) \rightarrow <k', v'>\)*
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every \((k,v)\) pair
 - **Reduce**\((k', <v'>) \rightarrow <k', v''>\)*
 - All values \(v'\) with same key \(k'\) are reduced together and processed in \(v'\) order
 - There is one Reduce function call per unique key \(k'\)
The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/machine partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need
Word Count Using MapReduce

map(key, value):
// key: document name; value: text of the document
for each word w in value:
emitter(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
result += v
emit(key, result)
Map-Reduce (MR) as SQL

- select `count(*)` from DOCUMENT
- group by word

Reducer

Mapper
Map-Reduce: Environment

Map-Reduce environment takes care of:
- Partitioning the input data
- Scheduling the program’s execution across a set of machines
- Performing the **group by key** step
- Handling machine **failures**
- Managing required inter-machine **communication**
Map-Reduce: A diagram

Input: Large document

MAP:
Read input and produces a set of key-value pairs

Intermediate:
- k1:v k1:v k2:v
- k1:v k3:v k4:v
- k4:v k5:v
- k4:v k1:v k3:v

Group by key:
Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

Grouped:
- k1:v,v,v,v
- k2:v
- k3:v,v
- k4:v,v,v
- k5:v

Reduce:
Collect all values belonging to the key and output

Output:

Prakash 2017
Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

Prakash 2017
Map-Reduce

- **Programmer specifies:**
 - Map and Reduce and input files
- **Workflow:**
 - Read inputs as a set of key-value-pairs
 - **Map** transforms input kv-pairs into a new set of k'v'-pairs
 - Sorts & Shuffles the k'v'-pairs to output nodes
 - All k'v'-pairs with a given k' are sent to the same **reduce**
 - **Reduce** processes all k'v'-pairs grouped by key into new k''v''-pairs
 - Write the resulting pairs to files

- All phases are distributed with many tasks doing the work
Data Flow

- **Input and final output** are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks “close” to physical storage location of input data

- **Intermediate results** are stored on local FS of Map and Reduce workers

- **Output** is often input to another MapReduce task
Coordination: Master

- **Master node takes care of coordination:**
 - **Task status:** (idle, in-progress, completed)
 - **Idle tasks** get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers

- **Master pings workers periodically to detect failures**
Dealing with Failures

- **Map worker failure**
 - Map tasks completed or in-progress at worker are reset to idle
 - Reduce workers are notified when task is rescheduled on another worker

- **Reduce worker failure**
 - Only in-progress tasks are reset to idle
 - Reduce task is restarted

- **Master failure**
 - MapReduce task is aborted and client is notified
GRAPH ANALYSIS ON HADOOP

Based on slides from Prof. U. Kang
Problem Definition

- **Given:** a BIG graph $G(V, E)$
- **Compute:**
 - Connected Components
 - Diameter
 - PageRank
 -

- **Solution:** Use Hadoop
GIM-V: One unified framework [Kang+, 2008]

YahooWeb:
\[|V| = 1.4B\]
\[|E| = 6.6B\]

Example: GIM-V At Work

<table>
<thead>
<tr>
<th>Connected Components Size</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-size cmpt X 500. 1100-size cmpt X 65.</td>
<td></td>
</tr>
</tbody>
</table>

Why?
Main Idea

- **GIM-V**
 - Generalized Iterative Matrix-Vector Multiplication
 - Extension of plain matrix-vector multiplication
 - Includes as special cases
 - Connected Components
 - PageRank
 - RWR
 - Diameters
 -
Main Idea: Intuition

- Weighted Combination of Colors
- ~ Message Passing

\[
\begin{pmatrix}
1 & 1 & 0.1 \\
0.1 & 1 & 1 \\
1 & 1 & 0.1 \\
\end{pmatrix}
\begin{pmatrix}
\end{pmatrix}
= \\
\begin{pmatrix}
\end{pmatrix}
\]

\[
v_4' = \sum_{i=1}^{4} m_{i4} v_i
\]
Three implicit operations here:

- multiply m_{ij} and v_j
- sum n multiplication results
- update v_i'

Message sending
Message combination

combine2
combineAll
assign
Main Idea

- **GIM-V**
 - Matrix represents edge\((\text{Src}, \text{dest})\)
 - Vector represents `node values/labels`
 - Customizing the three operations leads to many algorithms

<table>
<thead>
<tr>
<th>operations</th>
<th>Standard MV</th>
<th>Con. Cmpt.</th>
<th>PageRank</th>
<th>RWR</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine2</td>
<td>Multiply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>combineAll</td>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assign</td>
<td>Assign</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GIM-V

- **operations**
 - **combine2**
 - Multiply
 - **combineAll**
 - Sum
 - **assign**
 - Assign

- **Standard MV**
 - MIN

- **Con. Cmpt.**
 - MIN

- **PageRank**
 - MIN

- **RWR**
 - MIN

- **Diameter**
 - MIN

- **Bool. X**
GIM-V for CC

- How many connected components?
 - == which node belongs to which component?

Input Graph

Output

node id

component id

1 1
2 1
3 1
4 1
5 5
6 5
7 7
8 7

G1 G5 G7
GIM-V for CC

Main Idea

G1 G5 G7

\[
\begin{bmatrix}
1 & 1 \\
2 & 1 & 1 \\
3 & 1 & 1 \\
4 & 1 \\
5 & 1 \\
6 & 1 \\
7 & 1 \\
8 & 1 \\
\end{bmatrix}
\]

\[\times G\]

init vector

final vector
GIM-V for CC

\[\text{combine2}(m_{i,j}, v_j) = m_{i,j} \times v_j \]
\[\text{combineAll}(x_1, \ldots, x_n) = \min \{ x_i \mid i = 1..n \} \]
\[\text{assign}(v_i, v_{\text{new}}) = \min(v_i, v_{\text{new}}) \]

"Sending Invitations"
"Accept the Smallest"

\[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & & & & & & & \\
2 & 1 & 1 & & & & & \\
3 & & 1 & 1 & & & & \\
4 & & & 1 & & & & \\
5 & & & & 1 & & & \\
6 & & & & & 1 & & \\
7 & & & & & & 1 & \\
8 & & & & & & & 1 \\
\end{array} \times \begin{array}{cccccccc}
1 & 1 & & & & & & \\
2 & & 2 & & & & & \\
3 & & & 3 & & & & \\
4 & & & & 4 & & & \\
5 & & & & & 5 & & \\
6 & & & & & & 6 & \\
7 & & & & & & & 7 \\
8 & & & & & & & 8 \\
\end{array} = \begin{array}{cccccccc}
1 & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & & \\
6 & & & & & & & \\
7 & & & & & & & \\
8 & & & & & & & \\
\end{array} \]

\[\begin{array}{cccccccc}
\text{min}(1, \text{min}(2)) & & & & & & & \\
\text{min}(2, \text{min}(1,3)) & & & & & & & \\
\text{min}(3, \text{min}(2,4)) & & & & & & & \\
\text{min}(4, \text{min}(3)) & & & & & & & \\
\text{min}(5, \text{min}(6)) & & & & & & & \\
\text{min}(6, \text{min}(5)) & & & & & & & \\
\text{min}(7, \text{min}(8)) & & & & & & & \\
\text{min}(8, \text{min}(7)) & & & & & & & \\
\end{array} \]
GIM-V for CC

combine2($m_{i,j}, v_j$) = $m_{i,j} \times v_j$

combineAll(x_1, \ldots, x_n) = $\min\{x_i \mid i = 1..n\}$

assign(v_i, v_{new}) = $\min(v_i, v_{new})$

"Sending Invitations"

"Accept the Smallest"

1 GIM-V with MIN = find min. node ids within 1 hop
GIM-V for CC

\[\text{combine2}(m_{i,j}, v_j) = m_{i,j} \times v_j \]
\[\text{combineAll}(x_1, ..., x_n) = \min\{x_i | i = 1..n\} \]
\[\text{assign}(v_i, v_{\text{new}}) = \min(v_i, v_{\text{new}}) \]

"Sending Invitations"

"Accept the Smallest"

k GIM-V with MIN = find min. node ids within k hops
GIM-V for CC

\[\text{combine2}(m_{i,j}, v_j) = m_{i,j} \times v_j \]

\[\text{combineAll}(x_1, \ldots, x_n) = \min\{x_i \mid i = 1..n\} \]

\[\text{assign}(v_i, v_{new}) = \min(v_i, v_{new}) \]

"Sending Invitations"

"Accept the Smallest"

Max. iterations = diameter
<table>
<thead>
<tr>
<th>Operations</th>
<th>Standard MV</th>
<th>Con. Cmpt.</th>
<th>PageRank</th>
<th>RWR</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine2</td>
<td>Multiply</td>
<td>Multiply</td>
<td>Multiply with c</td>
<td>Multiply with c</td>
<td>Multiply bit-vector</td>
</tr>
<tr>
<td>combineAll</td>
<td>Sum</td>
<td>MIN</td>
<td>Sum with rj prob.</td>
<td>Sum with res prob</td>
<td>BIT-OR()</td>
</tr>
<tr>
<td>assign</td>
<td>Assign</td>
<td>MIN</td>
<td>Assign</td>
<td>Assign</td>
<td>BIT-OR()</td>
</tr>
</tbody>
</table>
HDFS restrictions

[R1] HDFS is location transparent
 – Users don’t know which machine has which file

[R2] A line is never split
 – A large file is split into pieces of a size (e.g. 256MB)
 – Users don’t know the point of split
Fast GIM-V

- Given R1 and R2, how to design faster algs. for GIM-V?

1. Block Multiplication
2. Clustering
3. Compression
Block Multiplication

1. Group elements together into 1 line
2. Storage for an element: $2\log n$ bits $\rightarrow 2\log b$ bits
3. Adjust the MapReduce code (block multiplication)
Clustering and Compress

Main Idea

I2) Clustering

A: preprocessing for clustering

Faloutsos and Kang (CMU)

SIGMOD'12

Preprocess

I3) Compression

A: compress clustered blocks

ZIP

ZIP
Performance

- **Block Encoding?**
 - RAW: No
 - NNB: Yes
 - NCB: Yes
 - CCB: Yes

- **Compression?**
 - RAW: No
 - NNB: No
 - NCB: Yes
 - CCB: Yes

- **Clustering?**
 - RAW: No
 - NNB: No
 - NCB: No
 - CCB: Yes

The table shows the performance of different methods in terms of file size (MB) and running time in seconds for YahooWeb, Twitter, and Random graphs.

- **File Size (MB)**:
 - RAW: 5x smaller
 - NNB: 5x smaller
 - NCB: 43x smaller
 - CCB: 9.2x smaller

- **Running Time in Seconds**:
 - RAW: 2x faster
 - NNB: 1.7x faster
 - NCB: 9.2x faster

Legend: RAW, NNB, NCB, CCB

Prakash 2017

CS 6604: DM Large Networks & Time-Series
Many extensions and optimizations

- Local queries
- Diagonal block iterations
- ...
- ...
Conclusions

- Hadoop is a distributed data-intensive computing framework
- MapReduce
 - Simple programming paradigm
 - Surprisingly powerful (may not be suitable for all tasks though)
- Hadoop has specialized FileSystem, Master-Slave Architecture to scale-up
NoSQL and Hadoop

- Hot area with several new problems
 - Good for academic research
 - Good for industry

= Fun AND Profit 😊
POINTERS AND FURTHER READING
Implementations

- **Google**
 - Not available outside Google

- **Hadoop**
 - An open-source implementation in Java
 - Uses HDFS for stable storage

- **Aster Data**
 - Cluster-optimized SQL Database that also implements MapReduce
Cloud Computing

- Ability to rent computing by the hour
 - Additional services e.g., persistent storage

- Amazon’s “Elastic Compute Cloud” (EC2)

- Aster Data and Hadoop can both be run on EC2
Reading

- Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters

- Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System
Resources

- Hadoop Wiki
 - Introduction
 - Getting Started
 - Map/Reduce Overview
 - http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
 - http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
 - Eclipse Environment

- Javadoc
 - http://lucene.apache.org/hadoop/docs/api/
Resources

- Releases from Apache download mirrors
 - http://www.apache.org/dyn/closer.cgi/lucene/hadoop/

- Nightly builds of source

- Source code from subversion
Further Reading

- Programming model inspired by functional language primitives
- Partitioning/shuffling similar to many large-scale sorting systems
 - NOW-Sort ['97]
- Re-execution for fault tolerance
 - BAD-FS ['04] and TACC ['97]
- Locality optimization has parallels with Active Disks/Diamond work
 - Active Disks ['01], Diamond ['04]
- Backup tasks similar to Eager Scheduling in Charlotte system
 - Charlotte ['96]
- Dynamic load balancing solves similar problem as River's distributed queues
 - River ['99]