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Data Mining Critical Infrastructure Systems:
Models and Tools

Anika Tabassum, Supriya Chinthavali, Liangzhe Chen and B. Aditya Prakash

Abstract—Critical infrastructures (CIs) such as power, water,
transportation, and telecommunication are highly complex in-
teracting systems that are vital to national security, economy
and public life. They play an important role in several core
urban computing challenges. Advances in computing resources
and techniques have led to enormous progress in developing
intelligent frameworks for analyzing these large heterogeneous
systems. In this article, we survey state-of-the-art and founda-
tional work in this upcoming area from a data mining perspective.
We discuss basic concepts of CIs, their properties, impacts
on them due to natural or human-caused disturbances and
different computational methodologies used for modeling and
understanding their behavior. We also discuss recent work that
specifically deals with two critical sectors of CIs, namely power
and transportation systems. Finally, we also describe several
existing tools and methods that are used to facilitate decision
making for domain operators, enable efficient and faster disaster
response for federal and state agencies and help improve the
security and resiliency of these CIs.

Index Terms—Critical Infrastructures, Urban Computing,
Data Mining

I. INTRODUCTION

URBAN computing is a process of measuring, modeling,
analyzing and integrating complex heterogeneous data

gathered from urban spaces [1]. The rapid growth of urban-
ization and modernization of people’s lives have led to serious
sustainability issues and hence there is a critical need for
designing efficient and environment friendly systems, utilizing
traffic flow in the city, situational awareness during extreme
events to improve resiliency, public health, air pollution, etc.
These complex and dynamic requirements give rise to several
computational challenges in transportation, environment, cyber
physical systems and internet of things [2], [3]. Some of these
challenges include predicting power consumption [4], mea-
suring air quality [5] and predicting, utilizing and controlling
crowd/traffic flow in a city [6]–[8]. With the advent of social
media, localizing and visualizing disaster events using such
data has also proven to be a fertile ground for computational
problems. For example, Sakaki et al. [9] proposed a classifier
to monitor and detect earthquakes from Twitter and Yang et
al. [10] designed a visualization of a four phase model using
Twitter data (that represents content (what), location (where),
time(when) and the user network (who) responding to the
disaster). Public health issues like syndromic surveillance of
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a disease like influenza [11], and then controling it [12] are
important problems as well.
Critical Infrastructure Systems: Critical infrastructure refers
to systems, facilities, technologies and networks that are vital
to security, public health and socio-economic well being of
people. Clearly, they play an important role in many urban
computing challenges. For example communication networks
are inherently crucial for disaster response and controlling
traffic flow. Hence, strengthening and maintaining secure and
resilient Critical Infrastructure Systems (CISs) is a primary
US national goal (even addressed through a presidential policy
directive (PPD-21) [13]), and it requires proactive and coor-
dinated efforts among federal, state, local, public and private
owners and operators of CISs. Critical infrastructure networks
(CIs) such as power, water, transportation, etc. are highly
interdependent, and failure of one has a cascading effect on
another which affect national security, economy and public
health. Infact, a single vulnerable network can have a huge
impact due to interdependencies. For example, the well-known
2003 Northeast blackout in U.S. [14] impacted multiple CIs.
The massive power outage affects water and waste systems,
transportation, communication, financial services, which cas-
caded to impact public health and food industries. Nearly 50
million people were affected and cause a loss of $5 billion
to U.S. national economy [15]. Smart cities are extensively
leveraging telecommunication technologies and cyber physical
systems to provide a safe and a sustainable environment
for increasing urban populations [16]. This also leads to an
increasing risk of triggering cascading failures due to complex
interactions and inter dependencies leading to debilitating
impacts and creating urban computing challenges of cyber
security, real-time situational awareness, handling traffic flow,
meeting electricity demand, managing public health etc.
Data mining challenges: Modeling and analyzing such CISs
gives rise to a rich and fruitful space of data mining challenges.

1) Complexity. CIs networks have a complex structure. As
mentioned above, even a single CI network, e.g., elec-
trical grid system consists of many underlying subsys-
tems, i) power generator generates power using different
types of fuel, ii) transmission network transfer power to
different distribution substations over long distances, iii)
distribution substations transfer power to local facilities
and residential areas over the distribution grid, iv)Oil and
Natural gas (NG) pipeline networks carry fuel to power
generation stations. These pipeline networks consist of
natural gas compressors,gas processing plants, NG ter-
minals and other subsystems. These complex subsystems
consist of large-scale data which is very useful for
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analyzing CIs.
2) Heterogeneity. CI networks are also extremely heteroge-

neous. They consist of many interdependencies like i)
physical, where one infrastructure is physically connected
or interdependent on another infrastructure e.g. power
lines connected to water pumping stations, ii) geographi-
cal, where changes caused by local environmental events
impact all CI components that are co-located, iii) cyber,
state of infrastructure depends on information transmitted
through information infrastructure, e.g., electronic and
informational linkages. This heterogeneity and dependen-
cies give rise to different types of nodes, edges, links, and
multiple sources of information in the network [17].

3) Dynamics. CISs are also highly dynamic. Multiple in-
cidents can cause failure of CI networks, e.g., loss of
power, natural or human-made disaster which affect net-
work in different states of operation varying with time.
This dynamic property makes the system modeling more
challenging.

4) Scale. For all these situations, designing scalable algo-
rithms is a fundamental goal. These systems are in large
scale and hence naturally give rise to ‘big-data’ problems.

Overview: In this article, we present the state-of-the-art re-
search on models and tools used within CISs. This area of
research is highly interdisciplinary, with connections to high-
impact areas, like public safety/security, national economy,
physics and power engineering and social media. We will first
discuss various approaches to CI modeling. Then we mainly
focus on two specific CI networks: power and transportation
systems. We chose these networks since they are the heart
of the sixteen CIs defined by the Department of Homeland
Security (DHS) which have the potential to impact every other
CIs (as discussed before, see the 2003 blackout example). In
addition, these two areas have also seen a spate of recent
work from a data mining perspective. We finally look into
the methods that help improve situational awareness during
disasters and then present some existing CI tools designed
for helping domain experts in decision making and used by
agencies such as national labs.

II. MODELING

CIs are highly interdependent and complex — failure of
a single CI network can severely affect other CIs. Hence, in
order to understand critical infrastructures to identify vulnera-
bilities, to protect them against threats and to support decision
making, modeling and simulating them are essential. Modeling
and simulating the interdependencies of CIs can be categorized
into system dynamics-based, agent-based, network-based ap-
proaches [15].

System dynamics based approaches typically model CIs
utilizing a top-down method to manage and analyze complex
interdependencies based on domain knowledge of the partic-
ular system [15]. The main philosophy of such approaches is
that for modeling a system, it is necessary to understand the
behavior of a system. Different system-dynamics models have
been proposed different sectors of CIs like telecommunication,
petroleum, natural gas, and electric supply systems [18]–
[20]. As an example, different models for electric grids have

been proposed which represent system behavior using physical
power equations and flow of electricity [20]–[22]. These mod-
els exhibit high-fidelity, and due to their complexity and highly
detailed structure, they are also computationally expensive.

In contrast, agent-based modeling adopts a bottom-up ap-
proach which considers complex system behavior arising from
the interaction of individual autonomous agents. For example,
several agent-based systems [22]–[24] model power systems
by considering the interaction and impacts of electric power
markets on interdependencies of CIs. Similarly, to control and
simulate traffic systems, different agent-based models have
been proposed from a civil engineering perspective which
consider environmental factors and vehicle crashes [25]–[27].
Balmer et al. [28] generate strategies for a traffic model by
simulating the movement of agents, avoiding obstacles and
generating congestion.

Finally, network-based approaches view CIs as networks
where nodes represent different CIs components, and the links
represent connections or edges among them. This approach
requires less domain knowledge for modeling than the former,
and hence they can be generalized to different systems. As
a result while they are not high-fidelity and can not model
all behaviors of the systems, they are great at modeling
specific aggregate aspects. Hence they are also closer to
data mining methodologies and problems. For instance, to
ensure reliable broadcast in communication networks Duan
et al. [29] studied interdependencies between communication
and power grid networks and proposed an algorithm to handle
both crash failures in communication and cascading failures
in the power grid. As another example, Lee et al. created a
system to generate CI networks [30] and model a cascade of
failures among different CIs based on their physical topology
and temporal dependencies. Chen et al. [31] proposed an
optimization algorithm named FASCINATE to infer cross-
layer dependencies in multilayered CI networks where each
layer consists of a different CI network. To infer the cross-
layer relation between two different networks, they viewed
multilayered connections as a collective collaborative filtering
problem. The overall approach is shown in Fig 1.

Fig. 1. An example of a network-based approach to system modeling. The
goal of FASCINATE proposed by Chen et al. [31] is to infer dependecies
among the CI networks. Left figure shows how a CI network is converted
into a cross-layered network. Right figure shows how they find out the hidden
dependencies across the transportation and power grid networks by viewing
it as a collective collaborative filtering problem.

III. EXAMPLE CI: POWER SYSTEMS

In this section, we provide a few examples of work on
CI systems dealing with power and energy, from a network
modeling perspective. As representative work, we focus on
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methods that identify vulnerable facilities to protect against
unknown natural disasters (non-adversarial) and to protect the
system against adversarial attacks with known patterns and
strategies.

A. Identifying vulnerable facilities

Identifying vulnerable critical facilities in a power system is
necessary to protect and enhance them against unknown nat-
ural disasters. The state-of-the-art can be divided into mainly
two different techniques: using only the network structure
and/or incorporating failure cascade dynamics as well.

Several algorithms have been proposed in order to identify
critical nodes using only the network structure [32]–[34].
Arianos et al. [32] introduced the concept of using geodesic
distance for power flow to calculate resiliency of power
grids. Chen et al. [33] proposed an algorithm OPERA for the
connectivity control problem. It aims to find a set of optimal
nodes that maximizes the impact on an interdependent CI
network consisting of physical, control and communication
layers. In addition, they developed SUBLINE, to unify a
family of prevalent subgraph connectivity measures to quantify
network dependency of the graph and subsequently use it for
identifying the optimal nodes.

Additionally, incorporating failure dynamics can help pre-
vent catastrophic failures of the whole system. The 2003
blackout shows an instance (see Section I for detail) where a
transmission line failure cascaded to failures of water, waste-
treatment, and communication systems. Buldyrev et al. [34]
developed a framework based on mutually connected clusters
to study cascading failures in interdependent networks. They
analyzed the presence of a giant connected cluster under
simple random failures on Erdos-Renyi networks and show
a phase transition and a critical threshold. In contrast, Chen
et al. [35] developed an algorithm HOTSPOTS to model more
complicated failure cascades and identify critical nodes that
may lead to substantial failures. Their heterogeneous network
consists of power plants, substations, transmissions and gas
compressors (see Fig. 2). First, they propose a ‘path-based’
failure cascade model on this complex system representing
how every component of a CI network interacts with each
other. Instead of the typical neighbor-based cascade models
they propose a novel path-based failure cascade (F-CAS). Sec-
ond, given the F-CAS model, they formulate an optimization
algorithm to identify a set of critical transmission nodes whose
failure will maximize the number of failed substations (another
CI network). Finally, they propose a dominator-tree based
approach to solve this problem efficiently.

B. Protecting power system against attacks

Next we discuss several works that studied how to detect an
attack, and protect and/or to reduce the effect of an adversarial
attack on power grid. To detect an attack or a node failure
in the network, Hooi et al. [36] proposed an online anomaly
detection algorithm GRIDWATCH that can help a sensor to
detect a failure in the electrical grid. Using GRIDWATCH
they also suggested an optimization which can maximize the

(a) Heterogeneous network (b) Critical transmission nodes

Fig. 2. An example of identifying vulnerable facilities in power system
using both network structure and failure dynamics (Section III). Fig. (a) is
an overview of HOTSPOTS proposed by Chen et al. [35] which shows a
heterogeneous network in a power system which consists of power plants,
transmission networks, substations, gas compressor, and gas pipelines. Fig.
(b) shows the maximum failed transmission nodes in OH that the algorithm
identifies and that these nodes are close to the failed nodes during 2003
blackout [14].

probability of detecting a failure in power grid within a given
budget.

To enhance grid resiliency it is necessary to understand
which nodes should be protected first under targeted attacks.
Using the giant connected cluster formulation of Buldyrev
et al. [34] discussed above, Huang et al. [37] developed a
framework to understand robustness in interdependent net-
works under degree-based targeted attacks. Their main idea
was to map a targeted network to a random one (on a different
network). Their findings show that protecting the higher degree
nodes with low probability to fail can significantly improve
robustness of interdependent networks.

Finally, if an attack happens it is necessary to reduce its
impact on the interdependent network. Strategies for this task
have been proposed by many papers [38], [39]. Wang et
al. [38] proposed a load redistribution approach where a failure
at node i redistributes its load to its neighboring nodes to
reduce the impact of an attack. Ouyang et al. [39] proposed a
tri-level optimization problem which maximizes the resiliency
of the system and also minimize loss. The inner level optimizes
the damaged components to repair, middle level identifies the
most disruptive attack, and outer level optimizes the defense
decision.

IV. EXAMPLE CI: TRANSPORTATION SYSTEMS

In transportation systems, research has been done on pre-
dicting traffic on roads, traffic states like accidents, road con-
structions as well as several approaches to improve congestion
control.

A. Traffic flow and state prediction

Traffic flow is the study of interactions of vehicles with
the traffic infrastructure, such as traffic control devices, high-
ways and traffic signs. Predicting traffic flow and states can
help improve an intelligent transportation system and prevent
congestion. In order to predict traffic flow on roads, it is

IEEE Intelligent Informatics Bulletin December 2018 Vol.19 No.2



34 Feature Article: Data Mining Critical Infrastructure Systems: Models and Tools

necessary to understand the influence of road segments based
on propagating congestion. Anwar et al. [40] developed an
algorithm to identify the most congested areas on traffic using
the road intersection network, the number of vehicles passing
during green lights and the ratio of effective usage of green
light time on each road segment. Many different algorithms
have also been proposed in order to forecast traffic flow at time
t+ k from the recent traffic flow data up to time t [41]–[43].
Wu et al. [41] suggest a random effect model integrating the
temporal factors while Moretti et al. [42] developed a hybrid
ensemble technique using an artificial neural network along
with a statistical regression approach. As another example,
Zheng et al. [43] predicted traffic flow using occupancy data
from buildings, instead of using traffic data directly. Traffic

Fig. 3. Traffic state inference using partial data. GRAPHSTATEINF proposed
by Adhikari et al. [44] dynamically identifies all the failed nodes in the
road network by leveraging a subset observations of failed nodes. The left
figure shows an example of a crowd-sourced app using which the user reports
incidents (the so-called probes of failed nodes) (left figure). In the right figure,
a toy road network showing the observed partially failed nodes (marked as
red) and inferred unobserved failed nodes (marked as blue).

states govern traffic flow and can be categorized into 1)
traffic infrastructure states (TIS), e.g., weather, presence of
accidents, roadworks and 2) traffic flow state (TFS), e.g., flow
rate, density, speed. From the partial observations of TFS
and TIS at several periods of different traffic links Gu et
al. [45] designed a model to estimate the traffic states using
expectation maximization and kalman filters. Instead, Adhikari
et al. [44] formulate the network state detection problem as
an inference problem given partial state data (from a crowd-
sourced app like Waze). They develop a near-optimal efficient
algorithm, GRAPHSTATEINF, which tries to find a set of
failed nodes in a network using observed failed nodes and
correlations among failure nodes in the network. Their main
idea was to leverage the information-theoretic MDL (minimum
description length) principle, which searches for the ‘best’
set of failures which ‘explains’ the given partial set with the
minimum encoding cost. This approach is useful in predicting
the impact of networks due to congestion (shown in Fig. 3).

B. Congestion tracking and control

To build an improved traffic system it is necessary to
control or reduce traffic congestion. For this, detecting
any congestion is the first step. Anwar et al. [46] model
congestion on road networks as partitions of these net-
works such that road blocks in each partition are homo-
geneous and have similar congestion (see Fig. 4, where
roads in the same round block have similar congestion).

Fig. 4. Congestion Example

However, traffic congestion varies
with time and re-partitioning
them at each time-step is compu-
tationally expensive. Hence they
also develop an algorithm to in-
crementally update the congested
partitions at a new time point
based on previous time and cur-
rent traffic data. Their main idea is to find the unstable nodes
and assign these nodes to a block which maximizes the number
of bounded cycles in a block.

In order to control congestion, Sundar et al. [47] designed an
automatic traffic signal control system from the traffic density
in the route. They used signals from RFID sensors inserted in
every vehicle, which transmits messages to the reader. Along
with congestion control, this system is also able to detect
stolen vehicles and clear traffic signal automatically for the
emergency vehicles.

V. FACILITATING DECISION MAKING

Various CI systems and tools have been developed to
aid the domain experts in taking multifaceted decisions for
emergency management, improve situation awareness as well
as for budget planning purposes. Next we give an overview of
this space.

A. Improving situation awareness

The idea of situation awareness is to predict emergency and
differentiate casual events from non-casual events, and many
approaches use crowdsourcing in some way for this along
with other techniques. Liang et al. [48] built a classifier to
distinguish flooded areas from non-flooded areas from satellite
images. The authors developed a semi-supervised learning
algorithm which divides the satellite image into several patches
based on the proximity and intensity of the pixels. A user is
asked to label a few patches and based on that the classifier
automatically classifies all other patches. Fig 5 shows the
steps of the algorithm. They used crowd-sourced knowledge
for getting user feedback for their classifier instead of using
domain expert to label the image patches.

Similarly, in the context of traffic data, Hooi et al. [49]
proposed an algorithm to find out traffic accidents by detecting
change points from sensor data. Huang et al. [50] designed
a crowd-sourcing based anomaly prediction system which
allows a user to report urban anomalies they encountered.
Based on these historical anomaly data they developed a
Bayesian inference model to understand dependency among
regions regarding the anomaly distribution. Next, they built a
Markov model to learn state transitions between normal and
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Fig. 5. An example of human-guided flood detection technique from satellite
images proposed by Liang et al. [48] for improving situation awareness (see
Sec V). In Step 1 the algorithm divides their images into several patches.
In Step 2, some of the patches of the image are labeled using crowdsourced
feedback. In Step 3, based on the user feedback, the algorithm labels other
patches as flood or non-flooded areas.

anomaly data and predict the state of the next time slot. Mu-
ralidhar et al. [51] also developed an online monitoring system
ILLIAD for anomaly detection and state estimation in cyber
physical systems (CPS), e.g., wireless and wired networks.
They combined model-based and data driven approaches to
learn invariant functional relationships between components of
the CPS (shown to represent the underlying network structure
of the CPS). Next they checked for the violation of any of
these invariant relationships over time which was then treated
as an anomaly (see Fig. 6).

Fig. 6. An example to improve situation awareness in CPS (wireless and wired
networks). The framework of ILLIAD proposed by Muralidhar et al. [51]. They
used Kalman filters (model based) and autoregression and latent factor based
(data-driven) methods to learn the invariant functional relationship between
the components and used that for state estimation and anomaly detection.

Social media data can also be leveraged to detect disaster-
prone areas. Mcclendon et al. [52] show how social media
data can support the decision for emergency management by
categorizing disaster-affected areas. Using Twitter users as
sensors Sakaki et al. [9] designed a classifier to detect target
events and a probabilistic spatiotemporal model to find the
center and trajectory of the event. Zhao et al. [53] proposed
a model to predict spatial events in social media considering
different spatial locations and various spatial relationship with
the task. Farag et al. [54] developed an event model that
can automatically capture the event information and incorpo-
rated the model into a focused crawler algorithm which can
identify the web pages relevant to that event. To detect the
disaster prone-areas and for fast emergency response using
social media, it is also necessary to identify trustworthy users
whose contents are influential. Vedula et al. [55] developed
an unsupervised algorithm to identify the trustworthy and
influential users from the network during a crisis.

B. Other CIS systems and tools

Several CIs tools have been developed to support the
decision-making process. Argonne National Lab has devel-
oped a risk-based decision support system and a simulation
model named Critical Infrastructure Protection and Deci-
sion Support System (CIPDSS) [56] to protect CI systems
against vulnerabilities, natural or human-made disasters, etc.
For studying energy development and impacts of climate
Los Alamos National Lab (LANL) designed Climate-Energy
Assessment for Resiliency (CLEAR) model which enables to
assess the interdependency of CIs regarding their relationship
with climate. Figure 7 shows an example of CLEAR [57]
assessing CO2 emission in transportation and energy sectors.
In addition, a toolkit URBAN-NET developed by Lee et al. [30]
integrates network construction, visualization, failure cascade
modeling, and a simulator to identify critical facilities. They
generated the physical CI networks from disparate data sources
which contains location and information of CI components.
For modeling and simulation, they considered the system
into three different categories: topology-based, simulation-
based and monitoring based analysis. In the topology-based
analysis, they consider only physical CI interdependencies
and compute the importance of each node and link based on
their interdependencies. In simulation-based analysis, they also
incorporated temporal dependencies such as the restoration
period of network failure, and capacity of a CI component
to handle the failure of its interdependent network. They
showed an example with a road-gas network where each node
importance is based on its efficiency of transportation as well
as how well it is reachable to gas stations. Finally they also
created a visualization to show the critical nodes and edges
(shown in Fig. 8).

There are other such tools have been developed by Oak
Ridge National Lab (ORNL) to facilitate decision making for
urban infrastructures. URBAN-CAT [58] has been developed to
understand the impacts of climate change, URBAN-MET [59]
has been designed to study interactions between urban and
environmental systems, LANDSCAN [60] has been developed
to model the distribution of population and settlement based
on demographic and remote sensing imagery data. Besides,
several CIs datasets are also available to aid research and
decision making: a geospatial and US domestic infrastructure
HSIP gold data [61], NHDPlus and USGS hydrology data [62],
[63], and EIA energy data [64].

VI. CONCLUSION

In this survey, we presented an overview of state-of-the-
art in CI research from an urban computing and data mining
perspective. First, we describe the state-of-the-art approaches
that have been used in CIs for modeling dynamics in the
system. First we discussed some of the different frameworks
for modeling CI systems in general. Second, we discuss
the data mining problems related to two vital sectors in
CIs, electric grid systems, and transportation systems. Within
the power grid systems, we showcase existing techniques
to identify vulnerable facilities and to protect the system
from adversarial attacks. Within the transportation domain, we
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Fig. 7. A screenshot of the interface of CLEAR designed by LANL [57] showing emission of CO2 in typical sectors of CIS. In the left figure a user can
choose the energy and transportation policy, whereas the right figure shows the simulation result, i.e., the amount of CO2 emission in different sectors based
on the chosen policy.

s

Fig. 8. Overview of URBAN-NET by Lee et al. [30]. Left fig. shows how URBAN-NET is collecting GIS data and preprocessing then to analyze CI networks.
Top right fig. shows a topology-based example where the system identifies the vulnerable CI networks which fails due to the failure of some initial seed
nodes. Bottom right fig. shows a simulation-based analysis where it identifies the critical nodes which fail after a certain time due to interdependency.

presented algorithms for traffic states and flow prediction and
to control congestion. Finally, we also described some popular
tools and techniques, that have been developed to ease the
decision-making process for domain experts.

There are several open problems and this is a rich domain
with high potential for interdisciplinary impact. For example,
in context of energy systems, some of these problems include:
1) Interpreting or explaining the behavior of CIs models,
for e.g., are the algorithms able to identify critical facilities
from the system; 2) In terms of modeling, federal entities
such as Department of Energy (DoE) focus on improving
understanding of how extreme events (such as hurricanes
and wildfires) impact the production of electricity and power
equipment (such as flooded substations, downpoles etc.) [65].
Since renewable generation such as solar and wind tends to be
highly intermittent, there is a lot of interest to resolve this issue
to aim towards uninterrupted electricity supply and improve
sustainability [66]; 3) Impacts of electricity production caused
by outages in gas pipe lines is also being heavily pursued
due to growth in natural gas fuel production within the US;

4) Another area of investigation is to understand the impacts
of power restoration due to disruptions in the transportation
infrastructure.
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