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Recent hurricane events have caused unprecedented amounts of damage on critical infrastructure systems

and have severely threatened our public safety and economic health. The most observable (and severe) impact

of these hurricanes is the loss of electric power in many regions, which causes breakdowns in essential public

services. Understanding power outages and how they evolve during a hurricane provides insights on how

to reduce outages in the future, and how to improve the robustness of the underlying critical infrastructure

systems. In this paper, we propose a novel scalable segmentation with explanations framework to help experts

understand such datasets. Our method, CnR (Cut-n-Reveal), first finds a segmentation of the outage sequences

based on the temporal variations of the power outage failure process so as to capture major pattern changes.

This temporal segmentation procedure is capable of accounting for both the spatial and temporal correlations

of the underlying power outage process. We then propose a novel explanation optimization formulation to find

an intuitive explanation of the segmentation, such that the explanation highlights the culprit time-series of the

change in each segment. Through extensive experiments, we show that our method consistently outperforms

competitors in multiple real datasets with ground truth. We further study real county-level power outage data

from several recent hurricanes (Matthew, Harvey, Irma) and show that CnR recovers important, non-trivial

and actionable patterns for domain experts, while baselines typically do not give meaningful results.
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systems.

Additional Key Words and Phrases: Multivariate Time-series, Spatio-temporal Segmentation

ACM Reference Format:
Nikhil Muralidhar, Anika Tabassum, Liangzhe Chen, Supriya Chinthavali, Naren Ramakrishnan, and B. Aditya

Prakash. 2019. Cut-n-Reveal: Time-Series Segmentations with Explanations. ACM Trans. Web 9, 4, Article 39
(January 2019), 26 pages. https://doi.org/0000001.0000001

This document has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of

Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that

the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published

form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these

results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-

public-access-plan).

Authors’ addresses: Nikhil Muralidhar, Virginia Tech, USA, nik90@vt.edu; Anika Tabassum, Virginia Tech, USA, anikat1@

vt.edu; Liangzhe Chen, Pinterest, USA, liangzhechen@pinterest.com; Supriya Chinthavali, Oak Ridge National Laboratory,

USA, chinthavalis@ornl.gov; Naren Ramakrishnan, Virginia Tech, USA, naren@cs.vt.edu; B. Aditya Prakash, Georgia

Institute of Technology, USA, badityap@cc.gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1559-1131/2019/1-ART39 $15.00

https://doi.org/0000001.0000001

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2019.

Page 1 of 30 Transactions on Intelligent Systems and Technology

https://mc.manuscriptcentral.com/tist

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


39:2 Muralidhar, Tabassum et al.

1 INTRODUCTION
Power outages during several recent hurricanes have had a severe impact on our national security,

economy, and public safety. The 2017 hurricane season was the most expensive in U.S. history

resulting in huge economic losses (greater than $250 billion). Hurricane Irma caused one of the

largest power outages which reportedly knocked out power to 4.5 million of the 4.9 million Florida

Power & Light customers. Hence, better understanding of power outages and how they evolve

during hurricanes is a very important task for damage prevention and control.

Domain experts in critical infrastructure systems (CIS) constantly seek solutions and ideas on

how to reduce power outages during hurricanes. For example, Oak Ridge National Laboratory’s

(ORNL) Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully

automated procedure to take wind speed and location estimates provided by hurricane monitoring

experts and provide a geo-spatial estimate on the impact to the electric grid in terms of outage

areas and projected duration of outages [12].

Retrospectively identifying ‘cut-points’ with a sudden change in the number of outages in his-

torical data can help in many aspects like identifying phases and causes through inter-dependency

analysis. This helps disaster management personnel learn from past events and be better prepared

for future contingencies. For example, a retrospective analysis of hurricane Sandy highlighted the

underlying causes due to inter-dependencies with communication, oil and natural gas infrastruc-

tures [8]. Further, pinpointing ‘culprit’ counties responsible for each such cut-point helps domain

experts localize points of failure and analyze restorative periods [21]. Hence such analysis can

be used to shorten restoration periods of vulnerable points in the grid thereby improving grid

resiliency to future disasters.

The above analysis goals may be addressed using the time-series mining task of ‘segmentation’.

However computing interpretable ‘culprits’ for each cut-point is a task which has not been studied

before. In this paper we address this issue via a novel segmentation-with-explanations approach.

Our main contributions are:

• We propose a novel problem and algorithm CnR for computing segments of power outage

data. CnR captures temporal and spatial relationships between counties experiencing power

outages, modeling the power failure process as a segmentation problem. We also propose a novel

explanation algorithm that identifies the culprit counties for each segmentation cut-point.

• Our proposed formulation uses low dimensional latent factor models and achieves significant

speed up.

• Experiments were performed with CnR and other popular segmentation algorithms on synthetic

and real datasets including historical hurricane power outage data. The other segmentation

procedures perform significantly worse relative to CnR on the real hurricane data, due to their

inability to model complex spatial dynamics of the failure process. Although CnR is developed

for power outage data, it can be applied to any multivariate time series.

The rest of the paper is organized as follows. In Section 2 we formally state the segmentation

and explanation problems. Section 3 introduces our spatially agnostic CnR-V segmentation and

explanation model. We then introduce the novel spatio-temporal CnR-UV model in Section 4

designed to incorporate extensive spatial information for segmenting and explaining failure process

dynamics in a multivariate time series. Section 5 showcases the performance of CnR-UV with

respect to other state-of-the-art algorithms, and on real-world problems. Section 6 provides a brief

review of related literature and Section 7 explores avenues for future work. For lack of space, we

defer some additional experiments to the appendix [6]. All codes and datasets are made public[7].
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(a) Temporal Segmentation to identify different

failure phases of the power grid across all counties

affected by Hurricane Matthew.

(b) Spatial Clustering revealed by

CnR of counties in Florida that expe-

rienced extensive damage (in green)

to power infrastructure due to Hurri-

cane Matthew.

Fig. 1. An example of the holistic spatial and temporal analysis results from our novel CnR model to analyze
the damage to the power grid during Hurricane Matthew. Fig. 1(a) depicts the overall temporal segmentation
over a dataset where each time series indicates the total number of households that lost power in a single
county over the course of Hurricane Matthew (household count per county is recorded every hour). Fig. 1(b)
represents the spatial clustering of all counties that experienced significant damage to power infrastructure
through the course of Hurricane Matthew, essentially representing the spatial span of damage.

2 FOCUS AND SET-UP
Motivation: Large power grids usually contain thousands of generators, hundreds of thousands of

transmission lines and millions of consumers. Grid components have strong inter-dependencies like

in the transmission grid where multiple paths exist between generators and consumers and these

paths typically are arranged in a mesh grid manner. Hence, if one path or line fails, the electricity

instantaneously follows an alternate path governed by Kirchhoff’s voltage and current laws. If the

alternate path however cannot handle the overload in flow, it in-turn fails and this failure cascades

to neighboring components. Due to the well studied property of cascading failures and small-world

properties in the power grid [26, 28], a few initial points of failure due to a hurricane quickly

cause network instability in a region potentially causing millions of people to suffer the effects

of brownouts or blackouts. Natural disasters like hurricanes exhibit multiple phases of varied

intensity along their path causing failures with different levels of severity at different regions. We

model the progression of this grid failure process as a temporal segmentation problem. Modeling

this failure process over time, across different regions (e.g. counties) affected by a hurricane, is

essential for improving the resilience of critical infrastructure to disasters.

Focus:We characterize the severity of this grid failure process by measuring the number of people

in a hurricane affected region (a county in our case) without power over the entire time period of

the hurricane. Three critical questions need to be answered for characterization of this process:

• How can we identify different phases of a hurricane as a function of severity of the damage

to critical infrastructure like the power grid, using sparse customer power loss data?

• Which counties are most important for characterizing each phase?

• How can counties be grouped together based on their overall failure dynamics during the

hurricane?

Our main goal is to help domain experts answer the aforementioned questions.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2019.

Page 3 of 30 Transactions on Intelligent Systems and Technology

https://mc.manuscriptcentral.com/tist
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Notation: We assume we are given a set of time series X = {x1,x2, ...,xn}, where each time series

xi = [xi (t1),xi (t2), ...,xi (tm)], and xi (tj ) represents the value at time stamp tj for the i
th

time series.

We also assume there is a known underlying graph structure G that captures the relationship

among these time series {xi }. For example, in critical infrastructure systems, the number of electric

outages in all disaster affected counties form a set of time series, and the relationship among these

counties can be based on their geographical proximity.

Definitions: Our algorithm CnR (Cut-n-Reveal) contains two parts: detecting a good segmentation
of the outage data to capture the main changes; and finding the corresponding explanations (subset
of important counties) per segment. With this knowledge of the segmentation and the explanations

for each segment, the expert has a holistic picture of the different phases of the failure process

as well as the specific time series that contributed significantly to each phase change. We now

formally state our definition of a segmentation and an explanation.

Definition 1 (Segmentation S). A segmentation of X contains a set of distinct temporal cut-points
S = {c1, c2, ..., ck }, where ci ∈ {t1, t2, ..., tm}.

Definition 2 (Explanations E). E = {e1, e2, ..., ek }, where ei is an n by 1 non-negative explana-
tion vector. | |ei | |1 = 1 and ei j represents the importance of time series j for explaining the cut-point
ci .

Set-up: The cut-points of S naturally divide the entire time period in the dataset into a set of disjoint

time segments. The ith time segment is denoted as a set of contiguous time steps si = [ci−1, ci )
with i ∈ {1, 2, ..,k + 1}, c0 = t1, and ck+1 = tm . Two sets / segments si , sj are said to be neighboring

segments if si = {tl , .., tl+∆l } and sj contains tl−1 or tl+∆l+1.
Assuming we are given a segmentation S of X , containing a set of cut-points {ci } and corre-

sponding segments, {si }, a desired explanation of the segmentation should be simple yet effective

enough to guide efforts to prevent or curtail the effects of critical infrastructure failure in future

disasters.

To this end, we introduce an explanation vector ei for each cut-point ci in S . Each ei is an n × 1

vector where n represents the number of counties and ei j represents the importance of the jth

time series/county in explaining the cut-point. Intuitively, if time series x j shows very different

patterns before and after the cut-point ci , we consider it important in explaining why ci is a good
cut-point. On the other hand, if x j remains constant/unchanged across ci , it does not provide
useful information in terms of the cut-point ci and should have low values in ei . In the hurricane

outage data where there are hundreds of time series/counties, such explanation vectors are able to

highlight the "culprit" time series/counties

We propose two versions of the CnR algorithm, namely CnR-V (Temporal Cut-n-Reveal) and

CnR-UV (Spatio-temporal Cut-n-Reveal). Section 3.1, Section 3.2 discuss the segmentation and

explanation formulations and corresponding solutions using CnR-V. Section 4.1, Section 4.2 detail

our segmentation and explanation solutions using CnR-UV.

3 TEMPORAL CUT-N-REVEAL
In this section we propose our CnR-V model which performs segmentation on a multivariate

time series only using temporal information and also yields explanations for each segmentation

cut-point.

3.1 CnR-V Segmentation
The segmentation problem addressed by CnR-V is stated as follows.
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Problem 1. Given a set of time seriesX and a number k ,find the k-segmentation of S that captures
the main pattern changes in X .

3.1.1 Overview of our approach. Through the segmentation model, we wish to isolate temporal

sequences into discrete segments such that the properties of the failure process in each segment

differ from neighboring segments. The process of manually or algorithmically picking reasonable

segments is non-trivial as segments that are too small fail to capture significant properties of

the failure process and picking segments that are too large although capturing all failure process

characteristics, do not highlight the differences between the various phases of the process. Since

the failure process is highly dynamic and the failure dataset is sparse in nature, methods based

on capturing long-term correlation [25] or invariant learning [37] from the data will be unable to

perform adequately.

Table 1. Definitions
X ∈ Rn×m The data matrix consisting of n time series each withm time steps.

D ∈ Rn×n Depicts a degree Matrix

A ∈ Rn×n Depicts an adjacency Matrix

L = D −A Represents the Laplacian Matrix of A.

U ∈ Rn×l Spatial feature matrix with l latent features.

V ∈ Rl×m Temporal feature matrix with l latent features.

In Eq. 1 i.e in CnR-V, l =m, otherwise, i.e. in CnR-UV, l << m (Eq. 5).

R ∈ Rm×m−1
A lower triangular matrix with -1’s on the primary

diagonal and 1’s on the second diagonal

E ∈ Rn×k Represents the explanation matrix to quantify importance

of each time series in explaining each cut-point.

1 ∈ Rn×1 Denotes a vector of ones

λ,α , λi ,γi Scalar hyper-parameters used in the segmentation and explanation formulations.

3.1.2 Formulation. We consider the different phases of the failure process in the power grid during

natural disasters as a collection of disjoint segments {s1,..,sk+1}. We wish to discover a collection

of k cut-points S that minimizes similarity between any two neighboring segments si , sj . Hence,
each segment si would capture a different pattern from its neighboring segments (si−1, si+1), thus
the segmentation S captures pattern changes in the time series. We employ the normalized cut

framework which has been shown to work well in subspace clustering and segmentation tasks [50].

Our goal now, is to represent each time step allowing for effective similarity calculation between

time steps so that the continuous evolution of the failure process is captured by the inter-time-step

similarity. In an effort to find a principled approach to capture the similarity between different time

steps in the failure process, we adopt the formulation provided by Tierney et al. [52] for video scene

segmentation for our purposes of modeling the hurricane failure process. The model represents

each time step in the data X , as a function of other important time steps. It is through this latent

representation V that we attempt to capture the dynamics in the data X .

min

V

1

2

| |X − XV | |2F + λ1 | |V | |1 + λ2 | |VR | |1,2

subject to diag(V ) = 0

(1)

In Eq. 1, V is anm bym matrix whose ith column can be considered the latent representation of
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time step i in terms of all the other time steps. The first term in Eq. 1 calculates the reconstruction

error between X and XV while, the second term introduces sparsity into the latent representation,

enforcing that each time step be explained as a function of a small subset of other important time

steps. The term VR (R is defined in Table 1) calculates the difference of each time step with its

previous time step in the latent V space. This term essentially serves as a smoothness constraint

penalizing the dissimilarity of neighboring time steps. The l1,2 norm term forces whole column

similarity between two columns of V , i.e. between neighboring time steps in V as opposed to just

element-wise similarity in the case of a simpler l1 norm onVR. The solution to Eq. 1 can be obtained

by applying the alternating direction method of multipliers (ADMM) [15].

Solving Eq. 1 yields a temporal weight matrixV ∈ Rm×m
from which we derive an affinity matrix

W = VVT
. The affinity matrix is then segmented using the normalized cuts procedure to obtain

the set of cut-points S .

3.2 CnR-V Explanation
Recently, there has been a push toward making complex machine learning model outputs quantifi-

able, explainable and simple [45]. Despite the sparsity of our segmentation procedure, the output is

complex and it is often not possible to identify the cause for each segment due to many simulta-

neously changing time series. A domain expert may want to know simply which time series are

changing and which are behaving anomalously at the sudden outage changes (at each segment).

This can help them make decisions about which counties they can use for retrospective analysis

by localizing points of failure. Finding out these “culprit" time series using just the temporal and

spatial segmentation from V and U matrices seems difficult. Existing time series segmentation

algorithms do not provide any explanation of the result in an automatic principled way. Hence, to

design good explanations specifically for hurricane outage data, we consider the characteristics of

the data, as well as the requirements from the domain experts to propose an optimization problem

CnR-V as follows:

Problem 2. Given a set of time series X , the Laplacian matrix L of the underlying network, a
number k , and the k-segmentation of S , find the associated explanations E, that capture the main
pattern changes in X .

3.2.1 Overview of our approach. We formulate an optimization problem that automatically learns

explanations considering the underlying geographical relation between counties, revealing to

domain experts, a small number of truly important "culprit" counties per cut-point.

3.2.2 Formulation. We aim to design an optimization problem that automatically finds a good set

of explanation vectors {ei }. Assume that we have a function d(S, i), which takes a segmentation S
and a cut-point index i as inputs, and returns an n by 1 vector which captures the difference of

each time series before and after the ith cut-point ci in S . We want ei to assign higher weights

to time series with higher d(S, i)j values (therefore higher difference across cut-point ci ) where
d(S, i)j represents the importance of county j at cut-point i and is defined in Eq. 3. The formulation

also needs to capture the effects of spatial proximity of counties i.e adjacent counties should have

similar importance, due to the continuous trajectory of a hurricane affecting neighboring counties

at the same time. The explanation needs to be ’simple’ in the sense of highlighting only a few

culprit counties. With these considerations in mind, the optimization problem we solve to obtain

simple explanations considering the county geography is shown below.

Given: A set of time series X ,L, a segmentation S , α , λ.
Find: E = {ei } such that
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argmax

E

k∑
i=1

[eTi d(S, i) − αeTi Lei ] − λ
k∑
i=1

| |ei | |1

subject to 0 ≤ ei j ≤ 1, | |ei | |1 = 1

(2)

The geographical smoothness is introduced in the second term using the Laplacian matrix L
(obtained from the underlying county-county network). This term minimizes the difference of ei
for adjacent counties. The third term is an l1 norm regularization on ei , which introduces sparsity

in ei leading to simpler explanations due to only a few important counties having non-zero values

in ei to explain cut ci .
The distance function d(S, i) captures the difference across a cut-point ci , by considering a time

window before the cut-point ci and a timewindow after ci . The difference of these two timewindows

is calculated as the difference of the time series across ci . Let w
−
i j represent the sub-sequence of

x j in the time window before ci , and w
+
i j represents the sub-sequence in the time window after

ci . The distance function then calculates the difference ofw−
i j andw

+
i j using simple, standard time

series features: the mean value (f1), the standard deviation (f2), the maximum value (f3) and the

minimum value (f4).

d(S, i)j =
1

4

4∑
z=1

| fz (w
−
i j ) − fz (w

+
i j )| (3)

As a preprocessing step which we do not elaborate on in the equation, we perform a min-max

normalization of | fz (w
−
i j ) − fz (w

+
i j )| across all time series to make the scales uniform. As bothw−

i j
andw+i j are of a short length (a deliberate setting since the pattern changes that justify the choice

of a particular cut-point usually lie in the local area), these simple features are enough to capture

the main pattern difference.

Finally, to solve Eq. 2, we optimize each ei separately. For each ei , the optimization can be

re-written as a Quadratic Programming (QP) problem in the following way.

argmin

ei
αeTi Lei − [d(S, i)T − λ1T ]ei

subject to 0 ≤ ei j ≤ 1, | |ei | |1 = 1

(4)

The QP problem is well studied in the literature, and it is NP-hard in its general form. In our

case, where the QP is convex in ei , it can be solved in polynomial time using an Interior Point

method [57], and we use the existing Matlab function (quadprog) to solve the problem.

4 SPATIO-TEMPORAL CUT-N-REVEAL
We now augment our CnR methodology to incorporate spatial relationships into the temporal

segmentation and explanation phases and propose our novel CnR-UV model .

4.1 CnR-UV Segmentation
Modeling the power outage failure process using CnR-V presents a few drawbacks. Firstly, the

segmentation process in Eq. 1 does not account for or attempt to model spatial relationships between

entities (counties in our case) over which the failure process (power outage) occurs. However,

phenomena like cascading failures indicate the existence of strong spatial interactions between

components in the power grid and incorporating spatial relationships can aid in more effective

modeling of the power outage process. We update problem 1 stated in Section 3.1 as follows:
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Problem 3. Given a set of time series X , the Laplacian matrix L of the underlying spatial network,
and a number k , find a spatial weight matrixU , a temporal weight matrixV , the k-segmentation of S
derived from V that captures the main temporal pattern changes in X .

4.1.1 Overview of our approach. For effective spatio-temporal modeling, we allow temporal latent

matrixV to consider the underlying spatial relationships between counties. To this end, we introduce

a spatial weight matrix U , jointly learnt with V . U ,V are latent weight matrices, and the latent

factor modeling approach is used for our segmentation model because of its success in similar

sparse settings like recommendation systems [30, 38].

4.1.2 Formulation. We develop a temporal segmentation formulation influenced by spatial con-

straints, where the failure process at each time step is represented in a rich low-dimensional latent

space l such that V ∈ Rl×m ,U ∈ Rn×l and l << m, l << n. Let vi ∈ R
l×1

and vj ∈ R
l×1

represent

the ith and jth column vectors of V respectively where i, j ∈ {1, ..,m} and i , j. We can also

consider vi and vj to be the latent representation for the ith and jth time steps respectively. The

goal of this formulation is that the similarity of vi , vj is not solely influenced by the temporal

proximity of vi to vj (a constraint strongly enforced by the | |VR | |1,2 term in Eq. 1) but also by the

underlying spatial behavior of the counties at time steps i and j . To achieve this goal, we formulate

a novel temporal segmentation model in Eq. 5 to jointly model spatial and temporal characteristics

of power outage during natural disasters.

min

U ,V

1

2

| |X −UV | |2F + λ1 | |U | |1 +
β1
2

Tr (UT LU )

+ λ2 | |V | |1 + λ3 | |VR | |1,2

subject to U ≥ 0,V ≥ 0

(5)

In Eq. 5, the matrix U learns the latent representation for each of the n counties. The first term

calculates the re-construction error wherein the original failure behavior observed in X , is re-
created as a combination ofU (latent county outage characteristics), and V (latent temporal outage

characteristics). The l1 norm terms onU and V ensure sparsity, in line with our goal of designing

simple interpretable explanations of our segmentation. The | |VR | |1,2 term has the same effect as

described in section 3.1. The term Tr (UTLU ) represents the Laplacian regularization constraining

the matrixU to be influenced by the underlying geographic layout of the counties in X . Here, the

matrix L represents the Laplacian of the county-county adjacency matrix A.
We once again employ the ADMM method to solve Eq. 5 using the Lagrangian formulation as

represented in Eq. 6. To separate each term in Eq. 5, we assign J = U , K = V , P = KR.

L(U ,V , J ,K , P) =
1

2

| |X − JK | |2F + λ1 | |U | |1 +
β1
2

Tr(JT LJ )

+ λ2 | |V | |1 + λ3 | |P | |1,2 + ⟨G,V − K⟩ +
γ1
2

| |V − K | |2F

+ ⟨H ,U − J ⟩ +
γ2
2

| |U − J | |2F + ⟨F , P − KR⟩

+
γ3
2

| |P − KR | |2F

(6)

We solve for U ,V , J ,K , P in an alternating manner. The update steps for each term in Eq. 6 are

discussed below

(1) Update V:
(a) FixingU , J ,K , P we solve for V .

min

V
λ2 | |V | |1 + ⟨G,V − K⟩ +

γ1
2

| |V − K | |2F
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This can be restated as follows:

min

V
λ2 | |V | |1 +

γ1
2

| |V −
(
K −

G

γ1

)
| |2F (7)

Equation 7 has element-level closed form solutions that can be obtained using the soft

thresholding operator [10, 34, 52]. The element-level closed form solution is as defined in

Eq. 8

V = siдn

(
K −

G

γ1

)
max

(����K −
G

γ1

���� − λ2
γ1

)
(8)

(b) FixingU ,V , J , P we solve for K .

min

K

1

2

| |X − JK | |2F + ⟨G,V − K⟩ +
γ1
2

| |V − K | |2F

+ ⟨F , P − KR⟩ +
γ3
2

| |P − KR | |2F

(9)

Differentiating Eq. 9 w.r.t K and setting the derivative to zero yields:

(XT JT JX + γ1I )K + γ3KRR
T =

XT JX +G + γ1V + FR
T + γ3PR

T (10)

If we set,

(i) A = (XT JT JX + γ1I )

(ii) B = γ3RR
T

(iii) C = XT JX +G + γ1V + FR
T + γ3PR

T

then Eq. 10 takes the form of a sylvester equation.

AK + KB = C (11)

The solution to Eq. 11 is a well studied problem. [13, 24].

(c) FixingU ,V ,K , J we solve for P .

min

P
λ3 | |P | |1,2 + ⟨F , P − KR⟩ +

γ3
2

| |P − KR | |2F (12)

this is equivalent to

min

P
λ3 | |P | |1,2 +

γ3
2

| |P −

(
KR −

F

γ3

)
| |2F (13)

LetM = KR − F
γ3

then Eq. 13 has the following closed form solution [52]

P(:, i) =


| |M (:,i) | |− λ

3

γ
3

| |M (:,i) | | M(:, i) i f | |M(:, i)| | > λ3
γ3

0 otherwise
(14)

(2) Update U:
(a) Fixing V , J ,K , P we solve for U . We can follow a similar procedure to the V update step

above and obtain the following element-wise closed form solution forU .

U = siдn

(
J −

H

γ2

)
max

(����J − H

γ2

���� − λ1
γ2

)
(15)
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(b) FixingU ,V ,K , P we solve for J .

min

J

1

2

| |X − JK | |2F +
β1
2

Tr (JTLJ ) + ⟨H ,U − J ⟩

+
γ2
2

| |U − J | |2F

(16)

Differentiating Eq. 16 w.r.t J and setting the derivative to 0 similar to theK update procedure,

the expression in Eq. 17 is obtained.

β1LJ + J (XKKTX + γ2I ) = XKXT + H + γ2U (17)

We once again solve Eq. 17 by reduction to a Sylvester equation,

(i) A = β1L

(ii) B = XKKTX + γ2I

(iii) C = XKXT + H + γ2U

(3) Update G:

G = Gold + γ1(V − K)

(4) Update H :

H = Hold + γ2(U − J )

(5) Update F :

F = Fold + γ3(P − KR)

(6) Update γ1,γ2,γ3:

γ1 = ργ old
1

;γ2 = ργ old
2

;γ3 = ργ old
3

Solving Eq. 6 yields an l ×m temporal weight matrix V and an n × l spatial weight matrixU . We

construct an affinity matrixW = VTV which is passed to the normalized cuts algorithm to obtain

the temporal segmentation S from V . As an additional step, we also construct a separate spatial

affinity matrixWU = UU
T
which represents county similarity, and obtain a spatial clustering ofWU

using the normalized cuts procedure. In addition to the temporal segmentation and the explanation

of each temporal segment, we believe the spatial clustering of counties provides an additional level

of insight about aggregate county behavior during natural disasters in a given region.

4.2 CnR-UV Explanation
The explanation procedure for modelCnR-V proposed in Section 3.2, incorporates spatial constraints

through the Laplacian of the county adjacency matrix. In our experience, this approach overly

emphasizes spatial locality as a factor for learning the explanation vector ei for a particular cut-point
ci . It need not always be the case that the effects of a power outage in a particular county are felt

only in the neighboring counties or that only counties directly affected by a hurricane experience

outages. As outlined in [27], the influence graph for county power outage need not necessarily be

exactly similar to the grid topology or geographic county layout. Intuitively this means that outage

in a county in one part of a state can have far-reaching effects leading to outages or in counties

located in a different part of the state in an instantaneous or delayed manner. Accommodating for

such effects in our explanation methodology requires a smoother, less stringent spatial constraint.

This leads to better explanations for domain experts as well.
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4.2.1 Overview of our approach. In addition to the V matrix, the segmentation formulation of the

CnR-UVmodel also learns a rich latent factor representation of each disaster-affected countyU . Due

to the richness of the latent factor representation and flexibility of design, theU matrix in addition to

local spatial effects, is also able to capture far-reaching effects of counties on each other. Hence, the

affinity matrixUUT
would capture far-reaching county-county similarities extending significantly

beyond the immediate neighborhood of a county. We utilize this property and constructWU = UU
T

which can be considered the adjacency matrix of a weighted undirected graph of counties whose

degree matrix D is a diagonal matrix where each D j j represents the weight of county j and is

calculated as the sum of row j ofWU . Matrix LU is the Laplacian calculated as LU = D −WU .

Problem 4. Given a set of time series X , a number k , the k-segmentations of S , and the Laplacian
LU derived from the spatial latent factor matrixU , find the associated explanations E, that capture
the main pattern changes in X .

4.2.2 Formulation. The explanation formulation employed by CnR-UV is defined in Eq. 18. It is

similar to Eq. 2 but for a smoother Laplacian matrix LU in the regularization term which allows

ei to consider counties in a larger spatial radius as opposed to in the explanation step of CnR-V
wherein a strict spatial constraint based on the county graph is imposed through the Laplacian

matrix L.

argmax

E

k∑
i=1

[ei
Td(S, i) + αeTi LU ei ] − λ

k∑
i=1

| |ei | |1

subject to 0 ≤ ei j ≤ 1, | |ei | |1 = 1

(18)

The function d(S, i) returns an explanation vector ei ∈ R
n×1

and is defined in Eq. 3. Equation 18 can

be solved by optimizing each ei as a separate QP problem convex in ei similar to the explanation

formulation for CnR-V in Section 3.2. The complete pseudo-code for CnR-UV is given next (CnR-V
is similar, using Eq. 1, Eq.4 instead of Eq. 6, Eq. 18 respectively).

ALGORITHM 1: CnR-UV Segmentation with Explanation

Input: X: Hurricane Power Outage Data, G: Spatial Graph, l : Num. Latent Features

Result: S = {c1, ..., ck }, Temporal Segmentation

E = {ec1 , .., eck }, Temporal Explanation

Init: U = V = 0

while not converged do
Estimate,U ,V using Eq. 6

Retrieve S using Normalized Cuts

Estimate explanation vectors ec1 , .., eck using Eq. 18

end

Remark 1. CnR-UV takes worst-case time O(#iterl2(X +m2 + n2)))i.e quadratic in the number of
time steps and time series. In practice we found QP to be very fast, and total time to be sub-quadratic on
the dataset size.CnR-V takes worst-case time∼ O(#iter (m2.3+n2)) (using the best matrix multiplication
exponent) and is hence sub-cubic in the number of time steps and quadratic in the number of time series.
The space complexity of CnR-UV is near-linear O(X + nl +ml) and that of CnR-V is O(X +m2 + n2).

5 EMPIRICAL STUDY
We implement CnR in Python and Matlab. Our experiments were conducted on a 4 Xeon E7-4850

CPU with 512 GB of 1066Mhz main memory.
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5.1 Set-up
5.1.1 Datasets. We collect datasets from different domains with the ground truth segmentations

to quantitatively evaluate our performance. For efficiency purposes, we perform a standard rolling

average as a pre-processing step to all the data. The final statistics are in Table 2.

ChickenDance: The ChickenDance datasets, ChickenDance1 and ChickenDance2 [17] are recorded
as motion capture sequences of 4-dimensional data points with ground-truth segmentation [35]

and is originally from CMU motion capture database [2]. The ground-truth segmentation is based

on different motions in the chicken dance.

WalkJog: We used two variants of the WalkJog datasets, WalkJog1 where we uniformly sampled

1000 data points from the WalkJog dataset used in [23] and WalkJog2 used in [18]. These datasets

adapted from the REALDISP Activity recognition Dataset [11] have recordings of walking and

jogging motions with segments between different motions.

GrandMal Seizures: [23] has 3-min recordings of neural activity (pre-seizure, seizure and post-

seizure) of a subject, recorded using a scalp electrode.

Synthetic Data: We also generated synthetic data consisting of 4 time-series sampled from normal

distributions with different means and standard deviations. Time-series were perturbed at different

times to cause segments and the goal is to identify these segments.

NILM : Non Intrusive Load Monitoring dataset. This dataset consists of real power measurements

for various household appliances like lamps, laptops, and refrigerators, recorded through the use

of MAU (Measurement and Actuation Units) connected between the device and the wall-socket

(more details are in [44]). We use a 24-hr hour snapshot of the NILM data from 2012-01-17 00:00:00

to 2012-01-17 23:59:59 sampled at two minute intervals, and use the time when a device switches

states as the ground truth cut-points.

Hurricane Outage data: ORNL has developed several grid situational awareness products over the

last decade such as VERDE, EARSS and EAGLE-I [19] for different stakeholders like DOE and FEMA,

primarily for emergency management. For example, the National Outage Map within EAGLE-I

collects distribution outage data of all the customers from utility websites every 15 minutes. Due to

the recent coverage expansion (with more utilities exposing data from their Outage Management

Systems), in this paper, we consider the more recent hurricane outage data namely for Matthew,

Harvey and Irma since it covers nearly 90% of the population in the hurricane affected areas.

5.1.2 Baselines. We wish to evaluate the segmentation and explanation parts of our CnR-UV
algorithm. We first start with evaluating the performance of the CnR-UV segmentation procedure

and later detail the CnR-UV explanation evaluation.

5.1.3 Segmentation Baselines. First, we compare the segmentation of CnR-UV with several state-

of-the-art multivariate time series segmentation algorithms.

Autoplait [35] is a hidden markov model (HMM) based algorithm which discovers different

regimes in co-evolving time series. Each regime can be thought of as the segments for our problem.

TICC [25] is a recent algorithm for multivariate time series to discover repeated patterns. It

clusters time stamps into segments using their model.

Dynammo [32] learns a dynamical system (Kalman Filter) and segments the time-series wherever

the reconstruction error becomes high.

Floss [23] is an unsupervised semantic segmentation algorithm which learns the segmentation

from the local minimas obtained in the matrix profile.

5.1.4 Explanation Baselines. To the best of our knowledge, there is no method that retrieves ex-

planations for each segment the way CnR-UV does. Hence, we are unable to compare CnR-UV
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Table 2. Datasets Used.

Dataset #Time #Time Ground

stamps series Truth

Synthetic 1000 4 ✓
NILM 721 17 ✓
ChickenDance 1 1590 4 ✓
ChickenDance 2 322 4 ✓
WalkJog 1 1000 2 ✓
WalkJog 2 303 2 ✓
GrandMal 1000 2 ✓
Harvey 264 250

Irma 169 271

Matthew 252 369

Table 3. Evaluation of segmentation (seg) and explanation (exp)
on Ground Truth Datasets based on F1-score.

Dataset

Method

CnR-UV CnR-V Auto TICC Dyn. Floss

seg exp Plait

Synthetic 1.0 1.0 0.58 0.5 1.0 0.52 0.85

NILM 0.83 1.0 0.56 0.4 0.82 0.71 0.73

Chicken1 0.93 1.0 0.63 0.85 0.92 0.54 0.53

Chicken2 0.85 1.0 0.73 0.73 0.5 0.75 0.71

WalkJog1 0.22 1.0 0.57 0 0.86 0.54 1.0
WalkJog2 0.75 1.0 1.0 0 0.33 0 0

GrandMal 0.86 1.0 0.58 0.5 1.0 0.36 0.5

explanations with those of other state-of-the-art algorithms. We do however evaluate explana-

tion performance for the aforementioned datasets with ground-truth segments. The evaluation

procedures for segmentation and explanation are detailed in section 5.2.

5.2 Quantitative Evaluation
5.2.1 Segmentation. We compare CnR-UV performance with several segmentation baselines on

datasets with ground truth segmentations: NILM, ChickenDance, Synthetic, GrandMal and WalkJog.
We evaluate the detected cut-points by calculating the F1 score based on the ground truth cut-

points (as in [35]). Higher F1 scores indicate better segmentation. For all our experiments with

CnR-UV, we set l = 2 (our algorithm was robust to varying latent factor dimensions) and chose the

hyperparameters using gridsearch. We show the results in Table 3 where we observe that CnR-UV
outperforms all methods on most datasets except GrandMal, WalkJog1. To visually inspect the

CnR-UV segmentation, we depict segmentation results in Fig. 2 for ChickenDance1, WalkJog2, and
Synthetic datasets where CnR-UV performs the best. For ChickenDance1 in Fig. 2(b) CnR-UV is

able to isolate all the different data trends successfully. It correctly identifies all of the 7 ground

truth cut-points, the remaining cut-point at time step 13 (red dashed line) is a false positive. In

Fig. 2(a), forWalkJog2, we see that CnR-UV correctly separates the sequences of data generated

due to walking from those due to jogging. Time series segmentation models are less affected by the

number of time series in the model and more by the degree, frequency of perturbation of the time
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(a) WalkJog. (b) ChickenDance. (c) Synthetic.

Fig. 2. CnR-UV segmentation results (vertical dashed lines) for the Walkjog2, ChickenDance1, and Synthetic
datasets. True positive segments are colored black and false positives are colored red. We consider all the
segments within tolerance window (5% of total timesteps) of the ground truth segments as true positive.

series. We have shown in Table 3 that CnR-UV performs well in cases where the number of time

series is high e.g NILM. Each cut-point discovered by our method lies in a 5% cut-point location

tolerance window with respect to the ground truth cut-point, we adopt this practice from previous

literature [17, 35].

5.2.2 Explanation. CnR-UV is also able to retrieve reasonable explanations for proposed segmen-

tations in each case. Since there is no existing literature performing explanation in an automatic

and principled way, we were unable to compare our explanation algorithm with other baselines.

Also, since we did not have any ground truth for explanations, we created a ground truth dataset

by manually generating explanations for each cut-point. We did this by identifying a subset ki of
the n time series in a dataset that experienced perturbation across a cut-point ci . This subset ki
of time series can be considered the ground truth explanation for cut-point ci . We then compare

the top |ki | (cardinality of set ki ) values in the explanation vector ei against the ground truth

explanations using the F1 score. This is repeated for all cut-points and an average F1 score is

calculated for explanations on the dataset. Results of this procedure have been outlined for each

dataset in Table. 3 (CnR-UV exp). Explanations were evaluated on ChickenDance, WalkJog, NILM,
Synthetic and GrandMal datasets. We only consider true positive segments identified by CnR-UV
while calculating explanation F1 scores. For WalkJog1 dataset, even though CnR-UV segmentation

is low (F1 score = 0.22) our explanation performs well (F1 score = 1.0). This is because we only use

the true positive segments and calculate explanations for those segments because of the availability

of ground truth explanation data only for true positive segments.

5.2.3 Discussion of CnR-UV compared to other baselines. For the best performance, CnR-UV
models should be provided with the spatial graph relating the time series being modeled. CnR-UV
was so designed, bearing in mind the goal of modeling power system failure processes during

hurricanes using real-world data. However, in order to holistically evaluate temporal segmentation

performance, we compared CnR-UV to many state-of-the-art baselines on several datasets. In this

context, all time series were considered spatially independent (as we did not have prior knowledge

of spatial inter-dependencies). Due to this lack of spatial information, CnR-UV underperformed as

the ‘U‘ matrix was unable to learn the best possible representation. Despite this, our model matches

or outperforms strong baselines like TICC, Dynammo, Autoplait and Floss in 5 out of 7 datasets. It

must be noted that despite the lack of spatial information, CnR-UV also outperforms the CnR-V
model on 5 out of 7 datasets (Table 3) indicating that the low-dimensional latent factor U and V
matrices in CnR-UV are indeed able to learn rich representations of the failure process compared to

the large sparse square V matrix as in the case of CnR-V.In the datasets where spatial information

is missing, we treat all time-series as independent. The reason for the underperformance of CnR-UV
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in Walkjog and GrandMal datasets w.r.t TICC may have to do with this time series independence

assumption being sub-optimal.

Dynammo performs segmentation based on re-construction error w.r.t a tolerance threshold

specified by the user. We found that the segmentation was sensitive to this tolerance threshold

parameter which directly governs the number of segments allowed. In most cases, Dynammo was

found to over-segment or under-segment depending on the error tolerance.

In the case of the Auto-plait model, it is found to perform better on datasets with less spiky

(sudden) changes in time series. For example, if we observe Fig. 2, theWalkJog and Synthetic dataset
time series have a much more spiky and sudden changing behavior than the ChickenDance dataset.
However, in the case of the ChickenDance dataset, although Fig. 2(b) shows spikes around time step

400 and 1200, the rest of the patterns are either increasing or decreasing trends that are relatively

non-spiky in nature.

Floss performs segmentation in multivariate timeseries by finding local minima on the average

CAC curve [23]. Thus, for GrandMal and ChickenDance1 data where multiple groups of time series

exhibit large and sometimes spiky changes at different time steps, CAC curve of all time series do

not exhibit local minima at the same or close timesteps. This results in the average CAC curve not

yielding local minima at all the groundtruth cut points which causes the low F1 scores for Floss in

Table 3. Also, we must note that the ChickenDance2 dataset is smoother than ChickenDance1 (i.e
changes are smaller / more gradual than ChickenDance1), and we immediately see a significant

performance improvement in this scenario in the F1 score of Floss.

We will now present real-world applications of CnR-UV on several hurricane power outage

datasets as case studies. We characterize both CnR-UV segmentation and explanation procedures

on all the hurricane datasets.

5.3 Case Studies: Hurricanes
In Section 2, we set out to design a model to address the following goals

(1) Identify phases of a hurricane as a function of severity of damage to critical infrastructure

like the power grid.

(2) Identify the most important counties that characterize each phase (i.e "explain" each phase).

(3) Group counties together based on their overall failure dynamics through the hurricane, to

allow for overall assessment of spatial span of the damage.

With the aforementioned goals in mind, we ran CnR-UV for power outage failure data from three

recent hurricanes. We show that CnR-UV can find meaningful pattern changes and insightful

associated explanations. Specifically, the current culprit definition can be used to distinguish

between regimes while also applicable to the hurricane failure setting where the failure process of

each county follows a typical increasing, peak, decreasing trend pattern. This is because multivariate

hurricane failure time series are highly complex. Although the failure pattern (increasing failure

rate, peak, decreasing failure rate) is consistent across counties, the time of failure and rate of

failure differs widely across counties requiring a formulation as defined by us in Eq. 5 to capture

the complexities (and local changes around cut-points) of this spatio-temporal multivariate failure

process. The effectiveness of our model in capturing complex patterns in multiple hurricanes will

be demonstrated in the following section. For the segmentation model we set the number of latent

dimensions (l ) to 5 and for each cut-point, we consider counties with explanation weight > 0.1 as
important.

5.3.1 Hurricane Irma. We show the results in Fig. 3. Fig. 3(a) represents the overall segmentation

that CnR-UV yields for hurricane Irma, while Fig. 3(c) to Fig. 3(g) show the explanations yielded

by CnR-UV across each cut-point in the segmentation. All explanation figures (except those for
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the first and last cut-point) consist of three cut-points i.e the cut-point being explained, along

with the previous and the next cut-point. Each explanation figure is accompanied with a spatial

visualization of the important counties highlighted by the explanation of the cut-point. Fig. 3(h)

to Fig. 3(l) are spatial depictions of the explanations in Fig. 3(c) to Fig. 3(g) respectively. Finally,

Fig. 3(b) represents clustering results of the spatial matrix U . All the following hurricane result

visualizations are organized in the same manner.

The first cut-point (showcased in Fig. 3(c)) at time step 35 (around September 10
th
) shows

hurricane landfall when the outages of a few counties seem to rise sharply. Indeed, Fig. 3(h) shows

these counties at the southern tip of Florida indicating the location of landfall of hurricane Irma. The

second and the third cut-points in Fig. 3(a) might seem redundant owing to their close proximity.

However, the second cut-point (showcased in Fig. 3(d)) is capturing a small rising trend of county

power outages, for the counties highlighted in Fig. 3(i). On the other hand, the third cut-point

captures fluctuations and plateaus in a different set of counties. The fourth cut-point c4 (and the

corresponding explanation e4) (Figs. 3(f) and 3(k)) is interesting: first, it captures a short rising

outage trend (of smaller magnitude) at Dekalb, Fulton and Gwinnett counties in the North-West.

Reports [3] suggest this is due to a separate tropical storm. At the same time, it also captures the

start of the decrease in outages at Miami and Boward counties, both of which rise at the beginning

in the first cut-point. Thus, CnR-UV can correctly capture the power restoration period of these

counties (Miami, Boward) automatically. The last cut-point c5 (and corresponding explanation e5)
at time step 93 (around September 12

th
) captures the date when hurricane Irma was downgraded

to a category 2 storm and the outages of the counties started to decrease. Note that these cut-points

and explanations are non-trivial, and are successfully modeled since CnR-UV is able to capture the

diverse trends in power outages of different magnitudes including in far away counties which do

not follow the hurricane trajectory. As mentioned in Section 1, retrospective analysis of hurricanes

through CnR-UV helps capture failure and restorative phases (ex: Miami, Boward counties) through

segmentation, that can help experts understand grid resilience and restoration patterns. At the same

time, CnR-UV explanations in addition to pin-pointing hurricane affected regions that incurred

major power outages, can also uncover subtle trends in regions where consequential events occur, ex:

like the tropical storm at Dekalb, Fulton and Gwinnett which was caught by CnR-UV explanations.

Such insights can alert grid maintainers about the potential for such situations in future.

Spatial Clusters: Fig. 3(b) shows the spatial clustering of all counties affected by hurricane Irma

(i.e. the clustering based onWU whereWU = UUT
is the spatial affinity matrix as explained in

Section 4.2.1). It turns out that the green cluster contains counties most affected by power outages,

whereas the red cluster shows the counties whose power outages were comparatively lower. This

extent of the green cluster (towards the Western/North-Western part) is challenging to estimate by

hand or through physical surveys, but has been uncovered by CnR-UV solely based on time-series

dynamics and spatial constraints. This ultimately can aid disaster management experts and power

companies to plan recovery for future hurricanes [16, 39].

5.3.2 Hurricane Harvey. The CnR-UV results for hurricane Harvey are depicted in Fig. 4. The

spatial depiction of explanations in Fig 4(g) - 4(j) broadly trace the trajectory of the hurricane along

the eastern coast of Texas, with a few additional non-coastal counties also being highlighted as

important in the Northern and North-Western parts of Texas.

In Fig. 4(a), the first and the second cut-point might seem redundant owing to their close proximity,

and their both capturing increasing outage trends. However, upon closer investigation, we find

that the first cut-point is detected when there is a sharp spike in El Paso and Howard counties at

the very beginning of the hurricane. As no other counties have begun to experience outages at this
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(a) Irma CnR-UV segmentation (b) Spatial cluster

(c) Important

timeseries for c1
(d) Important

timeseries for c2
(e) Important

timeseries for c3
(f) Important

timeseries for c4
(g) Important

timeseries for c5

(h) Explanation e1 (i) Explanation e2 (j) Explanation e3 (k) Explanation e4 (l) Explanation e5

Fig. 3. Segmentation and the corresponding explanations for Irma. (a) shows all the counties having grid
failures during Hurricane Irma. Each county is represented by a timeseries with an individual color in solid
line. The vertical dashed lines are the cutpoints obtained by CnR-UV. (b) Spatial clustering result showing the
spatial span of grid failure, based on spatial proximity of counties and similarity in failure patterns of their
time series. (h)-(l) ei visualizations in geographic space for each cut-point. Counties with higher ei values
(higher values represented by darker red) are more important for the cut-point, and are marked with a color
closer to red. (c)-(g) The most important time series for each cut-point in the segmentation obtained from ei
whose explanation weight > 0.1.

point, even the relatively low absolute values of power outages (around 1600 homes) are captured

by our segmentation model, leading to the first cut-point.

The spatial explanation Fig. 4(g), depicts as important a few disconnected counties in the Northern

and North-Western part of Texas which might seem counter-intuitive at first. However, reports [1, 4]

suggest that these counties were hit by floods as a result of hurricane Harvey causing major damage.

Similarly, the explanation of the second cut-point (Fig. 4(d)) highlights the spike in outages at

Nueces and Aransas (around 100, 000 homes), but also captures Fort Bend, Brazoria and Harris

(Fig. 4(h) group of three counties highlighted in the Northern part of the East coast of Texas) as

important. Although their outages are low (around 2000) compared to Nueces, they have a very

sharp peak at this cut-point. Report [5] states that the sudden rise of this peak is due to an EF1

level tornado on August 26, which caused major damage at Fort Bend also potentially affecting the

surrounding counties.
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The explanation for the third cut-point (Fig. 4(e)) captures two different patterns, the high outage

spike of Harris county (green line) and the declining trend at Victoria and Nueces counties. Finally,

for the last cut-point (Fig. 4(f)) while the outages in many counties are decreasing, our algorithm

correctly highlights a sudden rise of outages in counties Orange, Jefferson, Hardin. The main reason

for this increase is due to the rising water of the Neches river, which causes the city to lose service

from its major pump stations. As in case of Irma, spatial clustering results for hurricane Harvey

(Fig. 4(b)) also help us glean the overall picture of the spread of damage due to the hurricane. This

explanation is beneficial for doing an inter-dependency study. Note that CnR-UV captures long

range county dependencies even if the counties are not geographically close to each other; such

information of subtle county relationships is often buried deep in the original set of hundreds of

time series and cannot be uncovered through simple models or through rudimentary visual or

statistical analysis of the original data.

(a) Harvey CnR-UV segmentation (b) Spatial cluster

(c) Important timeseries

for c1
(d) Important timeseries

for c2
(e) Important timeseries

for c3
(f) Important timeseries

for c4

(g) Explanation e1 (h) Explanation e2 (i) Explanation e3 (j) Explanation e4

Fig. 4. Segmentation and the corresponding explanations and spatial clustering for Hurricane Harvey obtained
by CnR-UV analogous to Fig 3. See detailed discussions in Section 5.3.2.

5.3.3 Hurricane Matthew. Similar to previous results, CnR-UV is able to extract insightful cut-

points and explanations of all the major regimes of hurricane Matthew.

Cut-point 1 (Fig. 5(c)): captures the phase of hurricane landfall (Oct 2). However, CnR-V does

not capture the bottom most southern county depicted in Fig. 5(g), whereas CnR-UV successfully

captures this thereby yielding a more holistic explanation of the cut-point.
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Cut-point 2 (Fig. 5(d)): This cut-point is detected because of the high rise of peak of outage in

Chatham (Oct 4). The spatial representation of the explanation in Fig. 5(h) highlights counties along

the trajectory of the hurricane.

Cut-point 3 (Fig. 5(e)) : This cut-point captures high decrease of outages which captures the

restoration of Chatham, Duval etc. At the same time this cut-point is capturing sudden rise of

outages of Horry county which is colored as bright red (in Fig. 5(i)) on top right. This county is

influenced in the previous cut-point and has now severely affected (after Oct 4) and the influence

has spread to nearby counties as well.

Cut-point 4 (Fig. 5(f)): This cut-point was captured when power outages of the counties started

to abate. The explanation results Fig. 5(j) show the important counties whose outages started to

decrease at this cut-point.

(a) Matthew CnR-UV segmentation (b) Spatial cluster

(c) Important timeseries

for c1
(d) Important timeseries

for c2
(e) Important timeseries

for c3
(f) Important timeseries

for c4

(g) Explanation e1 (h) Explanation e2 (i) Explanation e3 (j) Explanation e4

Fig. 5. Segmentations and the corresponding explanations and spatial cluster results for Hurricane Matthew
obtained by CnR-UV analogous to Fig 3.

In addition, interestingly, although both hurricanes Irma and Matthew have similar geographic

trajectories, CnR-UV learns very different spatial clusters which captures counties with variable

dynamics (Fig. 5(b)).
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5.3.4 Details of baseline algorithms on hurricane data. In contrast to the CnR-UV performance, the

baseline algorithms all consistently either fail to converge or under-segment giving low quality

unexplainable cut-points. TICC, Autoplait under segment on some and fail to converge in the case

of other hurricane datasets, while Dynammo yields over-segmented results. Floss, while avoiding
convergence and over-segmentation problems yields segments that only capture the initial rise and

final fall of the time series in the case of all the hurricanes, completely missing out phases of power

failure in-between.

5.4 Comparison with CnR-V
We characterized the performance of CnR-V on hurricane Harvey, Irma, Matthew power outage

data, where there are long-range spatial dependencies, and found that CnR-V gives lower quality

cut-points and explanations as expected. As an example, see Fig. 4(e) and Fig. 4(i): while CnR-V is

able to capture this cut-point (Fig. 6(d) and Fig. 6(g)), its explanations only point to the sudden rise

in a small cluster of spatially close counties; it fails to capture the large decrease in Nueces county

(cyan line) (which CnR-UV is able to) because Nueces is not geographically close to the other ones.

5.4.1 Comparison results of hurricane Harvey. Cut-point 1 (Fig. 4(c)) is only captured by CnR-UV
and not captured by CnR-V. In this cut-point, El Paso, Howard, and other counties in central Texas

were considered important in Fig. 4(g) because they were flood affected due to hurricane Harvey.

Cut-point 2 (Fig. 4(d)) captured by CnR-UV is similar to the first cut-point of Fig. 6(b) captured

by CnR-V. However, some counties Fort Bend, Harris, and Brazoria are also considered important

(from reports, it was found some major damage occurred in those spots due to a tornado see

details in Sec 5.3.2) by CnR-UV but not captured by CnR-V. Cut-point 3 (Fig. 4(e)) by CnR-UV is

similar to the cut-point depicted in Fig. 6(c) discovered by CnR-V. Montgomery (orange line) is also

considered as an important county in CnR-V but not highlighted in Fig. 4(e) by CnR-UV. Upon
further investigation, we found that this county did not face any major damage around this time,

but it was showed important by CnR-V only because it is geographically close to Harris. Cut-point

4 (Fig. 4(f)) discovered by CnR-UV is similar to the cut-point depicted in Fig. 6(d) discovered by the

CnR-V model. However Fig. 6(d) does not capture Nueces (green line) which has a high decrease of

outage. Hence, CnR-V only captures increase of outages at this cut-point while CnR-UV captures

both increasing and decreasing trends simultaneously.

5.4.2 Comparison results of hurricane Irma. For better understanding the figures of CnR-V are

shown in Fig 7 for segmentation and explanation. CnR-V could not capture the small rising trend

in Fig 3(d) and fluctuation of outages in Fig 3(e) separately as CnR-UV. CnR-V only identifed a

cut-point near 50 (Fig 7(c)) which did not explain the counties which had fluctuation of outages (see

Sec 5.3.1 for detail description). Moreover if we compare the geographic explanation of counties

of CnR-V Fig 7(f)- 7(i) with CnR-UV in Fig 3(h)- 3(l) we observe CnR-V could not capture the long

range spatial dependencies of counties and they were sparse.

5.4.3 Comparison results of hurricane Matthew. We were unable to run the entire Matthew dataset

on CnR-V, and hence considered a sub-sampled version to obtain cut-points using CnR-V. We

notice that CnR-V is unable to capture cut-point 1 (Fig 5), where it fails to capture a few important

counties (Fig. 5(g)) on the southern tip of Florida which are captured by CnR-UV. It must be noted

that in the case of each hurricane, there is no notion of spatial clustering in the case of CnR-V and

spatial clusters similar to those represented in Fig. 3(b), 4(b) and 5(b) are obtained only by CnR-UV.

5.4.4 Scalability Comparison. We also recorded the run-times (in seconds) for CnR-V and CnR-UV
after varying both the number of time-steps and time-series in the dataset. We get better scaling in

practice (from our worst-case complexities): in both cases CnR-UV (due to the low-dimensional
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(a) Harvey CnR-V
segmentation

(b) Important timeseries

for c1
(c) Important timeseries

for c2
(d) Important timeseries

for c3

(e) Explanation e1 (f) Explanation e2 (g) Explanation e3

Fig. 6. Segmentations and explanations results of CnR-V for hurricane Harvey analogous to Fig 3.

(a) Irma CnR-V
segmentation

(b) Important

timeseries for c1
(c) Important

timeseries for c2
(d) Important

timeseries for c3
(e) Important

timeseries for c4

(f) Explanation e1 (g) Explanation e2 (h) Explanation e3 (i) Explanation e4

Fig. 7. Segmentations and explanations results of CnR-V for hurricane Irma analogous to Fig 3.

latent factor representation), scales quadratically, while CnR-V is significantly more expensive

(sub-cubic in the number of time steps). We performed two kinds of experiments, one wherein the

number of time-steps in the dataset was maintained constant (720 timesteps) while the number of

time-series were varied (Table 4) and the other where we maintained the number of time-series

constant (15 time-series) and the number of time-steps were varied (Table 5). The results indicate

that in both cases CnR-UV is more scalable with increasing number of time-series and increasing

number of time-steps. This can be attributed to our choice of representing U and V , in Eq. 5 as

low dimensional latent factor weight matrices instead of full square matrices whereU ∈ Rn×n and

V ∈ Rm×m
as in the case of CnR-V. We have also included scalability comparisons of CnR-UV
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with other state-of-the-art baselines in the appendix [6]. In these comparisons, we noticed that

CnR-UV scaled equally as well as the FLOSS model and better than the TICC, Dynammo models

with increasing number of time series. CnR-UV scales quadratically in the number of timesteps;

future work will be aimed at caching and smart computational strategies to scale it to larger datasets.

Table 4. Scalability Experiment varying no.
of timeseries keeping timesteps constant at
720. (Wall clock time seconds.)

No. of Timeseries CnR-V CnR-UV

15 734.37 179.07

30 733.39 180.35

60 822.99 173.44

120 835.65 184.50

240 863.03 190.47

480 952.81 210.45

Table 5. Scalability Experiment varying no. of
timesteps keeping timeseries constant at 15. (Wall
clock time seconds.)

No. of Timesteps CnR-V CnR-UV

500 285.19 64.63

1500 7388.49 115.38

2500 25755.02 3660.25

5.5 Summary of Observations
(1) CnR-UV consistently outperforms the baseline algorithms (upto 0.79x) in all datasets (including

with ground truth) for both time series segmentations and explanations (for hurricanes, the

baselines heavily undersegment or do not even finish).

(2) For hurricane datasets, CnR-UV discovers non-trivial cut-points capturing the overall trajectory,

as well as subtle anomalies like a combination of sudden increasing and/or decreasing cluster

of outage trends and plateaus across regions. CnR-UV also discovers useful spatial clusters of

counties based on their location and outages.

(3) Most importantly, we are also able to identify an informative set of culprit time series for each

cut-point, providing valuable insights to the domain experts aiding management, recovery and

resource allocation efforts.

(4) CnR-UV scales quadratically with the number of time-steps as opposed to CnR-V which scales

sub-cubically.

6 RELATEDWORK
We will now review lines of research that have attempted to answer questions similar to our goals

in this paper.

Time Series Segmentation. There has been an abundance of work on time series segmentation

based on monitoring changing temporal patterns, such as modeling co-evolving time series and

segmenting them using multi-level HMMs [35] on motion capture data, discovering patterns in

data streams [46] using distributed video data, developing online algorithms for frequent sequence

mining [36] on different application domain, i.e., robotics, wild life, and health monitoring, and

time series segmentation using temporal mixture model and Bayesian information criterion on

railway data [48] and Kalman filters on motion capture sequences and chlorine measurement

data [32]. GOALIE [42], is another algorithm applied in the context of biological process data that

produces segmentations of multivariate time series but its focus is on finding cutpoints where

significant shifts of clusters (of time series) occur, in contrast, to CnR-UV wherein the focus is both
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on recovering the major segments and explaining the segments while leveraging the underlying

spatial structure of the data.

Change point detection has also been a popular topic in the climate sciences [43, 49]. Charac-

terizing the dynamics of natural disasters like hurricanes lends itself naturally to a change point

detection approach but there has been little work conducted in this regard. Zhao and Chu [58]

propose a hierarchical Bayesian framework for detecting shifts in annual hurricane counts while

Ruggieri [47] introduces a Bayesian change point detection algorithm to detect changes in temper-

ature using climate data records. The other line of work on modeling failure cascading on CIS [18]

does not explicitly segment the time series. Despite the extensive research conducted in time series

segmentation and change point detection, we have found that there exists little prior work in

leveraging them to characterize the dynamic effect natural disasters have on critical infrastructure

systems.

Two limitations of previous work in temporal segmentation are that not many of them easily

incorporate spatial information into temporal segmentation and none of the existing models

provide any explanation framework wherein ‘culprit‘ counties (at each segment of a hurricane

failure process) can be identified in space AND time. Most change point work is focused only on

identifying temporal cut points [9] with a few applications in computer vision and video analysis

modeling spatial relationships [14, 51] but no work has identified important time series (i.e spatial)

thereby providing an explanation of each identified temporal segment. Such a model that identifies

’culprit’ counties is helpful to experts involved in maintenance of cyber-physical infrastructure and

teams responsible for disaster management and planning.

Another line of related work in time series corresponds to subspace clustering based techniques.

Many applications in multivariate time series analysis exist wherein the temporal data is drawn

from multiple spaces and hence exhibits multi-segment behavior. It is often useful to develop

techniques to represent the data in a subspace to capture richer temporal relationships and apply

clustering to explicitly demarcate these multiple segments. This approach called subspace clustering

has been applied to video and image segmentation [33, 52, 55], image compression [29] and

spatio-temporal action segmentation [20, 31]. A comprehensive review about the different types

of subspace clustering methods is provided by Vidal in [53]. There has been extensive work in

subspace clustering in data mining [40] but to the best of our knowledge, it has not been applied

on the hurricane outages data for finding the temporal relation among time steps. Further, these

subspace clustering techniques also do not provide explanations of the results.

Simple Interpretable Models. There has recently been a push towards quantifying model

uncertainty [22] and making machine learning model outputs quantifiable, explainable and simple

[45]. Sangdeh et al. presented literature where they designed several quantitative and qualitative

experiments to investigate the impact of features and model transparency on model prediction,

a measure of trust and explainability [41]. These models and their explanations are specific to

the underlying machine learning models and cannot be applied to our segmentation problem. We

find that temporal segmentation is inherently unsupervised and the intuition behind the segments

might not be readily apparent or explainable in certain applications. To the best of our knowledge,

our explanation optimization problem is the first attempt at designing simple explanations for time

series segments. In such cases, producing interpretable, simple segmentation results are effective in

addressing the explainability problem.

Spatio-temporal Models. In Yao et al.[56], the authors develop Spatio-Temporal Dynamic Net-

work (STDN) for traffic flow prediction. Our model CnR-UV is designed to recover explainable

segments of the major failure phases in data containing bursty time series that don’t contain

periodic, cyclical effects like traffic flow patterns. In Wu et al.[54], the authors propose an Urban

Anomaly PreDiction (UAPD) model with a change point detection facet to detect evolving anomaly
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patterns. In contrast, CnR-UV, in addition to detecting the major change points (i.e segments) of

the data, is also able to return sparse explanations about each retrieved change point yielding a

holistic representation of the change point.

In this paper, we propose a dual-objective segmentation framework designed to provide spatio-

temporal segments of the data and simple explanations of the generated segments. Our proposed

framework optimizes the segmentation and explanation to obtain simple interpretable and sparse

segmentations of the data. We demonstrate our model on the dynamic degradation of critical

infrastructure during natural calamities. To the best of our knowledge this is the first attempt

toward designing simple explainable segments of time series data.

7 CONCLUSIONS
In this paper, we have developed a novel effective and scalable combined framework CnR for

providing segmentations and simple interpretable explanations for multivariate time-series like

outage data. We evaluated the performance of our methodology against state of the art segmentation

and time series clustering procedures on open ground truth datasets. We have also conducted

an extensive analysis on the failure of the power grid during three hurricane events. There are

many avenues for future work. Methodologically, we can explore performing a joint learning of

segmentations and explanations, and more complex explanations. We can also explore integrating

CnR with existing analysis tools, such as the URBANNET toolkit [18] in use at national labs.
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1 APPENDIX
1.1 Additional Discussion About CnR-UV Explanation Formulation
Our goal with learning each ei vector is to learn a local explanation of ’culprit’ time series at a
particular cut-point i in the segmentation. Hence, our design is a deliberate attempt to uncover
local explanations per cut-point, free of untoward global temporal influence from other cut-points.
In addition, optimizing each ei separately also enables parallelization aiding in scalability of the
explanation formulation.

1.2 CnR-UV Explanation Formulation Compared with Attention Mechanisms
We may assume that the explanation step (that identifies the ’culprit’ time series) in our case,
represents a kind of attention mechanism (popular in encoder-decoder architectures) over each
time series for each cut point. This is because the explanation model essentially can be considered
as a learned scoring function that given a cut point c and a set of time series (similar to a set of
encoder hidden states H), learns a scoring function S that assigns scores to each of the time series
in H considering their behavior around the cutpoint ci . However, our mechanism is slightly more
sophisticated than traditional attention mechanisms as we are also able to jointly model spatial
constraints between counties, while learning the explanation weights as opposed to traditional
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attention mechanisms which use straight forward similarity functions like cosine similarity to
calculate attention energies.

1.3 Effect of Changing Latent Dimension on CnR-UV Segmentation
In Fig. 1 we show CnR-UV segmentation on Hurricane Harvey with varying values of latent dimen-
sion l . The segmentation results don’t vary much with varying l , keeping other hyperparameters
constant. This indicates that the CnR-UV segmentation model is not overly sensitive to variation
in the latent dimension. Having higher dimension of l gives the model more expressive power
which could lead to model overfitting. However, in this case, greater sparsity can be achieved by
controlling the appropriate regularization terms in CnR-UV. It must be noted that the latent factor
dimension across all our experiments is fairly small, as we have employed l≤ 5.

(a) l=2 (b) l=3 (c) l=4

(d) l=5 (e) l=6 (f) l=8

Fig. 1. CnR-UV segmentation results (vertical dashed lines) for the Hurricane Harvey varying l values to
check robustness. The segmentation performance indicates that the CnR-UV model is not overly sensitive to
changes in l . For the actual experimental results on all hurricanes we used l = 5.

1.4 Additional Scalability Comparison of CnR-UV with Baseline Models
We recorded the running time of the baselines TICC, Dynammo, and Floss in Table 1 varying
number of timeseries. Dynammo did not converge when number of timeseries ≥ 30.

Table 1. Scalibility Experiment on Baselines Varying Number of Timeseries

Number of timeseries CnR-UV TICC Floss Dynammo
15 179.07 6.69 5.63 44.28
30 180.35 25.97 10.66 −

60 173.44 99.88 21.07 −

120 184.50 342.81 41.97 −

240 190.47 771.20 84.12 −

480 210.45 3855.13 167.03 −
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1.5 Baseline Results on Hurricane Dataset
We show the results of two best performing baseline models TICC and Floss on segmenting the
hurricane Harvey power failure data in Fig. 2. TICC did not converge for hurricane Irma, and
Matthew while Floss gives similar segments as in Harvey for both the hurricanes, i.e., one at the
very beginning, other at the very end.

(a) TICC segments (b) Floss segments

Fig. 2. TICC and FLOSS segmentation results (vertical dashed lines) for the Hurricane Harvey. We noticed
that both these models do not capture many important phases of the hurricane failure process like the
CnR-UV model does (see Fig. 1).

1.6 Hyperparameter Values of Baselines
We note all the baseline hyperparameter values in Table 2. For TICC, we used window-size= 5,λ =
11e − 2, β = 5, threshold= 2e−5

Table 2. Baseline Hyperparameter Values

Dataset
TICC

Number of
Clusters

Floss
Sub-Sequence

Length

Dynammo
Error

Threshold
Synthetic 5 4 50
NILM 8 4 45
ChickenDance 1 8 5 73
ChickenDance 2 8 4 35
WalkJog 1 3 4 95
WalkJog 2 3 4 65
GrandMal 2 10 85
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"The supplementary material contains the appendix where we have additional results of CnR-UV 
performance with respect to baseline models primarily focused on scalability comparison. We 
also evaluate the segmentation performance of popular segmentation baselines and finally 
evaluate the effect of latent dimension on segmentation performance of CnR-UV."
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