
Provable Sensor Sets for Epidemic Detection over Networks with Minimum Delay

Jack Heavey1, Jiaming Cui2, Chen Chen1, B. Aditya Prakash2, Anil Vullikanti1

1 University of Virginia
2 Georgia Institute of Technology

{jch7jm, zrh6du, vsakumar}@virginia.edu, {jiamingcui1997, badityap}@gatech.edu

Abstract

The efficient detection of outbreaks and other cascading phe-
nomena is a fundamental problem in a number of domains,
including disease spread, social networks, and infrastructure
networks. In such settings, monitoring and testing a small
group of pre-selected susceptible population (i.e., sensor set)
is often the preferred testing regime—we refer to this as the
MinDelSS problem. Prior methods for minimizing the de-
tection time rely on greedy algorithms using submodularity.
We show that this approach can lead to sometimes lead to a
worse approximation for minimizing the detection time than
desired. We also show that MinDelSS is hard to approximate
within an O(n1−1/γ)-factor for any constant γ ≥ 2 (n is
the number of nodes in the graph), which motivates our bi-
criteria approximations. We present the algorithm ROUND-
SENSOR, which gives a rigorous worst case O(logn)-factor
for the detection time, while violating the budget by a factor
of O(log2 n). Our algorithm is based on the sample average
approximation technique from stochastic optimization, com-
bined with linear programming and rounding. We evaluate
our algorithm on several networks, including hospital contact
networks, which validates its effectiveness in real settings.

1 Introduction
Recurring disease outbreaks, including the COVID-19 pan-
demic and the emerging variants, illustrate the importance
of good surveillance in order to detect the onset of a disease
outbreak in the population. Diverse mechanisms exist for
testing, ranging from syndromic surveillance (CDC 2021)
based on symptoms to more accurate PCR based tests, which
can detect fragments of the pathogen. However, such test-
ing is expensive, both in terms of personnel and equipment
needed. This is also true in a hospital setting, where hospital
acquired infections, such as MRSA, pose significant health
burden (Stone 2009; Leclère et al. 2017). Problems of de-
tecting a spreading process also arise more generally in a
number of other applications, such as water networks and
blog networks (Leskovec et al. 2007).

Such surveillance problems involve finding a “sensor set”
S, such that monitoring nodes in S is sufficient to detect the
disease in the network. As in prior work (Leskovec et al.
2007; Adhikari et al. 2019), we assume that either a set
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of cascades (or possible scenarios) of disease transmission
in a graph are given, or the cascades are sampled from an
SIR process on the network. Standard metrics for effective
surveillance are probability of detection and the expected de-
lay in detection. Submodularity has been the primary tech-
nique in finding good algorithms in prior work (Leskovec
et al. 2007; Adhikari et al. 2019). While the detection prob-
ability is submodular, the detection time is not (also, it is
a minimization problem). (Leskovec et al. 2007) show that
a slightly different “penalty reduction” variation of the de-
tection time objective is submodular. As a result, a greedy
algorithm gives a (1− 1/e)-factor approximation.

However, as we show, a solution computed by the greedy
algorithm for maximizing such a penalty reduction objec-
tive can be highly suboptimal with respect to the detection
time—this is especially important in regimes when the de-
tection time is low, which is the more realistic setting in dis-
ease surveillance. No prior results are known for directly
minimizing the detection time. Further, in an SIR model,
minimizing the expected detection time is a stochastic op-
timization problem, which hasn’t been considered before.

Our contributions.
• We study the problem MinDelSS of finding a sensor set

with a given budget, that directly minimizes the detec-
tion time; the cascades can be either specified as input,
or sampled, in the case of the SIR model for epidemic
spread. We show that the greedy approach of (Leskovec
et al. 2007) can have an approximation factor of Θ(n),
in general, where n denotes the number of nodes in the
graph. We prove that MinDelSS is hard to approximate
within an O(n1−1/γ)-factor, for any constant γ ≥ 2,
which contrasts with the complexity of maximizing the
detection probability or the penalty reduction approach
for detection time (Leskovec et al. 2007); this hardness
holds even when the cascades are sampled from the SIR
process.

• We design a bicriteria approximation algorithm,
ROUNDSENSOR, which gives a rigorous worst case
O(log n)-factor for the average delay for a set of
cascades, while violating the budget by a factor of
O(log2 n). Note that in light of the above approximation
hardness, we believe such a bicriteria approximation
is the best option for finding effective algorithms. We



combine this with the sample average approximation
technique from stochastic optimization and derive
similar bounds on the expected detection time in the SIR
model.

• We evaluate our algorithms on multiple real world net-
works, including four contact networks between patients
and health care workers in a hospital. Two of these
are quite novel, and constructed using patient electronic
medical record (EMR) data; additionally, we have net-
works for a pre-COVID and COVID period. Our results
show that the empirical performance is significantly bet-
ter than all our theoretical worst case bounds, including
the approximation factor for the average delay, the vi-
olation in budget, and the number of sampled cascades
needed in the case of the SIR model. We also find inter-
esting structural differences in the solutions for the pre-
COVID and COVID networks.

Due to the space constraint, we omit some of the technical
and experimental details; these are presented in the Supple-
mentary material.

2 Related Work
As mentioned earlier, there has been a lot of work on surveil-
lance and finding sensor sets in different applications, in-
cluding water networks, air pollution, blogs networks and
epidemic surveillance, e.g., (Leskovec et al. 2007; Shao et al.
2018; Christakis and Fowler 2010; Adhikari et al. 2019;
Leclère et al. 2017; Hsieh, Lin, and Zheng 2015). (Leclère
et al. 2017) describe diverse approaches for outbreak detec-
tion for hospital acquired infections–these include statistical
process control, scan statistics, traditional statistical models,
and data mining methods. (Christakis and Fowler 2010) in-
troduce the problem of finding sensor sets that give good
lead time for the peak time of an epidemic—they show that
a sensor set chosen based on popular friends of a random set
provides good lead time; this was improved by (Shao et al.
2018) using an approach based on dominator sets. Sensors
have also been deployed on social networks (Lerman, Yan,
and Wu 2016) like Twitter to detect major events. For exam-
ple, (Kryvasheyeu et al. 2015) studies the detectable patterns
of user Twitter messages during Hurricane Sandy to track
the disaster. (Sakaki, Okazaki, and Matsuo 2010) treats ev-
ery user in Twitter as a sensor to construct an earthquake
reporting system while (Zhang et al. 2017; Paul, Peng, and
Li 2019) sense the geo-tagged tweets to detect events.

Much of the work on surveillance in the AI and ML
literature that provide rigorous performance guarantees is
based on using submodular optimization. (Leskovec et al.
2007) introduce different metrics for detection by sensor sets
with a fixed budget, and reduce them to submodular maxi-
mization, including for detection time, as mentioned earlier;
this allows a simple greedy algorithm gives a (1 − 1/e)-
approximation (Nemhauser, Wolsey, and Fisher 1978). (Ad-
hikari et al. 2019) extend this problem to surveillance sched-
ules, instead of a fixed sensor sets, i.e., nodes could be tested
at different times, and develop approximation algorithms us-
ing submodular functions on a lattice. More complex cost
constraints for the sensor set than cardinality have also been

considered, e.g., (Krause et al. 2008).

3 Preliminaries
Cascades and testing. A cascade H = (V,E′) is a subgraph
of an undirected graph G = (V,E) which is initiated at a
node s(H) ∈ V . A node v that is reachable from s(H) and
is at distance t(v,H)− 1 in H is said to be infected at time
t(v,H) (the source s(H) is infected at time 1). If v is not
reachable from s(H) in H , we define t(v,H) = n+1 where
n is the number of nodes within the graph. We consider the
following setting for testing— if a node v gets infected at
time t′ and is tested at any time t ≥ t′, its prior infection
status gets detected. In the context of a disease spread, this
could be viewed as a model for antibody tests. A sensor set S
is a subset of nodes which get tested every day; the detection
time T (S,H) for sensor set S in cascade H , denoted by
T (S,H) = minv∈S t(v,H) is the minimum time at which
any node in S gets infected in H (recall that the time is n+1
in case no node in S gets infected in H). We assume a set of
N cascades H1, . . . ,HN are given as input. The objective
of interest is the average detection time with respect to S,
denoted by Tavg(S) =

1
N

∑
H T (S,H).

Figure 1: (a) Contact graph G with V = {u1, . . . , u6}, and
edges shown by solid lines; (b) Cascade H1 with node u1 as
the source in this outcome, and the solid edges correspond
to those on which the disease spread. Node u6 does not get
infected in this outcome; (c) Cascade H2 with node u2 as a
source.

Example. In the example in Figure 1(b) with budget k = 1,
node u4 gets infected at time t = 3, i.e., t(u4, H1) =
3, and so if it is tested any time t′ ≥ 3, the infection
would be detected. For the sensor set S1 = {u4}, we have
T (S1, H1) = 3 and T (S1, H2) = 2. For S2 = {u6},
we have T (S2, H1) = 7 and T (S2, H2) = 3. For an in-
put with cascades H1, H2, we have Tavg(S1) = 2.5 and
Tavg(S2) = 5. For this instance, S∗ = {u2} is the optimal
solution with Tavg(S

∗) = 1.5.

Min Delay Sensor Set (MinDelSS) problem. Given a graph
G = (V,E), a set of cascades H1, . . . ,HN , and a budget
parameter k, find a sensor set S of size at most k such that
Tavg(S) is minimized.
Approximation algorithms. We say that S is an (α, β)-
bicriteria approximation for MinDelSS if Tavg(S) ≤
αTavg(S

∗) and |S| ≤ βk, where S∗ is an optimal solution
to the instance of MinDelSS.
Detection in an SIR model. A specific instance of Min-
DelSS is in the context of the spread of a disease on a net-
work. We consider an SIR model on a graph G = (V,E),
in which the disease spreads from an infectious node u to a



Figure 2: Reduction from the Hitting Set problem to Min-
DelSS. The cascade Hi′ consists of the node corresponding
to Ci′ , the set of nodes in Ci′ , and ∪uj′′∈Ci′L(uj′′)

susceptible neighbor v ∈ N(u) with probability puv , inde-
pendently. We assume p0u is the probability that the disease
starts at node u;

∑
u p

0
u = 1. In this setting, a cascade H

is a random subgraph on which the disease spreads. In this
setting, our objective is to minimize E[T (S)], where the ex-
pectation is over the stochastic disease outcomes H .

Notation Definition
N Number of cascades
t(v,H) Time at which node v is infected in cascade H
T (S,H) Detection time in cascade H for sensor set S
Tavg(S) Average detection time for S
puv Probability that node u infects susceptible neigh-

bor v in the SIR model
p0u Probability that the disease starts at node u
E[T (S)] Expected detection time when cascades are sam-

pled using the SIR model
k Budget for sensor set

Table 1: Summary of notation used in the paper.

4 Inefficiency of greedy and computational
hardness of MinDelSS

4.1 Greedy can be very inefficient
(Leskovec et al. 2007) propose a greedy algorithm which at-
tempts to find a set S that maximizes π(S) = 1

N

∑
i(n +

1 − T (S,Hi)) for the set of cascades, which is equal to
n+1−Tavg(S). They show that π(S) is submodular, which
implies that a greedy algorithm gives a (1 − 1/e) approxi-
mation to the optimal solution. However, maximizing π(·)
doesn’t imply minimization of the delay, as shown below;
the proof is presented in the Supplementary material.
Lemma 1. There exist instances where the solution Sg com-
puted by the greedy algorithm of (Leskovec et al. 2007) has
Tavg(Sg) = Ω(nTavg(S

∗)), where S∗ denotes an optimal
solution.

4.2 Computational hardness of MinDelSS
In contrast to the (1 − 1/e)-factor approximation for max-
imizing detection probability, or the penalty reduction ap-
proach for detection time (Leskovec et al. 2007), MinDelSS
is much harder, both when the cascades are specified, and in
the SIR model.

Theorem 1. No polynomial time O(n1−1/γ)-approximation
to MinDelSS is possible, unless P=NP, for a constant γ ≥ 2.

Our proof is by a reduction from the Hitting Set prob-
lem. An instance H of Hitting Set is a tuple H = (U =
{u1, . . . , ur}, C = {C1, . . . , Cm}), where each Ci ⊂ U ;
without loss of generality, we can assume m = Θ(r). A
subset S ⊂ U is a hitting set for H if for all i, we have
S ∩ Ci ̸= ∅. The decision question is, given a bound k,
is there a hitting set S for H with |S| ≤ k? We construct
an undirected graph G = (V,E) from H in the following
manner (see Figure 2 for an illustration). We assume γ is an
integer; else we consider ⌈γ⌉.

• We have V = V1 ∪ V2 ∪ V3, where V1 = C, and V2 = U .
For each uj ∈ V2, let L(uj) denote a set of rγ nodes.
The set V3 = ∪jL(uj). Then n = |V | = m+ r + rγ+1.

• The set E of edges is constructed in the following man-
ner: if uj ∈ Ci, we have edge (uj , Ci). For each uj , the
set L(uj) forms a path, which is connected to uj .

• We construct m cascades H1, . . . ,Hm, with Hi consist-
ing of the subgraph induced by the set of nodes Vi =
{Ci} ∪ Ci ∪uj∈Ci

L(uj).

Lemma 2. If there exists a hitting set for H of size k, then
there exists an optimal sensor set S∗ for G with |S∗| ≤ k
such that Tavg(S

∗) ≤ 2.

Proof. Let S ⊂ U be a hitting set for H with |S| = k. Then,
for each Ci, we have Ci ∩ S ̸= ∅. Due to the structure of
Hi, it follows that T (S,Hi) = 2, which implies Tavg(S) =
2.

Lemma 3. There exists a constant c such that if there exists
a sensor set S for G with Tavg(S) < cn1−1/γ , then there
exists (1) a hitting set for H of size at most |S|, and (2) a
sensor set S∗ for G with Tavg(S

∗) ≤ 2.

Proof. First, observe that without loss of generality, we can
assume that S ∩L(uj) = ∅ for all uj ; if not, and there exists
a node v ∈ S ∩L(uj), the set S ∪ {uj} − {v} has expected
delay no larger than Tavg(S).

Next, suppose there exists Ci such that ({Ci}∪Ci)∩S =
∅. Then, for the sample Hi, we have T (S,Hi) ≥ r, which
implies Tavg(S) ≥ n/m ≥ rγ ≥ cn1−1/γ for a constant c,.
Thus, if Tavg(S) < cn1−1/γ , it must follow that for each Ci,
we have ({Ci}∪Ci)∩S ̸= ∅. Construct a set S′ ⊂ U in the
following manner: if uj ∈ S, add uj to S′, and if Ci ∈ S,
add any uj ∈ Ci to S′. It follows that for all Ci, Ci∩S′ ̸= ∅,
and so S′ is a hitting set for H. Further, |S′| ≤ |S|, and
since S′ is a hitting set, Tavg(S

′) ≤ 2. Thus, the lemma
follows.

Lemma 3 implies that if S∗ is an optimal solution for
graph G, then either Tavg(S

∗) ≤ 2 or Tavg(S
∗) ≥ cn1−1/γ .

Proof. (of Theorem 1) Suppose we have a polynomial
time algorithm with approximation factor less than cn1−1/γ

2 ,
where c is the constant in Lemma 3. Let S be the sensor
set computed by such an algorithm for the instance G. Let



S∗ be an optimal solution for G. Let S∗
h be an optimal hit-

ting set for H. Then, Tavg(S) < cn1−1/γ

2 Tavg(S
∗). Re-

call that the decision question for the hitting set problem
is whether |S∗

h| ≤ k. From Lemmas 2 and 3, it follows
that either Tavg(S

∗) ≤ 2 or Tavg(S
∗) ≥ cn1−1/γ . In the

former case, we would have Tavg(S) < cn1−1/γ , and in
the latter case we would have Tavg(S) ≥ cn1−1/γ . Thus,
if Tavg(S) < cn1−1/γ , it follows that Tavg(S

∗) ≤ 2, and
|S∗

h| ≤ |S∗| ≤ k. On the other hand, if Tavg(S) ≥ cn1−1/γ ,
it follows that Tavg(S

∗) > 2, and by Lemma 2, |S∗
h| > k.

Therefore, a polynomial time algorithm with approximation
factor less than cn1−1/γ/2 allows us to solve the hitting set
problem, and the theorem follows.

Hardness for MinDelSS in the SIR model. Our reduction
can be adapted to show that the hardness holds even in the
SIR model. The details are presented in the Supplementary
Information.

Theorem 2. No polynomial time O(n1−1/γ)-approximation
to MinDelSS is possible for any constant γ ≥ 2, unless
P=NP, even when the cascades are sampled from the SIR
model.

5 Our approach
We first present ROUNDSENSOR for the setting in which a
set of cascades H1, . . . ,HN is given as input, and the goal is
to find a sensor set S to minimize Tavg(S). Later, we show
how this can be extended to an SIR model with the goal of
minimizing Tavg(S).

5.1 ROUNDSENSOR under given cascades
Our algorithm, ROUNDSENSOR, is based on linear program-
ming relaxation and randomized rounding. We first start
with the following integer program (IP) with two kinds of
variables: the variables xu indicate that node u is picked in
the sensor set, and yid indicates that in the sample Hi, a node
in the set Vid is in the sensor set, where Vid is the set of nodes
at distance d − 1 from the source s(Hi) (i.e., the detection
time is d).

min

n+1∑
d=0

1

N

N∑
i=1

yid · d (1)

for all i, d:
∑

u∈Vid

xu ≥ yid (2)

∑
u

xu ≤ k (3)

for all i:
∑
d

yid = 1 (4)

xu, yid ∈ {0, 1} (5)

The constraint (2) indicates that if yid = 1 (i.e., the de-
tection time is d), then some node in Vid is picked. The con-
straint (4) ensures that yid = 1 for exactly one value of d
(which will be the minimum, because of the objective).

Lemma 4. The above integer program (IP) is valid, i.e.,
if x, y is an optimal solution to the IP, then Tavg(S

∗) =
1
N

∑N
i=1

∑n+1
d=1 yid · d, where S∗ is an optimal solution.

Proof. Consider a solution x∗, y∗ corresponding to S∗ de-
fined in the following manner: if u ∈ S∗, we have x∗

u = 1,
else x∗

u = 0. If T (S∗, Hi) = d, we set y∗id = 1, else y∗id = 0.
It is easy to verify that x∗, y∗ is a feasible solution to (IP).
Similarly, any feasible solution x, y corresponds to a sensor
set S. Therefore, the lemma follows.

Relaxation and rounding. Solving (IP) is infeasible for
large instances. We relax the difficult integrality constraint
(5) to get a linear program, and use the technique of ran-
domized rounding to get an approximate solution, as sum-
marized in Algorithm 1.

Algorithm 1: ROUNDSENSOR
Input: G = (V,E), k,H1, . . . , HN

Output: Sensor set S

1: Solve the LP obtained by relaxing the constraints (5) of IP to
xu, yid ∈ [0, 1] for all u, i, d.

2: Let x, y be the optimum fractional solution to the above
LP. For each node u, add u to Sr with probability x′

u =
min{1, xu log(n+ 1) log(Nn)}

3: Return Sr

Main ideas behind the analysis of ROUNDSENSOR

• Let Uj = {2j , . . . ,min{n+ 1, 2j+1 − 1}}, for 0 ≤ j ≤
log(n + 1). While the variables in the LP can be frac-
tional, and yid need not be 1, we can show that there is a
set Ud(i) for each sample Hi, such that the sum of yid for
d ∈ Ud(i) is not too small (Lemma 5).

• For each d(i), it follows that
∑

d∈Ud(i)

∑
u∈Vid

x′
u ≥

log(Nn). As a result, the randomized rounding in Step
3 of ROUNDSENSOR ensures that at least one node u ∈
∪d∈Ud(i)

Vid is picked in the solution (Lemma 6).

• Finally, the scaling used to construct the variables x′
u and

the definition of the sets Uj give bicriteria bounds on |Sr|
and Tavg(Sr) (Theorem 3).

Lemma 5. Let x, y denote the solution to the LP. Then, for
all i = 1, . . . , N , there exists d(i) ≤ log(n + 1) such that∑

d∈Ud(i)
yid ≥ 1

log (n+1) .

Proof. The sets Uj are disjoint, and
∑n+1

d=1 yid =∑
j≥0

∑
d∈Uj

yid = 1, which implies there exists d(i) such
that

∑
d∈Ud(i)

yid ≥ 1
log(n+1) .

Lemma 6. Let Sr denote the solution picked by our al-
gorithm. For each cascade Hi, let d(i) be the index, as in
Lemma 5. Then, with probability at least 1 − 1

n , for all
i = 1, . . . , N , we have T (Sr, Hi) ≤ 2d(i)+1.

Proof. Let Bid(i) = ∪d∈Ud(i)
Vid. We will show below that

for all i, we have Sr ∩ Bid(i) ̸= ∅ with probability at least
1− 1

n2 . Observe that if Sr∩Bid(i) ̸= ∅, we have T (S,Hi) ≤
2d(i)+1, and the lemma follows.



Consider any fixed i. Observe that Pr[Sr ∩Bid(i) = ∅] =∏
u∈Bid(i)

(1− x′
u). We have two cases. First, suppose there

is a node u ∈ Bid(i) such that x′
u = 1, then Pr[Sr∩Bid(i) =

∅] = 0, which implies Sr ∩Bid(i) ̸= ∅.
Second, if x′

u < 1 for all u ∈ Bid(i), we have x′
u =

log(n + 1) log(Nn) · xu. In this case, Pr[Sr ∩ Bid(i) =
∅] =

∏
u∈Bid(i)

(1 − x′
u) ≤

∏
u∈Bid(i)

exp(−x′
u) =

exp(−
∑

u∈Bid(i)
x′
u). We have∑

u∈Bid(i)

x′
u = log(n+ 1) log(Nn)

∑
d∈Ud(i)

∑
u∈Vid

xu

≥ log(n+ 1) log(Nn)
∑

d∈Ud(i)

yid

≥ log(Nn),

where the first inequality follows because of the constraint∑
u∈Vid

xu ≥ yid in the LP, and the second inequality fol-
lows from Lemma 5.

Therefore, Pr[Sr ∩ Bid(i) = ∅] ≤
exp(−

∑
u∈Bid(i)

x′
u) ≤ 1

Nn , using the above
bound on

∑
u∈Bid(i)

x′
u. This implies that in both

the cases, we have Pr[Sr ∩ Bid(i) = ∅] ≤ 1
Nn .

By a union bound over all the cascades i, we have
Pr[There exists i such that Sr ∩ Bid(i) = ∅] ≤ N

Nn = 1
n ,

and the Lemma follows.

Theorem 3. Let Sr be the set of nodes selected by the
above algorithm. With probability at least 1 − 2

n , we have:
(1) |Sr| ≤ k · 2 log(Nn) log (n+ 1), and (2) Tavg(Sr) ≤
2 log (n+ 1)Tavg(S

∗), where S∗ is an optimal solution.

Proof. Let Xu = 1 with probability x′
u. Then, |Sr| =∑

u Xu, and E[|Sr|] =
∑

u x
′
u ≥ log(Nn) log(n + 1) ·

k. Applying the Chernoff bound (Theorem 5 in the Ap-
pendix), we have Pr[|Sr| > 6k log(Nn) log(n + 1)] ≤
2−6k log(Nn) log(n+1) ≤ 2−6 log(n+1) ≤ 1/n.

For all i, we have
∑

d∈Ud(i)
dyid ≥ 2d(i)

∑
d∈Ud(i)

yid ≥
2d(i)

log(n+1) ≥ T (Sr,Hi)
2 log(n+1) , with probability at least 1 − 1/n,

where the first inequality follows from the definition of the
set Ud(i), the second inequality follows from Lemma 5, and
the third inequality follows from Lemma 6. This implies that
with probability at least 1 − 1/n, for all i, T (Sr, Hi) ≤
2 log(n + 1) ·

∑
d∈Ud(i)

dyid ≤ 2 log(n + 1) ·
∑

d dyid.
Therefore, with probability at least 1 − 1/n2, Tavg(Sr) =
1
N

∑
i T (Sr, Hi) ≤ 1

N

∑
i 2 log(n + 1) ·

∑
d dyid ≤

2 log(n + 1)Tavg(S
∗), since the LP value is a lower bound

for Tavg(S
∗). The probability that either the bound for |Sr|

or Tavg(Sr) is not satisfied is at most 2
n , and therefore, the

theorem follows.

5.2 Minimizing E[T (S)] in the SIR model
In the context of disease surveillance, the disease spread is
modeled by an SIR process on the network. The cascades are
not specified ahead of time, but are sampled according to the

SIR process, as defined in Section 3. We use the sample av-
erage technique from stochastic optimization and show that
if we run ROUNDSENSOR on a polynomial set of cascades,
we also get a good approximation for the expected detection
time; we refer to this as Algorithm ROUNDSENSORSIR.

Algorithm 2: ROUNDSENSORSIR
Input: G = (V,E), k
Output: Sensor set Sr

1: Sample N = Ω( 3
ϵ2
n(n+ 1) logn) cascades H1, . . . , HN us-

ing the SIR process
2: Return Sr = ROUNDSENSOR(G, k,H1, . . . , HN )

Recall that T (S,H) is the delay associated with set S

for the disease outcome H . Let Ŝ = argminSTavg(S) de-
note an optimal solution for the cascades H1, . . . ,HN . Let
S∗ = argminSE[T (S)] denote an optimal solution (which
minimizes the expected detection time).
Lemma 7. Let N ≥ 3

ϵ2n(n + 1) log n for ϵ ∈ (0, 1). For
any ϵ ∈ (0, 1), Pr[there exists S such that Tavg(S) ̸∈ [(1 −
ϵ)E[T (S)], (1 + ϵ)E[T (S)]] ≤ 1/n2

Proof. For any fixed S, we have N
Tavg(S)
n+1 =∑N

i=1
T (S,Hi)
n+1 . By the definition of T (S,Hi), we have

Zi = T (S,Hi)
n+1 ∈ [0, 1]. Also, E[T (S,Hi)] = E[T (S)],

which implies E[NTavg(S)] = NE[T (S)]. Applying
Theorem 5 to Z = N

Tavg(S)
n+1 , we have

Pr
[
Tavg(S) ̸∈ [(1− ϵ)E[T (S)], (1 + ϵ)E[T (S)]

]
(6)

=Pr
[
N

Tavg(S)

n+ 1
̸∈ [(1− ϵ)N

E[T (S)]
n+ 1

, (1 + ϵ)N
E[T (S)]
n+ 1

]
≤2exp(−ϵ2NE[T (S)]/(3(n+ 1)))

≤exp(−n log n)

if N ≥ 3
ϵ2n(n + 1) log n, since E[T (S)] ≥ 1. By a union

bound over all S ⊂ V , it follows that the probability
that there exists S with Tavg(S) ̸∈ [(1 − ϵ)E[T (S)], (1 +
ϵ)E[T (S)] is at most 2nexp(−n log n) ≤ 1/n2.

Theorem 4. Let N ≥ 3
ϵ2n(n+ 1) log n for ϵ ∈ (0, 1). With

probability at least 1− 3
n , (1) |Sr| ≤ k ·7 log(1ϵ ) log

2 (n and
(2) E[T (Sr)] ≤ 2(1 + ϵ) log (n+ 1)E[T (S∗)], where S∗ is
an optimal solution.

Proof. Plugging in the bound for N =
3
ϵ2n(n + 1) in Theorem 3, we have |Sr| ≤
k · 2 log ( 3

ϵ2n
2(n+ 1) log n) log(n+ 1) ≤ (2 +

c1) log (
3+c1
ϵ2 n3) log(n) ≤ (6 + c2) log

2(n) log(1ϵ ) for
small constants c1, c2, as long as n ≥ n0. This can, in turn,
implies |Sr| ≤ k · 7 log2(n) log( 1ϵ ), for n larger than a
constant.

Next, from Lemma 7, we have: (1) Tavg(Sr) ≥ (1 −
ϵ)E[T (Sr) with probability at least 1 − 1

n2 , and (2)
Tavg(S

∗) ≤ (1+ϵ)E[T (S∗)] with probability at least 1− 1
n .

From Theorem 3, we also have Tavg(Sr) ≤ 2 log(n +



1)Tavg(Ŝ) ≤ 2 log(n + 1)Tavg(S
∗), where Ŝ is an opti-

mal solution for the N samples, and S∗ is an optimal solu-
tion for the expected detection time. Putting all of them to-
gether, with probability at least 1− 2

n , we have E[T (Sr)] ≤
1

1−ϵTavg(Sr) ≤ 1
1−ϵ2 log(n + 1)Tavg(S

∗) ≤ 2 log(n +

1) 1+ϵ
1−ϵE[T (S

∗)].
Combining both these parts, the bounds on |Sr| and

E[T (Sr)] both hold with probability at leasst 1− 3
n .

This algorithm’s runtime performance is dominated by the
amount of time it takes to solve the relaxed linear program,
which has O(Nn) constraints and O(Nn) variables. This
gives us a worst case running time of O((Nn)2.5), although
many modern Linear Program solvers can solve these more
efficiently.

6 Experiments
We study the following questions

• Effectiveness: how does the approximation factor of
ROUNDSENSOR in practice compare with the theoretical
worst case bounds in Theorems 3? How do these com-
pare with other baselines?

• Efficiency in the SIR model: Theorem 4 requires N =
Ω(n2 log n) sampled cascades. How many are sufficient
in practice?

• Impact of transmission probability in the SIR models:
as the transmission probability increases, the problem be-
comes easier. What is the impact on the performance of
ROUNDSENSOR?

• Case study: what are structural properties of the solu-
tions, e.g., what type of nodes are picked?

Due to the space constraint, we present results for a subset
of the datasets here; additional analysis is described in the
Supplementary material.

6.1 Datasets and baselines
We evaluate our algorithms on diverse kinds of real world
data sets, as summarized in Table 2. These include four hos-
pital contact networks.

1. arXiv High Energy Physics-Theory (HEP-TH) collabora-
tion network from January 1993 to April 2004 (Leskovec
and Krevl 2014). We only use the largest connected com-
ponent in this network.

2. Battle of the Water Sensor Networks (BWSN) (Ostfeld
et al. 2008).

3. Hospital network from Lyon: this is a temporal contact
network of a hospital based in Lyon, France (Vanhems
et al. 2013). The data set tracks 46 health care workers
and 29 patients from December 6, 2010 at 1pm to De-
cember 10, 2010 at 2pm.

4. Carilion network: constructed from patient and provider
contacts in the Carilion hospital in Roanoke, Vir-
ginia (Adhikari et al. 2019). We only use the network
data for a 2 month period.

5. UVA pre-COVID and COVID networks: these are
anonymized contact networks from electronic medical
record (EMR) data of hospitalized patients at the Uni-
versity of Virginia (UVA) hospital. Nodes are patients
and health care providers, while edges represent co-
location based contacts. The Pre-COVID network spans
the period 4/1/2018—10/28/2018, and the COVID net-
work spans the period 10/14/2020—5/21/2021.

Graph Name Number
of nodes

Number
of edges

Arxiv HEP-TH 8638 24827
Water network 12523 14822

Lyon Hospital Ward 75 1138
Carilion hospital network 11413 25663

UVA Pre-COVID 10789 291881
UVA COVID 9949 399495

Table 2: Data sets used for experiments

Baselines. We compare with the following baselines
• Random: select k nodes randomly with uniform proba-

bility distribution
• Degree: select top k nodes with highest degrees
• GREEDY: select k nodes with greedy scheme

by (Leskovec et al. 2007).

6.2 Effectiveness
Figure 3 shows that ROUNDSENSOR performs better than
the three baselines that we have selected. While this greedy
approach does offer certainty in the budget allowance and
a deterministic outcome, we see that ROUNDSENSOR offers
increasing benefits as our budget increases, up to a 9% lower
mean detection time after rounding. Note that these base-
lines have budget k′ = |Sr| after rounding to ensure a fair
comparison.

Figure 3: Mean detection time vs the sensor set size for
the UVA COVID network, comparing ROUNDSENSOR and
other baselines.

Next, we consider the approximation ratios. Recall that
ROUNDSENSOR gives a bicriteria approximation (Theo-
rem 3), and we evaluate both Tavg(Sr)/Tavg(S

∗) (the ap-
proximation ratio with respect to the objective), where S∗ is
an optimal solution, and |Sr|

k (the violation in budget). We



cannot calculate the exact approximation ratio, since S∗ is
unknown, but the ratio between Tavg(Sr) and the LP objec-
tive gives an upper bound on the approximation ratio. Fig-
ure 4 (left) shows that the approximation ratio achieved by
ROUNDSENSOR, with respect to the objective value is less
than 1.5—this is a significant contrast with the worst case
O(log n) approximation factor we prove in Theorem 3.

Figure 4: (Left)Upper bound on the approximation ratio
achieved by ROUNDSENSOR vs |Sr|. Note that the maxi-
mum value on the y-axis is 1.5. (Right) Violation in budget
for ROUNDSENSOR vs k, for a transmission probability of
0.15

Finally, Figure 4 (right) shows the violation in budget for
ROUNDSENSOR. Note that for all values of k, the viola-
tion is at most 1.35, which is a significant contrast with the
O(log2 n) bound in Theorem 3.

6.3 Number of sampled cascades needed in the
SIR model

Recall that Theorem 4 gives a bound of N ≥ 3
ϵ2n(n +

1) log n for the analysis of the SAA technique. Figure 5
shows the impact of varying N . For low values of N , the ob-
jective value is low, since choosing nodes close to the sam-
pled sources is a good strategy. We find that the plots plateau
off well before N = n, which suggests that linear number
of samples are adequate in practice.

6.4 Case study
We analyze the mean detection time in the UVA contact
networks in Figure 8. We observe that the detection time
reduces in the COVID period, for the same transmission
probability. While there are likely many factors at play, we
note that the COVID network is much denser (average den-
sity of 40.15) than the pre-COVID network (average density

Figure 5: Mean detection time estimated from N samples
vs N/n for different networks. Linear number of samples
suffice for getting a good estimate.

Figure 6: The proportion of Sr that consists of patients in
the hospital network for pre-COVID and COVID data sets
for different initial budgets k), for transmission probability
p = 0.15.

27.05). Higher density generally increases the ease of dis-
ease transmission, e.g.,(Newman 2003). A deeper analysis
is needed to understand this better.

Figure 6 shows how the makeup of Sr (namely, the frac-
tion consisting of patients) changed from the pre-COVID to
the COVID period. There are noticeable differences in the
composition of the sensor sets, which changes with k. In
particular, during the COVID period, the fraction of patients
increases with k, becoming a more disproportionate size of
the set, while in our pre-COVID data set, we see that de-
crease as it gets larger.

7 Conclusions
We present the first approximation algorithms for the Min-
DelSS, both when the cascades are specified, or sampled
from an SIR process. Our algorithms give bicriteria approxi-
mation guarantees, which is inevitable in light of the compu-
tational hardness we prove for MinDelSS. Our experiments
on diverse networks, including four hospital networks show
that our method is quite effective. Identifying surrogates of
the nodes picked in our near-optimal solutions can be use-
ful in designing more implementable solutions. In practice,
more general surveillance strategies need to be considered,
in which a node is not tested daily, but with some rate. Our
approach can be extended to settings where schedules are
periodic.
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Figure 7: The greedy algorithm can have an approximation
factor Ω(n).

8 Supplementary material
We use the following version of the Chernoff bound.

Theorem 5. (Theorem 1.1 of (Dubhashi and Panconesi
2009)) Let Z =

∑n
i=1 Zi, where Zi are independently

distributed random variables in [0, 1]. Then, for any ϵ ∈
(0, 1), we have Pr[Z ̸∈ [(1 − ϵ)E[Z], (1 + ϵ)E[Z]]] ≤
2exp(−ϵ2E[Z]/3). Also, for any t > 2eE[Z], Pr[Z > t] ≤
2−t.

8.1 Proof of Lemma 1
Proof. Consider the instance shown in Figure 7, which con-
sists of four cascades H1, . . . ,H4 on a graph G = (V,E)
with n nodes. Let A = {u1, u2, u

′
1, u

′
2} denote four special

nodes. Let V1 ∪ V2 ∪ V3 ∪ V4 be a partition of V − A of
size (n/4 − 1) each. For each i = 1, . . . , 4, the cascade Hi

has the following structure: (1) it consists of a tree on the
set Vi with a source si, (2) the 3(n/4 − 1) nodes in ∪j ̸=iVj

are all isolated nodes, and (3) the nodes u1, u2, u
′
1, u

′
2 have

distances from si as shown in Figure 7. For instance, in H1,
u1, u

′
1 and u′

2 are at distances a, b and c, respectively, from
si, whereas u2 is an isolated node.

We first argue that when the budget k = 2, the greedy
algorithm picks the set {u′

1, u
′
2}. Observe that π({u1}) =

π({u2}) = 1
4 (n− a+ n− a+0+ 0) = 1

2 (n− a), whereas
π({u′

1}) = π({u′
2}) = 1

4 (n − b + n − c + n − b + n −
c) = 1

2 (n − b + n − c). By ensuring that n − b + n − c ≥
n − a, i.e., b + c ≤ n + a, we have π({u′

1} ≥ π({u1}) =
π({u2}). Further for any node u ̸∈ A, we have π({u} ≤
n/4, since u is an isolated node in three of the cascades.
This implies π({u′

1}) ≥ π({u}) for any node u, and so the
greedy algorithm picks node u in the first iteration. Next,
π({u′

1, u1}) = π({u′
1, u2}) = 1

4 (n−a+n−a+n−b+n−c),
whereas π({u′

1, u
′
2}) = 1

4 (n − b + n − b + n − b + n −
b) = (n − b). Choosing a, b, c such that 3(n − b) ≥ 2(n −
a) + (n − c), i.e., b ≤ 2a

3 + c
3 , ensures that π({u′

1, u
′
2}) ≥

π({u′
1, u1}) = π({u′

1, u2}). Further, for any other node u ̸∈
A, π({u′

1, u}) = 1
4 (n − b + n − c + n − b) + n

4 , since u
is an isolated node in three cascades. By choosing b, c such
that 2b ≤ 3n

4 + c, it follows that π({u′
1, u

′
2}) ≥ π({u′

1, u})
for any such node u ̸∈ A.

We choose a = 2, b = n
32 , c = n

8 , which satisfies all
the conditions above. Therefore, for the above conditions on
a, b, c, the greedy algorithm picks the set Sg = {u′

1, u
′
2}.

The optimal solution is {u1, u2}. This implies Tavg(Sg) =
b+ 1 = Θ(n)Tavg(S

∗).

8.2 Hardness for MinDelSS in the SIR model
Our reduction can be adapted to show that the hardness holds
even in the SIR model. We construct the same instance G as
before. For all Ci, uj such that uj ∈ Ci, we have pCi,uj = 1
and puj ,Ci = 0. For all the remaining edges (u, v) ∈ E (i.e.,
(u, v) not of the form (Ci, uj)), we have puv = 1 We have
p0Ci

= 1/m for all Ci, and p0v = 0 for all v ̸∈ V1. Note
that when we run the SIR process on G, there are exactly m
possible outcomes H1, . . . ,Hm, where Hi is the outcome if
node Ci is the source. Due to the way the edge probabili-
ties are defined, Hi consists of the edges (Ci, uj) and the
paths L(uj) for each uj ∈ Ci. For a sensor set S, we have
E[T (S)] = 1

m

∑m
i=1 T (S,Hi).

8.3 Impact of transmission probability in the SIR
model

The MinDelSS problem for the SIR model becomes easier
as the transmission probability increases, since the outbreak
size increases. Figure 8 shows that the mean detection time
decreases with the budget for different values of transmis-
sion probability p. We observe that the value of p has a very
significant impact on this variation in the UVA pre-COVID
and COVID networks. This is more clear in Figure 9, which
shows the mean detection time vs p, for different values of
k. We observe steep decline in the objective, as p increases.
We also see in figure 9 that our budget k is much less signif-
icant than our probability of transmission p for determining
the mean detection time in outbreaks.

Figure 8: Mean detection time vs |Sr| in the UVA pre-
COVID (left) and COVID (right) networks, for different
transmission probability values.



Figure 9: Mean detection time vs the transmission probabil-
ity for different values of k for the UVA pre-COVID net-
work.


