End-to-End Stochastic Optimization with
Energy-Based Model

Lingkai Kong Jiaming Cui Yuchen Zhuang Rui Feng

B. Aditya Prakash Chao Zhang
College of Computing
Georgia Institute of Technology
{1kkong, jiamingcuil997,yczhuang,rfeng,badityap, chaozhang}@gatech.edu

Abstract

Decision-focused learning (DFL) was recently proposed for stochastic optimization
problems that involve unknown parameters. By integrating predictive modeling
with an implicitly differentiable optimization layer, DFL has shown superior per-
formance to the standard two-stage predict-then-optimize pipeline. However, most
existing DFL methods are only applicable to convex problems or a subset of non-
convex problems that can be easily relaxed to convex ones. Further, they can be
inefficient in training due to the requirement of solving and differentiating through
the optimization problem in every training iteration. We propose SO-EBM, a
general and efficient DFL method for stochastic optimization using energy-based
models. Instead of relying on KKT conditions to induce an implicit optimization
layer, SO-EBM explicitly parameterizes the original optimization problem using a
differentiable optimization layer based on energy functions. To better approximate
the optimization landscape, we propose a coupled training objective that uses a
maximum likelihood loss to capture the optimum location and a distribution-based
regularizer to capture the overall energy landscape. Finally, we propose an efficient
training procedure for SO-EBM with a self-normalized importance sampler based
on a Gaussian mixture proposal. We evaluate SO-EBM in three applications: power
scheduling, COVID-19 resource allocation, and non-convex adversarial security
game, demonstrating the effectiveness and efficiency of SO-EBM.

1 Introduction

Many real-life decision making tasks are stochastic optimization problems, where one needs to
make decisions to minimize a cost function that involves stochastic parameters. Oftentimes, the
involved stochastic parameters are unknown and context-dependent, meaning that they need to be
predicted from observed features. For example, when allocating clinical resources for COVID-19, it
is necessary to consider future cases in different regions, whose distributions are unknown and have to
be predicted from the current state. As two other examples, hedge funds need to continuously adjust
their portfolio for maximal expected return, by forecasting future return rates of different stocks; and
in supply chain optimization, facility locations need to be decided to minimize long-term operational
costs, by accounting for unknown and uncertain regional supplies and customer demands.

With the feasibility of training powerful deep learning predictors from large amounts of data, it is
increasingly common to solve such stochastic optimization problems using a two-stage predict-then-
optimize pipeline. In the prediction stage, one learns a predictive model for the unknown parameters
using certain prediction loss (e.g., negative likelihood). In the optimization stage, the predicted
distributions of the parameters are used to parameterize the stochastic optimization problem, which
can be then solved using off-the-shelf solvers [21} 2} [12]]. This two-stage pipeline relies on an implicit

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

and commonly-accepted assumption: improvements in parameter prediction in terms of the prediction
loss will always translate to better optimization outcomes. However, this is not the case: machine
learning models make errors and the impact of prediction errors is not uniform w.rt. the optimization
loss. Thus, a smaller predictive loss does not necessarily lead to a smaller decision regret.

A better approach is decision-focused learning (DFL) [13} [1} 4], which integrates prediction and
optimization layers into a unified model to learn them end-to-end. Most DFL methods implement
the optimization procedure as an implicitly differentiable layer and develop techniques (e.g., using
KKT conditions) to compute the gradients w.r.z. the decision variables and enable back-propagating
through it. Compared to the two-stage pipeline, the prediction layer so learned is tailored for the
optimization problem and better in the sense that it can yield decisions with smaller regrets. Besides
DFL, there are also approaches where a policy network is trained to directly map from the input to
the solution of the optimization problem using supervised or reinforcement learning [47, 26} [34]].
However, their performance are often inferior to DFL as they ignore the algorithmic structure of the
problem and typically require a large amount of data to rediscover the algorithmic structure.

Despite their promising results, existing DFL methods [13} 4} 1} 41}, 48] suffer from two drawbacks.
(1) Generality. To leverage the KKT condition, they are mostly applicable to only convex optimization
objectives [13} 4} [1]]. Though a few works approximate nonconvex objectives by quadratic functions
[41} 48], their applicability is still limited to easy-to-relax nonconvex problems and can suffer from
poor gradient estimates caused by the relaxation. (2) Scalability. Due to the reliance of using the
KKT condition to compute derivatives, they require repeatedly solving the optimization program and
back-propagating through it during training, which makes them unscalable. The problem is more
severe when the expectation of the cost cannot be computed analytically.

We propose a new end-to-end stochastic optimization method using an energy-based model (EBM),
named SO-EBM. Similar to DFL, SO-EBM models the algorithmic predict-and-optimize structure by
stacking a differentiable optimization layer on top of a neural predictor. Different from DFL, SoO-
EBM eliminates the need of using KKT conditions to induce an implicit differentiable optimization
layer. Instead, it leverages expressive EBMs [33] to directly model the conditional probability of
the decisions and parameterizes an explicit energy-based differentiable layer as a surrogate to the
original optimization problem. To better approximate the optimization landscape with the EBM
surrogate, we design two complementary learning objectives in SO-EBM: 1) a local matching
objective that maximizes the likelihood of the optimal decisions; and 2) a global matching objective
that minimizes the distribution distance between the posterior distribution of the decision variables
and the surrogate-based decision distribution.

Due to its flexibility, SO-EBM is not constrained to convex objectives, but can be applied to a wide
class of stochastic optimization problems. Another key advantage of SO-EBM is its computational
efficiency. As the optimization layer is parameterized by an energy-based model, SO-EBM eliminates
the need of solving and differentiating through the optimization procedure at each training iteration.
Rather, SO-EBM estimates the derivatives of the energy-based surrogate model using a self-normalized
importance sampler. We design a Gaussian-mixture proposal distribution for the sampler, which
not only reduces sampling variance, but also borrows the idea of contrastive divergence for MCMC
methods to speed up the training of SO-EBM.

The main contributions of this work are: (1) We propose a new end-to-end stochastic optimization
method based on energy-based model. It avoids the needs of solving and differentiating through the
optimization problem during training and can be applied to a wide range of stochastic optimization
problems beyond convex objectives. (2) We propose a coupled training objective to encourage
the energy-based surrogate to well approximate the optimization landscape and an efficient self-
normalized importance sampler based on a mixture-of-Gaussian proposal. (3) Experiments on power
scheduling, COVID-19 resource allocation and adversarial network security game show that our
method can achieve better or comparable performance than existing DFL methods while being much
more efficient.

2 Preliminaries

Problem Formulation. Consider a stochastic optimization problem:

arg mingec f(y,),

Two-stage learning:

[v
Features —»| Predictive Distribution [—— | Generic Loss . Stochastic Program
X p(ylx; 0) e ——_| eg,NLL a” = argmin, e 0By xi0) f (1, @)
Backpropagation
Decision-focused learning:
Predictive Distribution > Stochastic Program — Optimization Loss
Feat —> .
X p(ylx; 0) «——- o =agming By f(y:0) |[* == | =Eyyopfy,a"(x;0))
Backpropagation Backpropagation

Figure 1: Two-stage learning back-propagates from a predictive loss to the model, ignoring the latter
effect of the optimization problem. Decision-focused learning directly optimizes the task loss but
needs to solve and back-propagate through the optimization problem at every training iteration.

where y denotes the parameters of the optimization problem, a denotes the decision variables within
a feasible space C, and f is the cost function to be optimized. In many applications, the parameters y
are unknown and stochastic, which must be inferred from some correlated features x. We assume a
dataset D = {x;,y;} ¥, drawn from the joint distribution of the features and problem parameters.
Our task is to learn a decision-making model M parameterized by 6, which takes the features x as
input and outputs the optimal decisions a*(x; #). The model should be learned such that its output
optimal decisions minimize the expected decision cost under the joint distribution of (x, y), namely:

arg miny]E(x,y)wpf(y, a*(x;6)).

For example, in supply chain optimization, y can be regional customer demands, a can be pre-ordered
products for each region, f measures the gap between actual customer demands and pre-ordered
supplies, and the problem is to decide the best a to minimize the cost f. Herein, the actual customer
demands y are usually unknown and must be predicted from features x such as customer purchase
history and regional economy indices.

Two-stage learning v.s. Decision Focused Learning (DFL). A common practice to the above
stochastic optimization problem is the two-stage predict-then-optimize framework. It first learns an
probabilistic predictive model p(y|x; 6) and then uses existing stochastic optimization solvers to ob-
tain the optimal action that minimizes the expected cost: a*(x;) = argmin, o Eyp(yix0) f (4, @).
Though the two-stage approach is simple and efficient, it can suffer from suboptimal performance
due to the misalignment of the prediction loss and the optimization loss. In contrast, DFL integrates
prediction and optimization into an end-to-end model, thus tailoring the predictive model for the
optimization task, as shown in Figure[I] By directly optimizing the task loss, the gradient of the
model parameters can be obtained with the following chain rule:

of (y,a*(x;0)) _ 9f(y,a*(x;0)) da*(x;0) Oy

a0 da*(x; 0) oy 90’
The key challenge here is to compute the Jacobian w: it is needed to apply the chain rule

to learn the model using gradient decent methods. This is nontrivial, because a™* is the solution of
a stochastic optimization solver and not directly differentiable. To address this challenge, OptNet
[13}/4] assumes quadratic optimization objectives and differentiates through the KKT conditions using
the implicit function theorem. This way, OptNet can obtain the Jacobian by solving the optimization
problem along with a set of linear equations in each training iteration. Several works [} 41} 48]
extend this technique to more general cases. For example, cvxpylayers [1]] extends it to more general
cases of convex optimization using disciplined parametrized programming (DPP) grammar.

Although existing DFL approaches can achieve better decisions compared to two-stage learning, they
have several drawbacks. First, they are often constrained to convex optimization objectives as they
rely on the KKT conditions to compute derivatives. Though [41} 48] propose to approximate some
non-convex objectives by a quadratic function around a local minimum, the inaccurate gradients
may be aggregated during the training iterations and thus lead to poor decision quality. Second, they

suffer from high computational complexity because the computation of the Jacobian %;“9) requires

repeatedly solving the optimization program and back-propagating through it. The problem is more
severe when the expectation of the cost cannot be computed analytically. In that case, we need to

use sample average approximation [27, 46} 30] and draw multiple IID samples from the predictive
distribution, which makes the objective much more complicated and expensive.

3 Proposed Method

3.1 Energy-based Model for End-to-end Stochastic Programming

Our task is to learn an optimal decision-making model My, such that its output optimal decision
a*(x; 0) for input x minimizes the expected optimization cost: E(x ,)~p f(y,a*(x;#)). The core
idea of our method is to directly model My’s probability distribution over the decisions conditioned
on the features, denoted as g(a|x; 6), using energy-based parameterization [33]:

exp(—FE(x,a; 0
alalx;0) = W 2(x:6) = [exp(~E(x.ai6)da. M)
To parameterize the energy function F(x, a;6), a natural option is to directly use a deep neural
network which takes a feature-decision pair (x, a) as input and output a scalar value. However, such
a design ignores the algorithmic structure of the optimization problem and thus can be data-inefficient
during learning. Instead, we propose to explicitly model the problem structure by using the expected
task loss as the energy function:

E(X, a; 9) = Ep(y\x;Q)f(yv a)a (2
where p(y|x; 0) is the predictive distribution of an uncertainty-aware neural network [19, 31]].

Eq. 2] creates an explicit energy-based differentiable layer as a surrogate to the original optimization
problem. Compared with the two-stage model, it builds a direct connection between the input features
x and decision variable a and thus is more tailored to the downstream task. Compared with pure
end-to-end architectures, the task-based surrogate energy function explicitly leverages the algorithmic
structure of the optimization problem and thus saves a lot of learning. This energy-based surrogate
function also has a intuitive interpretation. When the decision a is in a region with smaller expected
task loss, it has lower energy and higher probability; when it leads to higher expected task loss, it has
higher energy and lower probability.

Since we have the ground truth for the parameters y in the training data, the feature-decision pairs
D, = {(xi,a])}, can be easily constructed by solving a} = argmin, cc f(yi,a;) for each
(xi, y;) using any off-the-shelf optimization solvers. Note that the construction of such feature-action
training pairs needs to be done only once during preprocessing (Fig. [3). Then, we minimize the
negative log-likelihood (NLL) of all the feature-decision pairs:

gMLE = _]E(x,a*)NDQQ(a*|X; 9) = IE(x,a")N’Da (Ep(y\x;a)f(?% a*) + 10g<Z(X7 9))) . (3)

By minimizing the NLL, we are essentially minimizing the energy of the optimal actions while
maximizing the energy of other points. Thus the end-to-end stochastic programming problem is
translated to learning a neural network that outputs the smallest energy for the optimal actions. This
new perspective avoids the need of solving and differentiating through the optimization problem at
every training iteration, but meanwhile tailors the model for the downstream decision making task.

Our energy-based formulation can also be interpreted as a non-sequential maximum entropy inverse
reinforcement learning (MaxEN-IRL) model [53} 52]]. From the IRL perspective, the input features
{x;}}¥| can be interpreted as environment states, the feature-decision pairs {(x;, a;)}\; as expert
demonstrations, and the negative expected task loss —E,,x;0)f(y,a) as reward. Eq.[3|is then
equivalent to maximizing the likelihood of the expert demonstrations (optimal decisions) to recover
the hidden reward function.

3.2 Augmenting Energy-Based Objective with Distribution Regularizer

One limitation of learning with EBM-based likelihood for the optimization problem is that we model
only one data point a* for each conditional distribution ¢(a|x; #). Minimizing the NLL for a single
data point ignores the overall matchness between the landscape of original optimization problem and
that of the EBM-based probability density, which can easily cause overfitting. To learn the overall

shape of the energy function better, we propose a distribution-based regularizer which augments the
energy-based objective from a global training perspective.

The distribution-based regularizer is based on minimizing the distance between the model distribution
and an oracle posterior distribution. Specifically, we assume that a follows a prior distribution p(a).

With the ground-truth label y, the posterior distribution of a is then given by p(aly) = W

when we define the task loss as the negative log-likelihood, i.e.,— log p(y|a) = f(y, a). However,
such an expression depends on the ground-truth label, which cannot be obtained at test time. We let
the model distribution ¢(a|x; §) mimic this oracle posterior p(a|y) distribution by minimizing their
KL-divergence:

lxL = E(X,y)NDKL[p(abc, y)H‘](a‘X; 9)} = E(X,y)ND (_]Ep(a\y) log Q(a|x? 9) - H(P(a|y))) C)

where #(-) denotes entropy of the probability distribution. Our final training loss is a weighted
combination of the NLL and the distribution based regularizer:

Lot = ImLe + Mk, ®)

where A is a hyper-parameter. In this final objective, the KL-divergence loss and the NLL loss
complement each other (Fig.[2). The NLL loss is a local training strategy while the KL-divergence
loss learns the energy function from a global level. Specifically, the NLL loss helps the model capture
the location of the optimal decision better but ignores the overall energy shape. The distribution-based
regularizer essentially adds more anchor points besides the optimal decisions and thus helps fit the
overall energy shape.

MLE+KL-divergence training

True energy MLE training KL-divergence training
E

E E

Figure 2: Different training objectives of energy-based optimization. (a) the ground-truth energy-
based landscape; (b) MLE training captures the location of the optimum but ignores the overall energy
shape; (c) KL-divergence training learns the overall energy shape but captures a blurry optimum
location; (d) Our MLE+KL-divergence training wins the best of both worlds.

3.3 Training with Contrastive Divergence and Self-normalized Importance Sampling

Optimizing Eq.[§|requires evaluating the partition function and computing the KL-divergence between
two continuous distributions which typically involves intractable integrals. In this subsection, we
propose to use a self-normalized importance sampler based on mixture of Gaussians to estimate the
gradient of the model parameters efficiently. First, we derive (see supplementary for details) the
gradient of the training loss with respect to the model parameters 6 as:

aACT()tal) aE(a* , X3 9) E 8E(d, X, 9)
90 (x,a*)~Daq 00 q(&\x;G)T
. . (6)
OE(a,x;0) O0E(a,x;0)
+ AE(x,y)~D <]Ep(dy)89 - EQ(dIX;a)T :

As can be seen, the gradient can be estimated by sampling from the model distribution ¢(a|x; #) and
oracle distribution p(a|y). Unfortunately, we cannot easily draw samples because of the unnormalized
constant. Existing methods usually resort to MCMC methods (e.g., Langevin dynamics) to use this
gradient estimator. However, MCMC is an iterative process and can be time consuming. To improve
the training efficiency, we propose to use a self-normalized importance sampler based on a Gaussian
mixture proposal to estimate the gradient.

Specifically, for each x, we first sample a set of M candidates {a™}*_, from a proposal distribution
m(a|x), and then sample & from the empirical distribution located at each a™ and weighted pro-
portionally to exp(—E(a|x;0))/m(a|x). To reduce the variance of the self-normalized importance
sampler, we propose to use a mixture of K Gaussians which are centered at the location of the corre-

sponding optimal decision as the proposal distribution: 7(a|x) = + Zfil N(a*; o), where K and

. Test Instance Xtest imizati *
Optimization _, | Optimization| | af,
| Solver

] ™ AN . .
D= {x;,yi} 1, Solver Do ={x;,a;}i=z1 | iOptimal Energy Function Optimal Action

Training data Feature-action pairs

777

E NLLloss
Energy Function

E(X, a; 0) = Ep(y\x;@)f(ys (L)

r [—

+
CD-SNIS \V4 (,
m Sampler > Y9\ \x KL-divergence loss
E

Training data Feature-action pairs
D = {xi,yi}iLs D, = {xi,a; }i, =

Figure 3: Illustration of SO-EBM: end-to-end stochastic optimization with energy-based model.

{0k }£ | are hyper-parameters. This mixture of Gaussian based self-normalized importance sampler
enjoys great computational efficiency. We only need to estimate the gradient of the energy-based
surrogate layer by drawing samples from a simple mixture of Gaussians, instead of solving and
differentiating through the optimization problem as in DFL. This significantly reduces the training
time compared with DFL as shown in Section 4. Further, locating the proposal distribution at the
optimal decisions mimics the contrastive divergence method [22} [15] used in Langevin dynamics
where the MCMC chain starts from the training data. This makes the proposal distribution close to
the model distribution and thus has better sample efficiency. The sampling procedure from the oracle
distribution p(aly) is similar with ¢(a|x;).

When the expected task loss has no analytical expression, we can draw multiple samples from
p(y|x; 6) to estimate the expectation and use reparameterization trick [29, 23}, 36] 42] to make it
differentiable. Finally, the model can be efficiently trained via gradient-based method, such as Adam
[28]. The detailed training procedure is given in Alg. 1 in the supplementary.

Model inference. With the optimal model parameter ,,, we draw samples from q(a|Xest; Gopc) for
an unseen test instance X.s;. However, in the real-world applications, we usually only need the
most optimal decision. This can be obtained by solving arg minareqtec Eop(yixcest:000) S (y, a) with
any existing black-box optimization solver such as CVXPY [12, 2] and Pyomo [5} 21]] (Fig. B).

4 Experiments

In this section, we empirically evaluate SO-EBM. We conduct experiments in three applications: (1)
Load forecasting and generator scheduling where the expected task loss has a closed-form expression;
(2) Resource allocation for COVID-19 where the expected task loss has no closed-form expression;
(3) Adversarial behavior learning in network security with a non-convex optimization objective.
Finally, we do ablation studies to show the effect of each component in SO-EBM.

4.1 Load Forecasting and Generator Scheduling

In this task, a power system operator needs to decide how much electricity a € R?* to schedule for
each hour in the next 24 hours to meet the actual electricity demands. The optimization objective is a
combination of an under-generation penalty, an over-generation penalty, and a mean squared loss
between supplies and demands:

24
.. 1
mINImizZe, cr24 Z Eyp(yla:0)[Vs[yi — ail+ +velai — yil + + 5(%‘ —4:)°])
=1

subjectto |a; — a;—1] < ¢ Vi,

Recovered landscape

r

True landscape Recovered landscape

True landscape

A

5
-15 -1.0 =-05 0.0 0.5 1.0 15 -1.5 -1.0 -05 0.0 0.5 1.0 15 -15 -1.0 -05 0.0 0.5 1.0 15 -15 -1.0 =05 0.0 0.5 1.0
dl dl dl dl

Figure 4: Ground-truth and SO-EBM recovered landscapes of the energy function in the power
generator scheduling task. Darker colors represent lower energy in the heat maps. For a test sample
Xtest, WE choose the corresponding optimal action af., as the center point and select two random

direction vectors vy and vy to plot the energy landscape, i.e..E (dy,ds) = E(x,a* + dyvy + davs).

where [-]; = max{v, 0}. Usually, the penalty coefficients satisfy 7, > 7, since under-generation is
more serious than over-generation. The quadratic regularization term indicates the preference for
generation schedules that closely match actual demands. The ramping constraint ¢, restricts the
change in generation between consecutive timepoints, which reflects physical limitations associated
with quick changes in electricity output levels.

Experiment Setup. We forecast the electricity demands 3 € R?* over all 24 hours of the next day
using a 2-hidden layer neural network. We assume y; is a Gaussian with mean /; and variance o2; as
such, the expectation in the optimization objective can be computed analytically. The input features
x is a 150-dimensional vector including the past day’s electrical load and temperature, the next day’s
temperature forecast, non-linear functions of the temperatures, binary indicators of weekends or
holidays, and yearly sinusoidal features. Following [13]], we set v5 = 0.4, 7. = 50 and ¢ = 0.4.

We compare with the following baselines on this task: (1) A two-stage predict-then-optimize model
trained with negative likelihood loss for the prediction task. (2) Decision-focused learning with the
QPTH solver [13]]. It uses sequential quadratic programming (SQP) to iteratively approximate the
resultant convex objective as a quadratic objective, iterates until convergence, and then computes the
necessary Jacobians using the quadratic approximation at the solution. (3) DFL with cvxpylayers
[1] (DFL-CVX) which provides a differentiable layer with disciplined parameterized programming
(DPP) grammar. Since the analytical expectation of Eq.[7]cannot be written in DPP, we use Monte
Carlo sampling to estimate the expectation for this baseline. (4) Policy-net. It direct maps from the
input features to the decision variables by minimizing the task loss using supervised learning [[13].
Our supplementary provides more details of the model parameters.

Results. Fig.[5|shows the end task loss for all the
methods. Our method SO-EBM outperforms all
the baselines with a significant reduction of train-
ing time. Compared with the strongest baseline
DFL-QPTH, So-EBM improves the task loss by
7.3%. The improvement is because DFL-QPTH
needs to use SQP to iteratively obtain the solu-
tions for non-quadratic optimization problems.
Differentiating through all the steps of SQP is o
prohibitively expensive in memory and time. To gy
address this issue, existing works differen- S
tiate through just the last step of SQP to obtain
approximate gradients. The inaccurate gradients
may accrue during training and thus hurt decision quality. This shows that our explicit differentiable
energy-based function is an effective surrogate for the original implicit optimization layer. In term of
efficiency, SO-EBM is more than 136 times faster than DFL-QPTH (0.68 second/epoch v.s. 93.12
second/epoch) in training. This is because we only need to draw samples from a simple mixture
of Gaussians to estimate the model parameters instead of solving and differentiating through the
optimization problem at every training iteration. DFL-CVX is even slower than DFL-QPTH since it
needs to use sample average estimation to draw multiple samples from p(y|x; #), which results in a
much more complicated optimization objective. This is also likely the reason why DFL-CVX under-
performs DFL-QPTH in terms of task loss here. For Policy-Net, we have tuned its hyper-parameters
extensively but still cannot achieve good performance on this task (2x-3x larger task loss than the
two-stage baseline). This is not surprising: as aforementioned, Policy-Net is a pure end-to-end model

103

o

10t

N

Task Loss

N

107!

Training Time (seconds/epoch)

Op,

,O,c Op SO 71:1, po. O/: So
oy L <‘C & 0\? //c I8 L(\ &
gl Ner 1, xS Cage Vg1, VxS

Figure 5: Results on power generator scheduling.

that needs a large amount of data to rediscover the algorithmic structure of the optimization task. In
contrast, DFL and SO-EBM model the predict-and-optimize structure in the model design, which
save learning and are more data-efficient.

Fig. [shows the ground-truth and SO-EBM learned landscapes of the energy function. As we can
see, SO-EBM can recover the landscape of the original optimization objective effectively though with
a small discrepancy. The small discrepancy is expected since the ground-truth landscape is computed
by directly using the ground-truth label, while SO-EBM uses the uncertainty-aware neural network
to first forecast the distribution of the label and then uses the predictive distribution to compute the
expected task loss as the energy function.

4.2 Resource Allocation for COVID-19

As seen in the COVID-19 pandemic, an increasing number of infected patients leads to increasing
demand for medical resources; which makes it challenging for policymakers and epidemiologists to
plan ahead. Mechanistic epidemiological models based on Ordinary Differential Equations (ODEs)
are often used to capture and forecast the dynamics of epidemics including for the COVID-19
pandemic [35} 24} 20, [10]. Such forecasts are typically then used as guidance to help plan for future
resource allocation [I38} 18} 143} 125]]. In this task, we study the optimization problem of hospital bed
preparation for COVID-19, one of the most common and important tasks epidemiologists focus on
during the pandemic [3} [7]. We need to decide how many beds a € R” are needed to prepare for
the next week based on the forecasted number of hospitalized patients y € R”. The optimization
objective is a combination of linear and quadratic costs, which accounts for over-preparations [a — y|+
and under-preparations [y — a] in the next 7 days over ODE-derived dynamics:
7
minimize,eg? Z elyi — aily + enlai — vily + (v — @)} + an([ai — w3 @®)
i=1

Experiment Setup. We use the SEIR+HD ODE model proposed in [24] to capture the dynamics
of the COVID-19 pandemic, which has been used in policy studies for interventions. The model is
driven by a key parameter: the transmission rate 3 that reflects the probability of disease transmission.
The forecasting model is a two-layer gated recurrent unit (GRU) [6] which takes the number of people
in each state of the SEIR+HD model in the last 21 days as input features and outputs the transmission
rate (3 for the next 7 days. We assume that /3 follows a Gaussian distribution. Since SEIR-HD is a
complex non-linear ODE system, there is no closed expression for the distribution of the number
of hospitalized patients y. Hence, we choose to sample from the forecasted distribution of 5 100
times and then simulate the SEIR-HD model to obtain the empirical distribution of the number of
hospitalized patients y.

Results. Fig.[6]shows the results on the resource
allocation for COVID-19 task. Both SO-EBM 10000

and DFL significantly outperforms the two-stage

model in terms of the task loss, yielding 10.9%+

improvement. DFL-QPTH is not included here

because it needs to use SQP to iteratively ap-
proximate the objective and is much slower than

8000

6000

Task Loss

4000

Training Time (seconds/epoch)

. . 100
DFL-CVX in this task. The performance of SO- 2000
EBM and DFL are similar, however, the training 0 - S o - S
: : : W, o O, W Ry O,
time of SO-EBM is 4.3 times faster than DFL. O‘S%e Lq/* &, 0~%g@ <~q,* sy,

The time improvement of SO-EBM is not as
large as on the energy scheduling task because Figure 6: Results on Covid-19 resource allocation.
all the methods need to compute the complex

ODE equations in the forward pass which is a time consuming part. Therefore, considering the
overall training efficiency, we argue that SO-EBM is a better option than DFL on this task in practice.

4.3 Network Security Game

In this task, we study stochastic optimization in network security games [49]. Given a network
G = (V,E), a source node s € V, and a set of target nodes T' € V, a network security game
(NSG) [50, [17, 44] defines the min-max game where the attacker attempts to travel from s to any
t € T while the defender places checkpoints on certain number of edges in the graph. Each of the

target node has a reward u(t) should the attacker reach them. The defender first chooses a mixed
strategy. Having observed the defender’s mixed strategy but not the sampled pure strategy, the
attacker attempts to choose a path. To minimize the attacker’s scores, the defender can try to predict
the attacker’s path decisions with node features and their past decisions, since the attacker is not
perfectly rational in reality. Suppose that a defines the placement of checkpoints by the defender
where a. is the probability that edge e is covered. The attackers will perform a random walk on the
graph, generating a path r, stopping at either a target or a checkpoint. The transition between two
nodes is determined by the defender’s strategy a and node-level parameters y, where y,, defines the
“attractiveness” of node u, representing the attacker’s idiosyncratic preferences. The defender wants to
choose a to maximize its expected utility: maxa Er~aEyp(rja,y) — 9(7), where T'is covered edges
sampled according to a, g(r) = u(t) if the attacker reaches target ¢ with path r and 0 if the attacker is
stopped at a checkpoint. The defender’s objective comes with the constraint Y a < k, where k = 3
represents the resources available to the defender. The optimization objective is non-convex due to
the irrational strategy of the attacker [48]].

Setup. We follow the setup of [49]], see supplementary for details.

Results. Fig.[/|shows the results on the adver-
sarial network security game task. Since the
original DFL fails on this large scale problem,
we compare a block-variable sampling approach
specialized to this task (DFL-Block)[48]]. Surro-
gate [49] performs a linear dimension reduction
for DFL to speed up the training time and im-
prove the performance by smoothing the train-
ing landscape. We did not present the results 0.0
of Surrogate in the previous two tasks because o Oy Sy, So,.
the numbers of decision variables there are rel- 0o Yooy, Oage ge ooy ot
atively small and it has even worse performance

than the original DFL approach. As we can see,
S0-EBM can achieve competitive task loss with Surrogate and outperforms DFL-block and the two-
stage method. Meanwhile, SO-EBM is 1.8 times faster than Surrogate. The increase of training time
in our method is mainly because every evaluation of the defender’s utility requires a matrix inverse;
our method needs to evaluate the utility for all the samples drawn from the proposal distribution
which results a larger matrix to inverse. However, this issue can be mitigated by using some advanced
matrix inverse algorithm [9, 32]]. DFL-Block is even worse than the two-stage model because it
back-propagates through randomly sampled variables which results in inaccruate gradient estimation.

0.8

Task Loss
I o
IN o

o
N]

Training Time (seconds/epoch)

7
Wo. O/(\Le Sl//-,. 30‘58/17

Figure 7: Results on network security game.

4.4 Ablation Study

We investigate the effectiveness of the coupled

training objective and alternative EBM training Method Task loss

algorithms via ablation studies on the load fore- Two-stage 4.52 +0.33
casting and generator scheduling task. Table|T] SO-EBM w/o MLE 431+ 0.17
shows the results. Our findings can be summa- SO-EBM w/o KLD 3.89 4+ (.18
rized as follows: (1) Both the MLE and KLD SO-EBM w/CD-LD 3.85 + 0.13
training objectives work and outperform the two- So-EBM 3.83 + 0.15

stage model. This verifies the effectiveness of
using the energy-based surrogate function to ap- Table 1: Ablation study on power generator
proximate the optimization landscape. (2) By scheduling.

dropping either the MLE or KLD term, we observe a performance degradation in our method. Specif-
ically, without the MLE term, the task loss increases by 13%; without KLD term, the task loss
increases by 2%. The larger degradation when simply minimizing the KLD term is possibly because
accurately recover the entire optimization landscape is too difficult and it needs the MLE term to help
capture the location of the optimal decision. (3) Training SO-EBM with Contrastive Divergence based
Langevin Dynamics (CD-LD) [[15] achieves similar performance but incurs longer training time (1.47
second/epoch v.s. 0.68 second/epoch). This phenomenon is likely because the optimization problem
is relatively low-dimensional, thus importance sampling works well and enjoys better efficiency in
this regime. However, even with CD-LD, SO-EBM is still 63 times faster than DFL-QPTH (1.47
second/epoch v.s. 93.12 second/epoch).

We also investigate the impact of training data
size for each method. Fig. [§] provides the task
losses and training time under different ratios of
training data on the load forecasting and genera-
tor scheduling task. As we can see, our method
outperforms the baselines constantly except for
the ratio of 0.05. When the ratio is below 0.05,
all the methods cannot work properly due to the
extremely low resource. The superior perfor-
mance of our method is because we design the -

. . 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
energy function as the expected task loss, which Ratio of training data Ratio of training data
leverages the algorithmic structure inherent in Figure 8: Task losses and training time under dif-

the optimization problem. Hence, our method ferent ratios of training data on power generator
is not very data demanding. In terms of effi- scheduling.

ciency, our method reduces the training time
significantly compared with DFL-QPTH across different amounts of training data.

-
o
N

—=— Two-stage
DFL-QPTH
—+— SO-EBM

o
=)
"

wu
n
-
=

Task Loss
w
o

&
wn
=
5]
i
Iy
\
\
%

»
=)
h
15)

N

Training Time (seconds/epoch)
=
o

"

5 Additional Related Work

The DFL works described in Section 2 focus on continuous optimization. There are also studies that
extend DFL for combinatorial optimization. [S1] relaxes the discrete decision into its continuous
counterpart and adds a quadratic regularization term to avoid vanishing gradients. [37] proposes
a log barrier regularizer and differentiates through the homogeneous self-dual embedding. [39]
proposes a noise contrastive objective by maximizing the distance between the optimal solution and
noisy samples. Our framework may be also extended for combinatorial problems by using discrete
energy-based model [11]]. The SPO+ loss [[16] has been proposed to measure the prediction errors
against optimization objectives, but it is only applicable to linear programming. ProjectNet [J]]
approximately solves the linear programming problems using a differentiable projection architecture.
Our work is also related to learning to optimize [47, |34} 126]], which learns a policy network that solves
optimization problems using supervised or reinforcement learning. However, these pure approaches
need to rediscover the structure of the optimization problem and thus data-inefficient.

6 Limitations and Discussion

We focused on addressing the scalability and generality of existing decision-focused learning (DFL)
for end-to-end stochastic optimization. We argue that these deficiencies stem from the reliance of
implicitly differentiable optimization layers based on KKT conditions. As a remedy, we circumvent
such deficiencies by replacing the implicit optimization layer with a newly parameterized energy-
based surrogate function. We proposed a coupled training objective to encourage the energy-based
surrogate well approximate the optimization landscape, as well as an efficient training procedure based
on self-normalized importance sampling. Empirically, we demonstrated that our energy-based model
is effective in a wide range of stochastic optimization problems with either convex or nonconvex
objectives. It can achieve better or comparable performance than state-of-the-art DFL methods for
stochastic optimization, while being several times or even orders of magnitude faster.

We discuss limitations and possible extensions of SO-EBM: (1) Handling more complex constraints.
Our method handles the constraints implicitly through the pre-processing step and explicitly through
the inference step. However, when the feasible space is extremely small, training the constrained EBM
may have more benefits. To train EBMs in the constrained space, one direction is to project samples
into the feasibility space. Another direction is to explore adding soft constraints to the energy function
during training, e.g., Augmented Lagrangian penalty and Barrier penalty. (2) More effective training
methods. Our method is a general framework for end-to-end stochastic programming problem based
on EBM. There are a number of training techniques [45] that can be plugged into our framework and
we can further improve the task performance using the advanced EBM training algorithms [[14}140].

Acknowledgments: We thank the anonymous reviewers for their helpful comments. This work
was supported in part by the NSF (Expeditions CCF-1918770, CAREER IIS-2028586, 11S-2027862,
IIS-1955883, 11S-2106961, 11S-2008334, CAREER 11S-2144338, PIPP CCF-2200269), CDC MInD
program, faculty research award from Facebook and funds/computing resources from Georgia Tech.

10

References

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico
Kolter. Differentiable convex optimization layers. Advances in neural information processing
systems, 32, 2019.

[2] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system
for convex optimization problems. Journal of Control and Decision, 5(1):42-60, 2018.

[3] Nick Altieri, Rebecca L Barter, James Duncan, Raaz Dwivedi, Karl Kumbier, Xiao Li, Robert
Netzorg, Briton Park, Chandan Singh, Yan Shuo Tan, et al. Curating a covid-19 data repository
and forecasting county-level death counts in the united states. arXiv preprint arXiv:2005.07882,
2020.

[4] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pages 136—-145. PMLR, 2017.

[5] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L. Nicholson,
John D. Siirola, Jean-Paul Watson, and David L. Woodruff. Pyomo—optimization modeling in
python, volume 67. Springer Science & Business Media, third edition, 2021.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[7] Estee Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea Brennen, Alvaro J
Castro Rivadeneira, Aaron Gerding, Tilmann Gneiting, Katie H House, Yuxin Huang, et al.
Evaluation of individual and ensemble probabilistic forecasts of covid-19 mortality in the united
states. Proceedings of the National Academy of Sciences, 119(15):¢2113561119, 2022.

[8] Rares Cristian, Pavithra Harsha, Georgia Perakis, Brian L Quanz, and Ioannis Spantidakis. End-
to-end learning via constraint-enforcing approximators for linear programs with applications to
supply chains. In AI for Decision Optimization Workshop of the AAAI Conference on Artificial
Intelligence, 2022.

[9] Laszlo Csanky. Fast parallel matrix inversion algorithms. In 16th Annual Symposium on
Foundations of Computer Science (sfcs 1975), pages 11-12. IEEE, 1975.

[10] Jiaming Cui, Arash Haddadan, ASM Ahsan-Ul Haque, Bijaya Adhikari, Anil Vullikanti, and
B Aditya Prakash. Information theoretic model selection for accurately estimating unreported
covid-19 infections. medRxiv, pages 2021-09, 2021.

[11] Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, and Dale Schuurmans. Learning discrete
energy-based models via auxiliary-variable local exploration. Advances in Neural Information
Processing Systems, 33:10443-10455, 2020.

[12] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1-5, 2016.

[13] Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in
stochastic optimization. Advances in neural information processing systems, 30, 2017.

[14] Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
training of energy-based models. In International Conference on Machine Learning, pages
2837-2848. PMLR, 2021.

[15] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models.
Advances in Neural Information Processing Systems, 32, 2019.

[16] Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science,
68(1):9-26, 2022.

[17] Matteo Fischetti, Ivana Ljubi¢, Michele Monaci, and Markus Sinnl. Interdiction games and
monotonicity, with application to knapsack problems. INFORMS Journal on Computing,
31(2):390-410, 2019.

11

[18] THME COVID-19 forecasting team. Modeling covid-19 scenarios for the united states. Nature
medicine, 2020.

[19] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050-1059.
PMLR, 2016.

[20] Xingjie Hao, Shanshan Cheng, Degang Wu, Tangchun Wu, Xihong Lin, and Chaolong Wang.
Reconstruction of the full transmission dynamics of covid-19 in wuhan. Nature, 584(7821):420-
424, 2020.

[21] William E Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo: modeling and solving
mathematical programs in python. Mathematical Programming Computation, 3(3):219-260,
2011.

[22] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771-1800, 2002.

[23] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[24] Morgan P Kain, Marissa L Childs, Alexander D Becker, and Erin A Mordecai. Chopping
the tail: How preventing superspreading can help to maintain covid-19 control. Epidemics,
34:100430, 2021.

[25] Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodriguez, Chao Zhang, and B Aditya
Prakash. When in doubt: Neural non-parametric uncertainty quantification for epidemic
forecasting. Advances in Neural Information Processing Systems, 34, 2021.

[26] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

[27] Sujin Kim, Raghu Pasupathy, and Shane G Henderson. A guide to sample average approximation.
Handbook of simulation optimization, pages 207-243, 2015.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Representation Learning, 2015.

[29] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[30] Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average
approximation method for stochastic discrete optimization. SIAM Journal on Optimization,
12(2):479-502, 2002.

[31] Lingkai Kong, Jimeng Sun, and Chao Zhang. Sde-net: Equipping deep neural networks with
uncertainty estimates. In International Conference on Machine Learning, pages 5405-5415.
PMLR, 2020.

[32] Aravindh Krishnamoorthy and Deepak Menon. Matrix inversion using cholesky decomposition.
In 2013 signal processing: Algorithms, architectures, arrangements, and applications (SPA),
pages 70-72. IEEE, 2013.

[33] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 20006.

[34] Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.
[35] Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, and Jeffrey Shaman.

Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus
(sars-cov-2). Science, 368(6490):489-493, 2020.

12

[36] C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
random variables. In Proceedings of the international conference on learning Representations.
International Conference on Learning Representations, 2017.

[37] Jayanta Mandi and Tias Guns. Interior point solving for Ip-based prediction+ optimisation.
Advances in Neural Information Processing Systems, 33:7272-7282, 2020.

[38] Seyed M Moghadas, Affan Shoukat, Meagan C Fitzpatrick, Chad R Wells, Pratha Sah, Abhishek
Pandey, Jeffrey D Sachs, Zheng Wang, Lauren A Meyers, Burton H Singer, et al. Projecting
hospital utilization during the covid-19 outbreaks in the united states. Proceedings of the
National Academy of Sciences, 117(16):9122-9126, 2020.

[39] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. arXiv preprint
arXiv:2011.05354, 2020.

[40] Erik Nijkamp, Ruiqgi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun Zhu, and
Ying Nian Wu. Mcmc should mix: Learning energy-based model with neural transport latent
space mcmc. In International Conference on Learning Representations, 2021.

[41] Andrew Perrault, Bryan Wilder, Eric Ewing, Aditya Mate, Bistra Dilkina, and Milind Tambe.
End-to-end game-focused learning of adversary behavior in security games. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 1378-1386, 2020.

[42] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278—-1286. PMLR, 2014.

[43] Alexander Rodriguez, Anika Tabassum, Jiaming Cui, Jiajia Xie, Javen Ho, Pulak Agarwal,
Bijaya Adhikari, and B. Aditya Prakash. Deepcovid: An operational deep learning-driven
framework for explainable real-time covid-19 forecasting. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(17):15393—-15400, May 2021.

[44] Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya, and Qishi
Wu. A survey of game theory as applied to network security. In 2010 43rd Hawaii International
Conference on System Sciences, pages 1-10. IEEE, 2010.

[45] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

[46] Bram Verweij, Shabbir Ahmed, Anton J Kleywegt, George Nemhauser, and Alexander Shapiro.
The sample average approximation method applied to stochastic routing problems: a computa-
tional study. Computational optimization and applications, 24(2):289-333, 2003.

[47] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[48] Kai Wang, Andrew Perrault, Aditya Mate, and Milind Tambe. Scalable game-focused learning of
adversary models: Data-to-decisions in network security games. In AAMAS, pages 1449-1457,
2020.

[49] Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Automatically learning compact
quality-aware surrogates for optimization problems. Advances in Neural Information Processing
Systems, 33:9586-9596, 2020.

[50] Alan Washburn and Kevin Wood. Two-person zero-sum games for network interdiction.
Operations research, 43(2):243-251, 1995.

[51] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1658-1665, 2019.

[52] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse
reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.

13

[53] Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 8, pages 1433-1438. Chicago, IL, USA, 2008.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Preliminaries
	Proposed Method
	Energy-based Model for End-to-end Stochastic Programming
	Augmenting Energy-Based Objective with Distribution Regularizer
	Training with Contrastive Divergence and Self-normalized Importance Sampling

	Experiments
	Load Forecasting and Generator Scheduling
	Resource Allocation for COVID-19
	Network Security Game
	Ablation Study

	Additional Related Work
	Limitations and Discussion

