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ABSTRACT

Vaccination is a standard public health intervention for controlling
the spread of epidemics. However, the supply of vaccines is typi-
cally limited, and therefore, their deployment needs to be optimized.
Further, vaccines are produced over time, so the strategies have to
be temporal. We study the problem EpiControl of designing vacci-
nation strategies, within available budget constraints, to minimize
the spread of an outbreak.

This is a challenging stochastic optimization problem. We de-
sign a bicriteria approximation algorithm, which combines a linear
programming based rounding, along with the sample average ap-
proximation technique. Our approach also provides the empirical
approximation factor for the problem instance, relative to the opti-
mum. We find that the approximation factor is significantly better
than the worst case bound, and, in practice, is a small constant
factor. Further, our method shows significantly better performance
than all prior heuristics for this problem. With additional pruning
techniques, we are able to scale our algorithm to networks with
millions of edges.
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1 INTRODUCTION

Vaccination and social distancing are the primary strategies for
controlling the spread of epidemic outbreaks [4, 17, 21, 23, 25, 27–
29, 38–40]. The production of vaccines is expensive and time in-
tensive, and so there is always a shortage of vaccine supply [13].
As a result, there is a lot of interest in evaluating different kinds
of interventions [17, 21], and finding optimal interventions [23].
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The spread of epidemics is very complex, and SIR type diffusion
processes (and variations) are commonly used: informally, each
infected individual 𝑢 (in state I) spreads the infection to each sus-
ceptible neighbor 𝑣 (in state S) with transmission probability 𝑝 (𝑢, 𝑣)
(or 𝑝 , if this is uniform for all edges); this is defined formally in Sec-
tion 2. These can be modeled as a system of differential equations
[23, 36, 38], or as stochastic agent based models on social contact
networks, e.g., [22]. Differential equation models are small enough
that they can be solved optimally by simple brute-force local search
methods [23].

However, network and agent based models cannot be easily
optimized this way. In this paper, we study EpiControl, which
involves designing vaccination strategies to minimize the expected

outbreak size in an SIR epidemic process on a network 𝐺 = (𝑉 , 𝐸).
There is a lot of relevant prior work on this topic, and can be split
along the following lines: (1) Optimization in the SI/SIS type models,
in static or dynamic networks, e.g., [25, 27–30]. Much of this work
is based on controlling spectral properties, but does not give any
guaranteed bounds on the expected outbreak size; (2) Firefighter
problem, which can be viewed as EpiControl on SI model with
with 𝑝 = 1, e.g., [3, 12]. Rigorous bounds are known for the number
of infected and saved. However, this has not been studied much
for the case where 𝑝 < 1, except [34], which only gives rigorous
algorithms for trees. A special case of this problem is with work
of [4], which considers EpiControl but with the intervention
specified at time 0; (3) Static interventions in SIR models, e.g., [39,
40], which also do not directly bound the expected outbreak size, (4)
Heuristics for picking nodes based on degree or centrality, e.g., [8,
24], which work for all models but give no guarantees. In summary,
none of the prior results directly address the EpiControl problem
for the SIR models of epidemics, with 𝑝 < 1.
Our results.We present algorithm saaRound for the EpiControl
problem. Our specific contributions are described below.
• We design algorithm saaRound for selecting a set of nodes within
a given budget, to vaccinate at the start of the epidemic (the 1sEpi-
Control problem).We show a rigorous worst case approximation
guarantee on the performance of saaRound, which is logarith-
mic in the number of paths in sampled subgraphs of 𝐺 ; this is
typically significantly smaller than the number of paths in 𝐺 , so
that in practice, saaRound has a much smaller approximation
ratio. Our main technical ideas are rounding a linear program-
ming (LP) relaxation, along with the sample average technique.
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By comparing with the LP objective, we are able to obtain an
empirical approximation guarantee for any instance. We show
that saaRound is a good heuristic for the multi-stage problem as
well, and gives similar guarantees as the single-stage when the
disease transmission subgraphs are trees (e.g., when 𝑝 is low).

• We augment saaRound with a sparsification step, which signifi-
cantly reduces the size of the LP, and is able to scale to networks
with millions of edges.

• We evaluate our algorithms on diverse real and random networks.
We show that saaRound has an approximation ratio very close
to 1, significantly better than the worst case guarantee we prove
rigorously. We find that saaRound outperforms two of the most
commonly used baselines for intervention design. We also exam-
ine the structure of solutions, and find significant differences in
the characteristics of nodes picked in different stages.

At the start of every flu outbreak, and duringmajor pandemics, there
is a lot of interest from the CDC and other public health agencies
on finding optimal solutions in different models, e.g., [17, 21, 23,
36]. These can be used to guide policies when there are shortages,
including the logistics of where vaccines should be deployed [36].
Our methods can help in designing effective policies using agent
based models, which have been found to be more useful in planning
for large outbreaks, e.g., [11, 15, 17, 21].

2 NOTATION AND PROBLEMS

Network and diseasemodel (see Table 1). Let𝐺 = (𝑉 , 𝐸) be a con-
tact graph where𝑉 is the set of people (or nodes) and 𝑒 = (𝑢, 𝑣) ∈ 𝐸

if nodes 𝑢, 𝑣 ∈ 𝑉 come into direct contact, which can allow a dis-
ease to spread. Let 𝑛 = |𝑉 | be the number of nodes in graph 𝐺 . We
assume a simple SIR model of disease spread [22], in which each
node is in one of the following states: susceptible (S), infectious
(I) or recovered (R). The epidemic starts at one or more externally
infected nodes, and spreads from an infected node 𝑢 to each sus-
ceptible neighbor 𝑣 with probability 𝑝 . An infected node becomes
recovered in the next time step. We assume 𝑠𝑣 is the probability
that 𝑣 is initially infected; s denotes the initial infection vector. Let
EInf(𝐺, s) denote the expected number of infections in this process.
Let𝐻 (𝑠𝑖𝑟 ) =< 𝐼 (0), . . . , 𝐼 (𝜏), 𝐸 ′ > denote a stochastic outcome from
the SIR process in this case, in which (a) 𝐼 (𝑡) denotes the set of
nodes that are infected at time 𝑡 , (b) 𝐼 (0) is the source nodes, and
(c) 𝐸 ′ is the (random) subset of edges on which the infection spread.
Then, EInf(𝐺, s) = 𝐸𝐻 (𝑠𝑖𝑟 ) [

∑
𝑡 |𝐼 (𝑡) |].

Note. The SIR model generalizes the well studied independent cas-

cades model [18]. Also, there are lots of variations of the SIR model,
such as: varying transmission probability 𝑝 (𝑢, 𝑣) on each edge (𝑢, 𝑣),
with an exposed state, varying infectious duration, etc.
Interventions and objective.We use 𝑥𝑣𝑡 as an indicator variable,
which is 1 if node 𝑣 gets vaccinated at time 𝑡 ; let X𝑡 = {𝑣 : 𝑥𝑣𝑡 =

1, 𝑣 ∈ 𝑉 }, and let 𝐵𝑡 denote the number of vaccines available for
use at time 𝑡 . We assume the vaccine is immediately effective. In
our discussion, we primarily focus on interventions at one or two
time steps, and use the following notation:
(1) Single stage: EInf(𝐺, s,X0) denotes the expected number of in-
fections when the intervention is done for set X0 at time 𝑡 = 0. Ex-
tending the earlier notation, let 𝐻 (𝑠𝑖𝑟 ) (X0) =< 𝐼 (0), . . . , 𝐼 (𝜏), 𝐸 ′ >
denote a stochastic outcome from the SIR process in this case (so

Figure 1: Example illustrating the SIR model: the con-

tact network 𝐺 = (𝑉 , 𝐸) is shown in the left, with

𝑉 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 } (shown in circles), and edges as solid

lines.Node 𝐴 is initially infected, and node 𝐶 is vaccinated.

The four subgraphs 𝐻
(𝑠𝑖𝑟 )
1 , 𝐻

(𝑠𝑖𝑟 )
2 , 𝐻

(𝑠𝑖𝑟 )
3 , 𝐻

(𝑠𝑖𝑟 )
4 (on the right)

are possible stochastic outcomes in the SIR model.

none of the nodes in X0 is part of any 𝐼 (𝑡).
(2) Two stage: EInf(𝐺, s,X0,X𝑇 ) denotes the expected number of
infections if the interventions are done on setsX0 andX𝑇 at times 0
and𝑇 , respectively. In this case,𝐻 (𝑠𝑖𝑟 ) (X0,X𝑇 ) denotes a stochastic
outcome. We drop 𝐺 and s, when it is clear from the context.

Notation Definition

𝐺 = (𝑉 , 𝐸) Graph
s Source distribution
𝑝 , 𝑝 (𝑢, 𝑣) Transmission probability
𝑥𝑣𝑡 Indicator for node 𝑣 vaccinated at time 𝑡
X𝑡 Set of nodes vaccinated at time 𝑡
EInf(𝐺, s,X0) Exp. #infections for single stage with intervention X0
EInf(𝐺, s,X0,X𝑇 ) Exp. #infections for two stage version
1sEpiControl Single stage vaccination problem
2sEpiControl Two stage vaccination problem
(𝛼, 𝛽) approximation Bicriteria approximation factor

Table 1: Summary of notation used in the paper.

Example. Figure 1 shows the SIR model and the definitions of the
above quantities on a graph𝐺 with six people. Initially,𝐴 is infected,
and 𝐶 is vaccinated. In the SIR model, the disease spreads from an
infected person to each susceptible neighbor with probability 𝑝 ,
and does not spread with probability 1−𝑝 . Therefore, we have four
possible stochastic outcomes 𝐻 (𝑠𝑖𝑟 )

1 , . . . , 𝐻
(𝑠𝑖𝑟 )
4 , which occur with

probabilities 1−𝑝 , 𝑝 (1−𝑝), 𝑝2 (1−𝑝), and 𝑝3, respectively. Suppose
we have T = {0}. Then, 𝑥𝐶0 = 1, and X = {X0} = {{𝐶}}. We have

EInf(X) = (1 − 𝑝) + 2𝑝 (1 − 𝑝) + 3𝑝2 (1 − 𝑝) + 4𝑝3

Problem statement. Given a contact network 𝐺 = (𝑉 , 𝐸), and an
initial infection vector s, we consider the following problems
• Single stage vaccinationproblem (1sEpiControl): given bud-
get 𝐵0, choose X0 such that |X0 | ≤ 𝐵0 and EInf(𝐺, s,X0) is mini-
mized.

• Two stage vaccination problem (2sEpiControl): given bud-
get 𝐵0, 𝐵𝑇 , choose X0,X𝑇 such that |X0 | ≤ 𝐵0, |X𝑇 | ≤ 𝐵𝑇 , and
EInf(𝐺, s,X0,X𝑇 ) is minimized.

For conciseness, we refer to them as EpiControl problems. Our
methods can be extended to more than two time steps, but we omit
them to simplify the notation and discussion.
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Bi-criteria approximate solution. For the 1sEpiControl prob-
lem, we say that an intervention X0 is an (𝛼, 𝛽) - approximation
if: (1) |X0 | ≤ 𝛼𝐵0, and (2) EInf(𝐺, s,X0) ≤ 𝛽EInf(𝐺, s,X∗

0), where
X∗

0 is an optimal solution. We say that an algorithm is an (𝛼, 𝛽)-
approximation algorithm, if it gives an (𝛼, 𝛽)-approximate solution.
This notion also extends to the multi-stage intervention problem.

We use the following versions of the Chernoff bound.

Theorem 2.1. (Theorem 1.1 of [10]) Let 𝑍 =
∑𝑛
𝑖=1 𝑍𝑖 , where 𝑍𝑖

are independently distributed random variables in [0, 1]. Then, for
any 𝜖 ∈ (0, 1), we have Pr[𝑍 ∉ [(1 − 𝜖)𝐸 [𝑍 ], (1 + 𝜖)𝐸 [𝑍 ]]] ≤
2𝑒𝑥𝑝 (−𝜖2𝐸 [𝑍 ]/3). Also, for any 𝑡 > 2𝑒𝐸 [𝑍 ], Pr[𝑍 > 𝑡] ≤ 2−𝑡 .

3 OUR APPROACH

We first present algorithm saaRound for the 1sEpiControl prob-
lem, using a linear programming rounding technique, combined
with the sample average approximation technique from stochastic
optimization. We then show that this can be significantly speeded
up by augmenting it with a sparsification step. Finally, we discuss
how to extend this approach to the multi-stage version.

3.1 Algorithm saaRound for 1sEpiControl

Algorithm 1 describes saaRound. It is based on a linear program, in
which the variables 𝑥𝑣0 are indicators for node 𝑣 getting vaccinated
at 𝑡 = 0 as defined in Section 2. The variables 𝑦𝑣 𝑗 are indicators
for node 𝑣 getting infected in sample 𝐻 𝑗 (i.e., there is a path from
src(𝐻 𝑗 ) to 𝑣 with no node on it vaccinated). We first describe the
intuition behind the algorithm, and then analyze its performance.

Algorithm 1 saaRound
Input:𝐺 = (𝑉 , 𝐸), s, 𝐵0
Output: 𝑋0

1: Construct a sampled graph 𝐻 𝑗 = (𝑉 , 𝐸 𝑗 ) , for 𝑗 = 1, . . . , 𝑀 , by picking
each edge 𝑒 ∈ 𝐸 to be in 𝐸 𝑗 with probability 𝑝 . Also pick a set of sources
src(𝐻 𝑗 ) by sampling from s

2: Solve the following linear program (𝐿𝑃𝑠𝑎𝑎 )

(𝐿𝑃𝑠𝑎𝑎) min
1
𝑀

∑
𝑗

∑
𝑣

𝑦𝑣 𝑗 (1)

∀𝑗, ∀𝑢 ∈ 𝑉 : 𝑦𝑢𝑗 ≤ 1 − 𝑥𝑢0 (2)
∀𝑗, ∀𝑢 ∈ 𝑉 , (𝑤,𝑢) ∈ 𝐸 𝑗 : 𝑦𝑢𝑗 ≥ 𝑦𝑤𝑗 − 𝑥𝑢0 (3)

∀𝑗, ∀𝑠 ∈ 𝑠𝑟𝑐 (𝐻 𝑗 ) : 𝑦𝑠 𝑗 = 1 − 𝑥𝑢0 (4)∑
𝑢∈𝑉

𝑥𝑢0 ≤ 𝐵0 (5)

All variables ∈ [0, 1] (6)

3: Let 𝑥, 𝑦 be the optimal fractional solution to (LP). We round it to an
integral solution 𝑋,𝑌 in the following manner

(1) If 𝑦𝑣 𝑗 ∈ {0, 1}, set 𝑌𝑣 𝑗 = 𝑦𝑣 𝑗 . Similarly, if 𝑥𝑣0 ∈ {0, 1}, set
𝑋𝑣0 = 𝑥𝑣0.

(2) Round 𝑌𝑣 𝑗 = 1 for each (𝑣, 𝑗) if 𝑦𝑣 𝑗 ≥ 1
2 , otherwise set 𝑌𝑣 𝑗 = 0.

(3) For each 𝑣, set 𝑋𝑣0 = 1 with probability
min{1, 2𝑥𝑣0 log(4𝑛𝑀𝑁 ) }, where 𝑁 is the maximum number
of paths from src(𝐻 𝑗 ) to any node 𝑣 in 𝐻 𝑗 .

(4) 𝑋0 = {𝑣 : 𝑋𝑣0 = 1} is the set of nodes vaccinated.
4: return 𝑋0

3.2 Intuition behind saaRound and its analysis

Our algorithm involves four key ideas, which are described below,
along with an intuitive description of the steps of the algorithm.
• Sample average approximation technique: The first idea (see,
e.g., [33]) is that it suffices to get a solution which minimizes the
average number of infections in a set of 𝑀 sampled outcomes,
in order to minimize EInf(·), which is an expectation over all
possible outcomes; we show that it suffices that𝑀 is bounded by
a polynomial in 𝑛. Further, instead of actually using simulation
outcomes, Step 1 and a breadth-first search (BFS) in each simula-
tion from sources exploit an equivalence between an SIR process
and percolation, making this much more efficient.

• Compact integer program: We show that using the structure
of the SIR model, it suffices to work with sampled subgraphs
𝐻 𝑗 , instead of the stochastic outcomes of the SIR process. The
problem is challenging even if we have to minimize the average
number of infections restricted to 𝐻1, . . . , 𝐻𝑀 . We start with an
integer program (IP) which expresses the following constraints:
if a node 𝑢 is not infected in 𝐻 𝑗 (which is indicated by 𝑦𝑢 𝑗 = 0),
then for every path 𝑃 from a node in src(𝐻 𝑗 ) to 𝑢 in 𝐻 𝑗 , there
must be a node 𝑣 which has been vaccinated. However, such
an integer program would have exponentially many constraints
(one for each path). Instead, we design a more compact program
(referred to as 𝐼𝑃𝑠𝑎𝑎), simply based on states of nodes on an edge,
as expressed in constraints (3).

• Linear relaxation: 𝐼𝑃𝑠𝑎𝑎 cannot be solved in polynomial time,
and we consider a linear relaxation of it (referred to as 𝐿𝑃𝑠𝑎𝑎),
by replacing the binary constraints by (6). 𝐿𝑃𝑠𝑎𝑎 involves mini-
mizing a linear objective over a convex polytope, and so step 2
of saaRound can be done efficiently to compute the fractional
solutions 𝑥,𝑦. Also note that since 𝐿𝑃𝑠𝑎𝑎 is optimizing over a
larger space (specifically, the convex hull of all the feasible inte-
gral solutions), the objective value in (1) might be smaller than
the integral objective value.

• Rounding to an integral solution: If the solution computed
by 𝐿𝑃𝑠𝑎𝑎 is integral, we are done (Step 3(1)). However, in gen-
eral solution 𝑥 is fractional, which poses a problem: if we have
𝑥𝑢0 ∈ (0, 1), e.g., a fractional value of 0.2, it is not clear how to
construct a valid integral solution. In Step 3(2) of saaRound, we
pick all the nodes with𝑦𝑢 𝑗 ≤ 1/2 (denoted by𝑌𝑢 𝑗 = 0), and pick a
set of nodes to vaccinate (Step 3(2)), such that every node 𝑢 with
𝑌𝑢 𝑗 = 0 gets disconnected from src(𝐻 𝑗 ). Step 3(3) achieves this
by rounding the fractional solution 𝑥 , after appropriate scaling.
This randomized rounding step ensures that the budgets are not
violated by much. This also implies that any node 𝑢 which gets
infected in 𝐻 𝑗 has 𝑦𝑢 𝑗 ≥ 1/2, so that the average number of in-
fections can be bounded by at most twice the fractional objective
value.

3.3 Analysis of saaRound

For a sample𝐻 𝑗 computed in Step 1 of saaRound, let 𝑓 (𝐻 𝑗 (X0)) =<
𝑈 (0), . . . ,𝑈 (𝜏), 𝐸 ′

𝑗
> be defined in the following manner: (1) 𝐸 ′

𝑗

is the subset of 𝐸 𝑗 when nodes in X0 are removed, (2) 𝑈 (0) =

src(𝐻 𝑗 ) − X0, and (3) for all 𝑡 > 0, 𝑈 (𝑡) is the set of nodes at
distance 𝑡 in the subgraph induced by 𝐸 ′

𝑗
. We first observe that the

sampling process is “equivalent” to the SIR process.
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Observation 1. For a given outcome O =< 𝑈 (0), . . . ,𝑈 (𝜏), 𝐸 ′
𝑗
>,

Pr[𝐻 (𝑠𝑖𝑟 ) (X0) = O] = Pr[𝑓 (𝐻 𝑗 (X0)) = O].
For a vaccination set X, let 𝑍 𝑗 (X) be the number of nodes in

𝐻 𝑗 − X, which are still reachable from src(𝐻 𝑗 ); note that this
includes the sources themselves. From Observation 1, it follows
that 𝑍 𝑗 (X) is equal to the number of infections in the stochastic
outcome 𝐻 (𝑠𝑖𝑟 ) (X) of the SIR process. Let 𝑍 (X) = 1

𝑀

∑
𝑗 𝑍 𝑗 (X),

and let 𝑋𝑜𝑝𝑡 = argmin𝑋 ′𝑍 (𝑋 ′) be the solution that achieves the
minimum average number of infections in the samples. Finally, let
𝑋𝑜𝑝𝑡 = argmin𝑋 ′EInf(𝑋 ′) be the optimal solution to the
1sEpiControl instance. The following lemma shows that the aver-
age number of infections achieved by a solution X restricted to the
samples 𝐻1, . . . , 𝐻𝑀 is close to the EInf objective.

Lemma 3.1. Let 𝑍 (·) be as defined above. If𝑀 ≥ 24𝑛2 log𝑛, with
probability at least 1 − 1/𝑛, for every intervention set X, we have
𝑍 (X) ∈ [ 1

2EInf(X),
3
2EInf(X)].

Proof. From Observation 1, we have 𝐸 [𝑍 (X)] = 𝐸 [𝑍 𝑗 (X)] =

EInf(X) for all 𝑗 . The𝑍 𝑗 (X) variables are independent, and
𝑍 𝑗 (X)

𝑛 ∈
[0, 1]. This implies the Chernoff bound (Theorem 2.1) can be applied
to𝑀 𝑍 (X)

𝑛 =
∑

𝑗
𝑍 𝑗 (X)

𝑛 , so that

Pr
[𝑀𝑍 (X)

𝑛
∉

[𝑀EInf(X)
2𝑛

,
3𝑀EInf(X)

2𝑛

] ]
≤ 2𝑒𝑥𝑝 (− 𝑀

12𝑛
EInf(X)) .

We have EInf(X) ≥ 1, since there is always at least one infec-
tion. For 𝑀 = 24𝑛2 log𝑛, this probability is at most 2𝑒−2𝑛 log𝑛 =

2
𝑛𝑛𝑛𝑛 . The number of possible intervention sets is the number of
possible sets X ⊆ 𝑉 , which is at most 2𝑛 . Therefore, the proba-
bility that there exists an intervention set X for which 𝑍 (X) ∉

[ 1
2EInf(X),

3
2EInf(X)] is at most 2𝑛 · 2

𝑛𝑛𝑛𝑛 ≤ 1
𝑛 for 𝑛 > 1. □

Recall that 𝐼𝑃𝑠𝑎𝑎 is the integral version of 𝐿𝑃𝑠𝑎𝑎 , obtained by
requiring all the variables to be integral, instead of constraints (6).
We first show that 𝐼𝑃𝑠𝑎𝑎 is “valid”.

Lemma 3.2. For every feasible intervention set X, there exists a
feasible integral solution 𝑥,𝑦 to 𝐼𝑃𝑠𝑎𝑎 , such that

1
𝑀

∑
𝑗

∑
𝑣 𝑦𝑣,𝑗 =

𝑍 ({𝑣 : 𝑥𝑣 = 1}). If 𝑥,𝑦 is an optimal solution to 𝐼𝑃𝑠𝑎𝑎 , 𝑍 (𝑋𝑜𝑝𝑡 ) =
1
𝑀

∑
𝑗

∑
𝑣 𝑦𝑣,𝑗

Proof. (Sketch) First, consider a feasible intervention X. We
define 𝑥𝑣 = 1 for all 𝑣 ∈ X. We define𝑦 in the following manner. Let
𝑓 (𝐻 𝑗 (X)) =< 𝑈 𝑗 (0), . . . ,𝑈 𝑗 (𝜏 𝑗 ), 𝐸 ′𝑗 >, as defined earlier; we have
𝑍 𝑗 (X) =

∑
𝑡 |𝑈 (𝑡) |. We define 𝑦𝑣,𝑗 = 1 if 𝑣 ∈ ∪𝑡𝑈 𝑗 (𝑡). We show

that 𝑥,𝑦 is a feasible solution to 𝐼𝑃𝑠𝑎𝑎 . For any 𝑗 , consider a node
𝑢 ∈ 𝑈 𝑗 (𝑡) for some 𝑡 . Then, there exists a path 𝑃 = 𝑢0, 𝑢1, . . . , 𝑢𝑡 = 𝑢

with𝑢𝑖 ∈ 𝑈 𝑗 (𝑖) for 𝑖 ≤ 𝑡 . By construction, for each node𝑢𝑖 , we have
𝑦𝑢𝑖 , 𝑗 = 1 ≥ 𝑦𝑤𝑗 − 𝑧𝑢𝑖0 for every neighbor 𝑤 of 𝑢, which implies
the constraint (3) is satisfied for 𝑢, and each of its neighbor𝑤 . Let
𝑈 = ∪𝜏 𝑗

𝑡=0𝑈 𝑗 (𝑡). Consider a node 𝑢 ∉ 𝑈 . If 𝑢 has a neighbor𝑤 ∈ 𝑈 ,
it must be the case that𝑢 ∈ X, else node𝑢 would be infected at time
𝜏 𝑗 + 1, and would have been in a set𝑈 (𝜏 𝑗 + 1). This implies 𝑥𝑢0 = 1,
and the constraint (3) holds for node 𝑢 and any neighbor𝑤 . If 𝑢 has
no neighbor𝑤 ∈ 𝑈 , then 𝑦𝑤𝑗 = 0, and so the constraint (3) holds
for 𝑢,𝑤 . The converse follows similarly. We need the following
additional property: if 𝑦𝑢 𝑗 = 1, there is a path 𝑃 from src(𝐻 𝑗 ) with
𝑦𝑢𝑖 𝑗 = 1 for all nodes𝑢𝑖 ∈ 𝑃 ; this holds due to the min objective. □

Lemma 3.3. For any 𝐻 𝑗 , and any node 𝑣 ∈ 𝑉 with 𝑦𝑣 𝑗 < 1
2 ,

Pr[𝑣 is reachable from src(𝐻 𝑗 ) in 𝐻 𝑗 [𝑉 − X]] < 1
4𝑛𝑀 , where𝐻 𝑗 [𝑉−

X] is the graph induced by removing the nodes in X from 𝐻 𝑗 .

Proof. Let P𝑣 𝑗 = {𝑃1, . . . , 𝑃𝐿} be the set of paths to node 𝑣 in
𝐻 𝑗 . For a path 𝑃 , let 𝑆 (𝑃) = {𝑢 : 𝑢 ∈ 𝑃} be set of nodes on the path
𝑃 . Node 𝑣 ∈ 𝑉 is reachable from src(𝐻 𝑗 ) in𝐻 𝑗 [𝑉 −X] if and only if
there exists some path 𝑃 ∈ P𝑣 𝑗 such that none of the nodes in 𝑆 (𝑃)
are vaccinated (i.e., 𝑋𝑢0 = 0, ∀𝑢 ∈ 𝑆 (𝑃)). If there exists 𝑢 ∈ 𝑆 (𝑃)
with 2𝑥𝑢0 log(4𝑛𝑀𝑁 ) ≥ 1, the rounding ensures that 𝑋𝑢0 = 1;
therefore, we only consider the case 2𝑥𝑢0 log(4𝑛𝑀𝑁 ) ≤ 1. Our
rounding ensures that we have Pr[𝑋𝑢0 = 1] ≥ 2𝑥𝑢0 log(4𝑛𝑀𝑁 ),
so that Pr[∑𝑢∈𝑆 (𝑃 ) 𝑋𝑢0 = 0] is upper bounded by

∏
𝑢∈𝑆 (𝑃 )

(
1 −

2𝑥𝑢0 log(4𝑛𝑀𝑁 )
)
≤ 𝑒−

∑
𝑢∈𝑆 (𝑃 ) 2𝑥𝑢0 log(4𝑛𝑀𝑁 ) ≤ 𝑒− log(4𝑛𝑀𝑁 ) =

1
4𝑛𝑀𝑁

, since
∑
𝑢∈𝑆 (𝑃 ) 𝑥𝑢0 ≥ 1 − 𝑦𝑣 𝑗 ≥ 1/2. Equivalently, the prob-

ability that no node from 𝑆 (𝑃) is picked is at most 1
4𝑛𝑀𝑁

; here we
say a node is picked from 𝑆 (𝑃) if 𝑋𝑢0 = 1 for some 𝑢 ∈ 𝑆 (𝑃). By a
union bound, the probability that there exists a path 𝑃 ∈ P𝑣 𝑗 such
that no node from 𝑆 (𝑃) is picked is at most 𝐿

4𝑛𝑀𝑁
≤ 1

4𝑛𝑀 (since,
𝐿 ≤ 𝑁 ). Therefore, the lemma follows. □

Lemma 3.4. With probability at least 1 − 1/𝑛, we have |𝑋0 | ≤
12 log(4𝑛𝑀𝑁 )𝐵0.

Proof. The expected number of nodes picked for vaccination is

given by 𝜇 = 𝐸

[ ∑
𝑢 𝑋𝑢0

]
≤ ∑

𝑢 2𝑥𝑢0 log(4𝑛𝑀𝑁 ) ≤ 2 log(4𝑛𝑀𝑁 )𝐵0.

The first inequality is by linearity of expectation and the second
inequality follows from the constraint (5) of 𝐿𝑃𝑠𝑎𝑎 . The 𝑋𝑢0’s are
all rounded independently, we have

Pr
[∑

𝑢

𝑋𝑢0 > 12 log(4𝑛𝑀𝑁 )𝐵0

]
≤ Pr

[∑
𝑢

𝑋𝑢0 ≥ 6𝜇
]

≤ 𝑒𝑥𝑝 (−6 log(4𝑛𝑀𝑁 )𝐵0)

≤ 1
𝑛
.

The first inequality follows from the bound on 𝜇. The second in-
equality follows from the Chernoff bound (Theorem 2.1), as 6𝜇 ≥
2𝑒𝜇. The last inequality follows as 6 log(4𝑛𝑀𝑁 )𝐵0 ≥ log𝑛. □

Theorem 3.5. Let 𝑋0 denote the vaccination set computed by

algorithm saaRound. Then, with probability at least 1/2, we have
EInf(𝑋0) ≤ 6EInf(𝑋𝑜𝑝𝑡 ), and |𝑋0 | ≤ 12 log(4𝑛𝑀𝑁 )𝐵0.

Proof. (Sketch) Let 𝑋𝑜𝑝𝑡 be as defined above. By Lemma 3.3,
for any 𝑣, 𝑗 , if 𝑦𝑣 𝑗 ≤ 1/2, the probability that node 𝑣 is reachable
from src(𝐻 𝑗 ) is at most 1

4𝑛𝑀 . By a union bound, the probability
that this holds for at least one vertex 𝑣 ∈ 𝑉 (for a fixed 𝑗 ) is at most

1
4𝑀 . This implies that with probability at least 1 − 1

4𝑀 ,

𝑍 𝑗 (𝑋0) ≤ |{𝑣 : 𝑦𝑣 𝑗 ≥ 1/2}| ≤
∑

𝑣:𝑦𝑣 𝑗 ≥1/2
2𝑦𝑣 𝑗 ≤

∑
𝑣

2𝑦𝑣 𝑗

By a union bound, with probability at least 1 − 𝑀
4𝑀 = 1 − 1

4 , we
have 𝑍 𝑗 (𝑋0) ≤ 2

∑
𝑣 𝑦𝑣 𝑗 , for all 𝑗 . By definition of 𝑋𝑜𝑝𝑡 , we have

1
𝑀

∑
𝑗 𝑍 𝑗 (𝑋0) ≤ 1

𝑀

∑
𝑣,𝑗 2𝑦𝑣 𝑗 ≤ 2𝑍 (𝑋𝑜𝑝𝑡 ), since the LP solution

is also a lower bound on 𝑍 (𝑋𝑜𝑝𝑡 ). By Lemma 3.4, the condition
|𝑋0 | ≤ 12 log(4𝑛𝑀𝑁 )𝐵0 holds, in addition to 𝑍 (𝑋0) ≤ 2𝑍 (𝑋𝑜𝑝𝑡 ) ≤
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2𝑍 (𝑋𝑜𝑝𝑡 ), with probability at least 1 − 1
4 − 1

𝑛 , since 𝑍 (𝑋𝑜𝑝𝑡 ) ≤
𝑍 (𝑋𝑜𝑝𝑡 ), by definition of 𝑋𝑜𝑝𝑡 .

By Lemma 3.1, with probability at least 1− 1
𝑛 , we have𝑍 (𝑋𝑜𝑝𝑡 ) ≤

3
2EInf(𝑋𝑜𝑝𝑡 ), and

1
2EInf(𝑋0) ≤ 𝑍 (𝑋0). This gives us

EInf(𝑋0) ≤ 2𝑍 (𝑋0) ≤ 4𝑍 (𝑋𝑜𝑝𝑡 ) ≤ 6EInf(𝑋𝑜𝑝𝑡 )
Therefore, all the conditions of the theorem hold with probability
≥ 1 − 1

4 − 2
𝑛 ≥ 1

2 . □

3.4 Extension to the 2sEpiControl problem

We discuss the changes to be made to 𝐿𝑃𝑠𝑎𝑎 to adapt it for the two-
stage version (this can be similarly extended to multiple stages).
We have 𝐵0, 𝐵𝑇 as inputs. After step (1) of saaRound, run breadth
first search (BFS) in each 𝐻 𝑗 from the nodes in src(𝐻 𝑗 ). Let 𝑉𝑗,𝑡
denote the set of all nodes at level 𝑡 in the BFS tree in 𝐻 𝑗 (with the
nodes in src(𝐻 𝑗 ) at level 0); let 𝑉𝑗,≥𝑡 = ∪𝑡 ′≥𝑡𝑉𝑗,𝑡 denote the set of
all nodes at level 𝑡 or more.

Constraint (2) is modified in the following manner: for all nodes
𝑢 in the set 𝑉𝑗,≥𝑇 − src(𝐻 𝑗 ) in each sample 𝐻 𝑗 , we have

∀𝑗, 𝑢 ∈ 𝑉𝑗,≥𝑇 − src(𝐻 𝑗 ),∀𝑡 : 𝑦𝑢 𝑗 ≤ 1 − 𝑥𝑢𝑡 .

The Constraint (3) is changed to

∀𝑗,∀𝑢 ∈ 𝑉 , (𝑤,𝑢) ∈ 𝐸 𝑗 : 𝑦𝑢 𝑗 ≥ 𝑦𝑤𝑗 −
∑

𝑡 :𝑢∈𝑉𝑗,≥𝑡

𝑥𝑢𝑡 .

We add the constraint ∑
𝑢

𝑥𝑢𝑇 ≤ 𝐵𝑇 .

We refer to this linear program as 𝐿𝑃𝑒𝑠𝑎𝑎 The rounding procedure
is same for the 𝑥 and 𝑦 variables as in saaRound. The algorithm
returns 𝑋0, 𝑋𝑇 as the solution.
Analysis: If the sampled subgraphs are trees (which is typical for
low transmission probability), 𝐿𝑃𝑒𝑠𝑎𝑎 is valid, and we can show the
same guarantees as Theorem 3.5. In general, however, 𝐿𝑃𝑒𝑠𝑎𝑎 may
not be valid, and the solution might not have these guarantees, due
to the following reason: suppose there is a node 𝑢 which is at level
< 𝑇 in a sampled subgraph 𝐻 𝑗 before the first stage of intervention
is done at time 0. After a set 𝑋0 is picked (and removed from the
graph), the distance of 𝑢 from src(𝐻 𝑗 ) might increase, and it could
be vaccinated at time 𝑇 . However, our algorithm will not pick such
nodes, and thus optimizes over a smaller decision space.

3.5 Improving performance and speeding up

saaRound

Improved approximation factor. The worst case approximation
is most impacted by the scaling we do in step 4(3) of saaRound,
which is needed for the application of the Chernoff bound in Lemma
3.4. However, as we discuss later, we find that 𝐿𝑃𝑠𝑎𝑎 computes near-
integral solutions, in which most (and sometimes all) variables are
integral. Step 4(1) handles integral variables separately. We also
modify Step 4(3) by using a smaller scaling factor, depending on
the fractional value.
Better scaling. The main bottleneck in saaRound is the solution
of 𝐿𝑃𝑠𝑎𝑎 , which has: 𝑛𝑀 variables of the form 𝑦𝑢 𝑗 , 𝑛 |T | variables
of the form 𝑥𝑢𝑡 , and

∑
𝑗 |𝐸 (𝐻 𝑗 ) | constraints (3). The worst case

dependence of the running time of LP solvers is super-quadratic in

these parameters (though we find the Gurobi solver [16] scales very
well in practice, as we discuss later). In order to improve the scaling
of saaRound to larger instances, we use the following methods.
• Reduced number of samples: the rigorous bound on the number
of samples needed in the worst case comes from Lemma 3.1, as
a result of the Chernoff bound. In practice, we find that there
is concentration even with 𝑂 (

√
𝑛) samples, and so we use fewer

samples in our experiments. This can be estimated in a statistically
rigorous manner by picking the smallest number of samples such
that the variance is within a factor 𝛿 .

• Reducing the number of variables: we define the vulnerability of
node 𝑢, denoted by 𝑦𝑢 , as probability that it gets infected (when
no interventions are done). This can be estimated as the fraction
of samples 𝐻 𝑗 in which 𝑢 is connected to src(𝐻 𝑗 ), i.e., 𝑦𝑢 =
1
𝑀
|{ 𝑗 : 𝑢 is connected to src(𝐻 𝑗 )}. For a parameter 𝛾 , we restrict

the interventions to nodes in𝑉𝛾 = {𝑣 : 𝑦𝑣 > 1−𝛾}; in other words,
we can set 𝑥𝑣𝑡 = 0 for nodes with vulnerability at most 𝛾 . The
intuition is that such nodes are likely to have low 𝑥𝑣𝑡 values in
𝐿𝑃𝑠𝑎𝑎 , and so it is safe to remove them and reduce the size of the
LP. This is borne out from our experiments.

4 EXPERIMENTS

We study the following questions:
• Scaling: how well does saaRound scale to large networks?
How effective are the techniques for choosing the number of
samples and pruning?

• Approximation Guarantees: what is the approximation fac-
tor of saaRound in practice? How does it compare with the
other baselines?

• Effect of multiple stages: how does the effectiveness of the
solution vary with the number of stages and the budget in each?

• Characteristics of the solutions: what kinds of nodes are
picked in the solutions at each stage?

4.1 Dataset and Methods

Datasets. We experiment with three different classes of networks
(total of six), in order to fully explore the effect of network structure
on the the results. We consider two random networks, namely the
small world [19], and the preferential attachment [5] models. The
parameters used in generation of the random networks is presented
in the full version. [2]. We study the results on the CA-GrQc col-
laboration network [20], since it is a type of social network. We
also consider synthetic agent based populations for Montgomery
County, VA, and Portland, OR, constructed by a first principles
approach by [6, 11]. This has been used in several public health
studies, e.g., [32]. This network has a rich set of demographic at-
tributes for each node, e.g., age, gender, and income. The datasets
are summarized in Table 2.
Choosing parameters. There is a large space of model parameters
over which the analysis could be done. Due to the space limits, and
in order to get the most insights, we choose a subset as described
here. We choose the source distribution s so that about 10 initial
infections are picked. Following standard practice in public health,
e.g., [17], we choose three values for the transmission probability
𝑝 based on the expected number of infections (referred to as the
“attack rate”) that result when there are no interventions: we choose

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1191



a probability 𝑝𝑙𝑜𝑤 if the attack rate is < 10% (low), 𝑝𝑚𝑒𝑑 if the
attack rate is in [10%, 20%] (medium), and 𝑝ℎ𝑖𝑔ℎ if the attack rate
is > 20%. The specific probability values depend on the datasets.
The full version of the paper [2] shows how the attack rate varies
with the probability, and the specific probability values which were
chosen.

Dataset Nodes Edges

Montgomery 70729 198138
Portland 1409197 8307767
CA-GrQc 5242 14496
Small World (SW) 2500 14833
Preferential1 (PA1) 1000 1996
Preferential2 (PA2) 100000 199996

Table 2: Description of datasets

Methods.We only focus on one stage (1sEpiControl) or two stage
(2sEpiControl) versions of EpiControl here, and use saaRound
to find interventions. We use the Gurobi solver [16] to implement
saaRound. For 1sEpiControl, we consider the following baselines,
which select 𝐵 nodes based on two criteria:

• Nodes with the highest degree (top-𝐵 degree), which has
been a popular approach in a number of papers [5, 31]

• Nodes with the highest eigenvector centrality (top-𝐵 EVC).
No prior results are known for 2sEpiControl. Therefore, we

adapt the above baselines and pick 𝐵0 and 𝐵𝑇 nodes in the order
of the above scores. The top-𝐵 EVC does not give insights on the
performance of the spectral approaches[27–29, 35, 38–40]. A more
detailed comparison of our approach with the spectral methods is
an important future direction.

4.2 Structure of solutions

Very surprisingly, we find that the LP gives solutions with a lot of
integral or half-integral variables, i.e., with values in {0, 1/2, 1}. In
fact, in 25 out of 40 instances, the LP solution was optimal! Under-
standing the specific problem structure leading to this property is
an interesting open problem.

4.3 Scaling

We find that saaRound easily scales to all the networks we consider.
The two strategies for speeding up have a significant impact on the
scaling.
• Number of samples needed: We find the number of samples
sufficient to get reasonable variance, as shown in Figure 2, to be
less than the worst case bound of Θ(𝑛 log𝑛) from Lemma 3.1. We
observe that the number of samples needed for convergence in
some cases to be 𝑂 (

√
𝑛). The number of samples needed is lower

when the transmission probability is medium or high, and when
the budget is not too high, since this has better convergence. We
note that these are typically the regimes of maximum concern in
public health.

• Impact of pruning: The pruning of low vulnerability nodes has
a very significant impact on the running time, as shown in Figure
3, which shows the running timewith andwithout pruning.When
the number of samples used is low, the difference is negligible,

but when the number of samples increases to the range needed
for low variance, we find the difference in running times is in
several orders of magnitude. The objective value differs by less
than 5% with and without pruning for PA1 network. Similar trend
is observed for Portland network. This can be seen in Figure 4.
This implies that our scaling strategies give good solutions on
very large networks.

1 2 3 4 5 6 7 8
Number of Simulations (in 100s)

0

100

200

300

400

500

Nu
m

be
r o

f i
nf

ec
tio

ns

Preferential1 (PA1)

Figure 2: Number of samples needed.
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Figure 3: Comparison of runtimes of Linear Programs with

(LP-P) and without pruning (LP).

4.4 Performance Guarantees and comparison

with baselines

4.4.1 Comparison to baselines. Figures 5 (a-c) show the objec-
tive value for varying budgets for the 1sEpiControl problem. The
baselines use exactly the same budget as the solution to saaRound,
for fair comparison. We observe that saaRound significantly out-
performs both the baselines. For social contact networks (Fig 5)
(c), which are relatively dense, the objective value from the eigen-
score and degree baselines are over seven and three times that from
saaRound, respectively, over the entire budget range. saaRound
outperforms eigenscore by a similar factor in Figure 5 (b) as well.

4.4.2 Approximation Ratio. We observe that the approximation
ratio with respect to the objective value is close to 1. Figures 5
shows that for all the three networks, the objective value of LP
optimal solution almost coincides with that of saaRound. Also,
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Figure 4: Comparison of objective values of Linear Programs

with (LP-P) and without pruning (LP).

the approximation ratio with respect to budget violation (the ratio
of number of interventions after rounding to the budget given as
input — original budget) is close to 1, in practice, shown in Figure
6.

4.5 Two stage intervention and Structure of

solution

We study the 2sEpiControl. In Figure 7, we examine how the
objective value EInf increases with 𝑇 in a two stage intervention,
where𝑇 is the time of the second stage, while the first intervention
is performed at time step 0. We observe that EInf increases very
rapidly with 𝑇 .

Next, we examine the structure of the sets picked in each stage.
Figure 8 shows a scatter plot of the node degree and age of the
solution to 2sEpiControl with 𝑇 = 4. We observe that there are
slight differences between the sets𝑋0 and𝑋4:𝑋0 has slightly higher
degree nodes, whereas 𝑋4 has slightly lower age nodes. But more
importantly, it is not the case that all high degree nodes are used in

𝑋0.

5 RELATEDWORK

5.1 Public health policy planning and use of

diffusion models

Public health policy analysis relies heavily on mathematical models
of SIR type processes, e.g., [1, 21]. As discussed earlier, there are two
broad classes of models. The first involves using a system of coupled
differential equations to represent the dynamics, e.g., [23, 36, 38].
These do not have any closed form solutions, in general, and when
the system is not very large, it can be solved by brute force local
search methods [23]. For some types of models, greedy strategies

have been used [36, 38]. The second is network based, and uses
a stochastic diffusion model for the spread of the disease [11, 15,
17, 21, 22]. Such models have been found to be more powerful and
useful for epidemic spread on large heterogeneous populations,
where the complete mixing assumptions of differential equation
models are not valid.

During any large outbreak, public health agencies solve a variety
of models, and make plans and guidelines based on the results, e.g.,
during the 2009 swine flu [23], and the 2014 Ebola outbreak [21].
Such studies typically explore the space of different possible inter-
ventions, within given resource constraints. Therefore, there is a lot
of interest in the design of optimal or near-optimal interventions.

5.2 Resource optimization to control epidemic

spread

There is a lot of work on this topic, and we summarize the main
research directions relevant to EpiControl.
Firefighter problems, e.g., [3, 7, 12]. This is most closely related
to EpiControl. The basic version of the problem is to determine a
temporal intervention X = {𝑋𝑡 : 𝑡 = 1, . . . , 𝑛}, such that |X𝑡 | ≤ 𝐵,
and the number of nodes not infected (i.e., saved) is maximized (this
is referred to as the Max-Save version). The disease model is a SI
process with 𝑝 = 1 (so this is a deterministic model). The Max-Save
version cannot be approximated within an Ω(𝑛𝜖 ) factor for any
𝜖 < 1, in general graphs. A related problem is the Min-Budget ver-
sion, for which an 𝑂 (

√
𝑛) approximation is possible [7]. This work

corresponds to non-spreading interventions. Better approximations
are possible for the setting in which the vaccination is also a spread-
ing process. A special case of this problem is with work of [4], which
considers EpiControl but with the intervention specified at time 0,
and 𝑝 = 1, and gave the first rigorous approximation guarantee for
this problem. We refer to Finbow et al. [12] for an extensive survey
on the firefighter problems. One of the few works on the firefighter
problem with a stochastic disease model (i.e., 𝑝 < 1) is by Tennen-
holtz et al. [34], who formalize the problem as a Markov Decision
Process (MDP), and compute an optimal solution for trees. One of
the main differences between this and our paper is that the MDP
formulation of [34] makes the problem adaptive, i.e., it is possible
to use information about which nodes are infected before time 𝑡 , in
designing the intervention X𝑡 . Drakopoulos et al. [9] consider the
problem of designing dynamic policies to contain contagion spread
based on SIS epidemic model. But the results in this paper consider
graphs with bounded degree and bounded CutWidth. Also, their
dynamic policy has a bottleneck — computing CutWidth, which is
NP-Complete. In contrast to both these works, EpiControl only
considers a non-adaptive setting, and the intervention has to be
determined ahead of time.
Optimization of spectral properties. A key result in epidemic
modeling is a characterization of an outbreak in terms of spectral
properties, namely the first eigenvalue of the adjacency matrix
(also referred to as the spectral radius, and denoted by 𝜆1), and the
eigenvalues of the Laplacian [14, 26, 37]. An important implication
of this is that the epidemic dies out if 𝜆1 is reduced, and this has
formed the basis of a lot of work on epidemic control, e.g., [25,
27–30, 39, 40]. However, this does not lead to direct bounds on
the EInf objective. The top-𝐵 EVC baseline doesn’t optimize the
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Figure 5: Objective value (y-axis) vs budget (x-axis) for saaRound, and the degree and eigenscore baselines for four networks.
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Figure 7: Two-stage Intervention.

spectrum directly, and so doesn’t provide insights on the empirical
performance of spectral methods on the EInf objective. A thorough
comparison of our approach with the spectral methods will be an
interesting future work.
Heuristics based on centrality and local structure. Finally,
heuristics have been proposed based on local structure, e.g., degree,
and centrality, e.g., [5, 8, 24]. These do reasonably well in practice,
and are especially useful when the graph structure is not known
well. However, they do not lead to any rigorous bounds on the EInf
objective. Further, as our experimental results show, the degree
based heuristic works better than EVC, but can still be significantly
worse than saaRound in some networks.
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Figure 8: Montgomery Graph: scatter plot of age and degree

of nodes of the sets 𝑋0 and 𝑋4 in a solution to the 2-stage

EpiControl with budgets 𝐵0 = 𝐵4 = 25.

6 CONCLUSIONS

Our results show that linear programming based rounding and
the sample average approximation technique are quite effective in
giving solutions with good approximation guarantees in practice.
Our pruning method allows scaling to pretty large networks. Our
results are the first to examine multi-stage interventions, and we
find that the temporal dimension leads to significant changes in
the solution quality and structure. Improving the approximation
guarantees by better rounding techniques is an important open
problem. Our methods can help in public health policy planning
and response to large outbreaks.
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