Paper 928
Complex Group-By Queries for XML

C. Gokhale, N. Gupta, P. Kumar', L.V.S. Lakshmanan R. Ng*, and B.A. Prakash
* Indian Institute of Technology, Bombay
* University of British Columbia, Canada

1 Introduction also omit the selection part of the query, and just focus on
the aggregation part.

The popularity of XML as a data exchange standard has goup 7/ Book
led to the emergence of powerful XML query languages like by ///?‘aNf;Emfe“gcg(s Price). couni(s)
XQuery [21] and studies on XML query optimization. Of then by / Year retumn (
late, there is considerable interest in analytical prangss /'Year, median(/#Sol d)
of XML data (e.g.,[2, 3]). As pointed out by Borkar and The Inteht of the query is to grouBook nodes first
Carey in [3], even for data integration, there is a compellin - by (publisher)Nane. For each group, we get the average
need for performing various group-by style aggregate oper-pr i ce, and the number dook nodes in the group. More-
ations. A core operator needed for analytics isghaup- over, for each publisher group, the book nodes are further
by operator, which is widely used in relational as well as sub-grouped byrear . For each of these nested groups, the
OLAP database applications. XQuery requires group-by mediar#Sol d per year is returned.
operations to be simulated using nesting [2].

Studies addressing the need for XML grouping fall into
two broad categories: (1) Provide support for grouping at i Name o
the logical or physical level [6] and recognize grouping op- // \ // \ \
erations from nested queries and rewrite them with group- teme ag con vear- emup Year; er R

Kaufman (Price) 258 Name avg count() Year group o 0 o

ing operations [4, 5, 9, 12]. (2) Extend XQuery FLWOR §70 vesley (Pice) 175

Year median Year med\an $120

expressions with explicit constructs similar to the grdoyp- 1999 (SO 2000 (vSold) };;gr (;;;;n
order-by and having clauses in SQL [3, 2]. However, direct 2500
algorithmic support for a group-by operator is not explored

In this paper, we focus on efficient processing of a group-
by operator for XML — with the additional goal of sup-
porting a full spectrum of aggregation operations, inahgdi
holistic ones such agedi an() [8] and complex nested
aggregations, together with having clause, as well as mov-
ing window aggregation.

Consider the simple catalogue example in Figure 1. This
can be part of an input XML database, or intermediate re-
sult of a query. The catalogue is heterogeneous: it contain
information about books, music CDs, etc. Books are orga-

Q1 Answer

Figure 2. Partial Result of),

Figure 2 shows the answer to que®y; for the (par-
tial) data in Figure 1. The first group shown, for instance,
is for Name = Kauf man. Among the 258 books in this
group, the average price is $70. These books are further
sub-grouped byear . For each year that appears in the in-
put data, the median number of copies sold is also returned
s(.g., 5600 for 1999). We can enhance nested group-by

queryQ; with two features, as illustrated by quedy:
group //Book

nized bySubj ect, e.g.,physi cs, chemi stry. For by //Name
each book, there is information on i t | e, Aut hor, having couni(*) > 100 return (
. . /IName, avg(/Price), count(*)
Year ,#Sol d, Pri ce, (publisherNane, etc. Books may then by /Year return (
have multiple authors. The data value at a leaf node is /¥ear(10,5), median(#Sold)
shown in italics. The node id of a node is also shown for In Q)z, t)he having-clause for the outer block removes
future discussion. publishers with the total number of book nodes less than
Consider the following nested group-by quefy;. 100. Besides, we form moving windows over years — with

While we could follow the syntax proposed by [2], syntax each window having a width of 10 years and a step size
not being our main focus, we use a more concise form. Weof 5 years (e.g., [1990,2000], [1995,2005], etc.). While in

Catalogue

w Subject (22)

Music CD Subject)
(23) /W 33)
Name (2) Book (3) ®e o @ Book (13) Name Book @ @ e Book
) (6) (7 8 (10 @ ((16) @~ (19 (@5 ((29) (2 (30)
@Pubinfo Title Author~ Author Year |#Sold Price Publinfo Title Author YSoId rice Publinfo Title Author old Price
Mechnics Newton Smith (1999] 5600 $60 Sound Mcmanus|2000) 800 $96 Comy s OMsen (1999) 8000 $25

() 12 0) 5
Name City() Name | City (21) Name | City (3
auf man J NY gsley| LA Kauf man| NY

Figure 1. The Catalogue Example

the next section we will present a more comprehensive setperformance than simulating grouping via nesting. None
of moving window options, it should be easy to appreci- of these papers discuss algorithms for directly computing
ate the value of supporting nested group-bys with having group-bys (with possible nesting, having, and moving win-
clauses and moving windows for XML querying. In princi- dows).
ple, all value aggregations required of XML can be obtained A second line of studies investigates how to support
by shredding it to relations and using SQL (the “SQL ap- group-by at a logical or physical level [6], and detect
proach”). We examine this issue empirically in Section 7 group-bys from nested queries and rewrite them with ex-
with an emphasis on queries involving grouping together plicit grouping operations [4, 5, 9, 12]. However, detect-
with nesting. Indeed, owing to XML's inherent hierarchical ing grouping inherent in nested queries is challenging and
nature, nested group-by (e.g., quédy) is a fundamental such queries are hard to express and understand. In partic-
type of group-by that merits study. In our experiments, we ular, the focus of [12] is on structural aggregation by node
observed an order of magnitude difference between the pertypes as opposed to value aggregation. Studies by Fiebig
formance of the SQL approach (using Oracle) and ours. Weand Moerkotte [6], Pedersen et al. [13], and Deutsch et
make the following contributions. al. [4] all consider using query optimization-style rewsrit
e We propose a framework for expressing complex ag- rules for various kinds of grouping. The transformed query
gregation queries on XML data featuring nested group- plan would be based on nested loops.
by, having cluase, and moving windows (Section 3). There is an extensive body of work on efficient com-
e We develop a disk-based algorithm for efficient eval- putation of group-by and cube queries for relational data
uation of queries involving any subset of the above (e.g., [8, 10]). These algorithms are not directly applica-
fearures (Section 5). ble to hierarchical data especially when group-by elements
e We discuss the results of a comprehensive set of exper-(B’S) may involve combination of forward and backward
iments comparing our approach with that of shredding axes and aggregations on values may be nested and may
XML into relations and using SQL, and with those of occur at multiple levels (e.gQ2). Of course, by shred-
Galax [7] and Qizx [17], validating the efficiency of ding XML to relations, all such queries can be expressed in
our algorithm and the effectiveness of the optimiza- SQL. The performance impact of this approach compared

tions developed (Section 7). with our direct approach is discussed in Section 7.
Related work appears in the next section. Section 8 sum- Finally, [15, 19] study XPath selectivity estimation to
marizes the paper and discusses future work. obtain statistical summaries and approximate answers for
XPath expressions. They do not directly support exact com-
2 Related Work putation of group-bys.

While for relational data, SQL provides explicit support 3 Class of Nested Group-bys
for group-by, XQuery requires us to simulate it using nest-
ing. It has been noted that this leads to expressions that aréd.1 General Form of 1-level Nesting and Examples
hard to read, write, and process efficiently [2, 3]. Beyer et
al. [2] and Borkar and Carey [3] propose syntactic exten-
sions to XQuery FLOWR expressions to provide explicit eral form of a one-level nested group-by query below.
support for group-by. They also demonstrate how related %ﬁ;‘;‘ém

The examples discussed so far are instances of the gen-

analytics such as moving window aggregations and cube Ey f??“/;(m(v;?“‘g)-u-{ Btﬁ“‘(mWﬁ“‘)
can also be expressed in the extended syntax. Beyer et "MEACCNE LTI ol o our,
al. report preliminary experimental results indicatingtée then by Bi™ (mwi™), ..., Bt (mwi™m)

Catalogue

any book received in a group. As a last example of nested

PubliSher Publisher ®eee aggregations pr ead(Rat i ng) =def rTaX(Rat i ng) -
pllame Locstion Localon @ @@ m n(Rat i ng) combinesri n() andmax() .
Name vear vear e ee Aggregation Conditions: Cons, AggCons°"! and

New York

AggCons'™ are sets of conditions. Cons in the
e el o ——— p— where clause are the usual node-level selection conditions
seience Fiction " "om000 TGS AggCons®tt and AggConsi™ are sets of aggregation
conditions of the formaggi(vi) 0i ci, whered; € {=,#
_ ,>,<,>,leq}, andc; is a constant. With the use of the
Figure 3. An Example lllustrating Node Type Inversion having clause, iceberg queries can be easily expressed in
the proposed framework.
Moving windows: Moving window queries have been
studied extensively for relational databases [18]. We
))] adopt a similar framework for XML data here. The
Path Expressions: Here, « is an absolute XPath expres- | ,0out's and mwin’s denote moving window specifica-

sion, whilep’s andy’s are relative tax. Thatis, forevery ions. |If the corresponding; is non-numeric,mw; is
node $x that binds ta, those nodes that bind to the related |, Otherwise;mw; can be null or of the general form:
B's andy’s are returned. _ mw; = (width, step, winType, domType). The two
Note that the3's andy’s are not restricted to be descen- most prevalent parameters of a moving window are the
dants ofx. Hierarchy “inversion” is supported by using the igth (i.e.,width) and step size (i.estep) of the window.
keywords (axespar andanc to denote the parent and the The parameteninType can either beunmul at i ve or
ancestor node type af. Consider the catalogue database fj yedw dt h. For a cummulative moving window, the
of Figure 3, which is more complex than the one previously first window is of sizewidth; subsequent windows expand
discussed. The database contains details of books classip, size pystep at a time. For a fixed width moving window

fied byPubl i sher, Locati on, Year, and other pieces the window moves bytep units at a time. There are two
of information such aRRevi ew. Consider the following kinds of domainsact i ve or st andar d. For an active

Value Book Book e e e
1999

Reviewer Rating
John Doe °

in

having AggCons'™ return (»)
Byt ey By aggi™(vit), .., aggt(vy")

nested group-by quei;. domain, only the values that appear in the database are in-
group //Book _ cluded in the formation of a moving window. For a standard
by anc::Publisher/Name, Subject return (K L. . . K
anc::Publisher/Name, Subject, domain, the entire intervaimin, max] is used, wherenin
count(distinct(anc: Location/Name)), count(*) andmax correspond to the minimum and maximum values
then by par::Year/Value return (. K X
par::Year/Value, median(/Price) that appear in the data. E.g., consider the following query

)) i ifi
The ‘intent of the query is to grouook nodes first Qa4 which modifiesQs.

; ; group //Book
by (publisher)Name and Subj ect, and then to further by anc::Publisher/Name, Subject return (
sub-group byYear . For each outer group, it returns the anc::Publisher/Name, Subject, count(*)
number of locations the publisher is in and the number then by par::Year/Value(2,5,fixedWidth,active) return (
. R . par::Year/Value, avg(/#Sold)
of books in the group. For each inner sub-group, it finds))
the median price of books. Observe that theand y Q4 specifies an outer group involving each combination

node types are related to the Book node by forward of publisher and subject. For the inner groups, it picks
(child/descendant) dpackward (parent/ancestor) relation- “samples” of only 2 (consecutive) years in every 5 years. As

ships or a combination thereof (e.gar : : Year/ Val ue an example, let the set of years appearing in Book nodes that
andcount (di stinct(anc:: Location/ Nane))). satisfy the where clause K§e1, 93, 95, 96,97,00,...,06}.
Aggregation Operations: All of agg®“''s and aggin’s Then the sequence of moving windows tkat obtains is:

are aggregation operations such msn(), count (), {91,93, {00,021} and {05,06;. If Q4 is specified with
avg() ,medi an(), etc. Some of thg elementsare multi- domType being standard, then the set of year values used
valued (e.g.Aut hor , Revi ew). Aggregations applied on is {?1,...,06}, and the corresponding sequence becomes:
suchy’s can be nested. (Nested group-bys and nested ag{91,92, {96,97}, {01,02, and{06}.

gregations are orthogonal concepts.) For examplagifli- In the full paper, we also show how percentiles can be
anMax(/Review/Rating) was specified in the inner block expressed and evaluated within the same framework.

of queryQ3, the query would first compute f@ach book, While we have given the template for a one level nest-

the highest or best rating. Then it would obtain the me- ing, it is trivial to generalize it to arbitrary levels. Fher,
dian among all the best ratings of the books in the groupto simplify exposition, we assume, unless otherwise speci-
(for a given publisher, subject, and year). Simiaryin- fied, that a moving window specification is hasnType =
Count(/Review) obtains the minimum number of reviews fixedWidth anddomType = standard, and so omit these

Q-Answer Catalogue

/ \ \\ @2

“beta-)
outer-beta-group e o [} outer-beta-group Book {1999})Book @00 @ ° Book {1999}

/// \\\ ko,fw]
800,1>_ [96,96] 25 25
outer-betal e e o outer-betak inner-beta-group e e mner-beta-group outer %ammal outer-gammam <5600.4> 8000,1> [25,25]
17)

" m o o ovoam ® © 40 (18 (19
Year #Sold ™ Price Year #Sold Price veiZ® #S(élgé (gorice

1999 2000 1999

inner-betal e e o inner-betap inner-gammal e e e inner-gammagq
wi w wi gl wigq

Figure 6. Canonical Tree fof); after Initialization

Figure 4. Answer tree of a 1-level nested group-by

Q4-Answer

N

Name-Subject-group (] Name-Subject-group

/// \\\ Nan{ sl?bjbcounto v

merged based on equality of the associgtelues, which
serve as theigroup-by label. In addition, child nodes of

« nodes that are of a given type are merged the same way
(e.g.,Price, #Sold,etc.).

Counter Initialization : Based on the aggregate functions
in the query, an appropriate counter is associated with cer-

Name ~ Subject count() Year-mw-group Year-mw-group Year-mw-group
\A\ Kaufmen Conputer 280

Kaufmen Physics 63 / \

Year Year ayg Year avg
{91,938 (4s0ld) {00, 01} (#Sold) {0506} (Sold)
700 450 480

tain edge types. E.g., faount (*), we associate a sim-

ple counter with each edge of typ€dt al ogue, Book)

and initialize it to 1. All theseCat al ogue, Book) edges

are eventually merged, and the counter is updated to give

the answer to the aggregati@ount (*) in Q7. For

spread(Price), the edge typeBook, Pri ce) is as-

components from the specificatiof), is an example of ~ sociated with a countenf n, max] containing the mini-

this. mum/maximum price of books in a group. For the first edge,
Figure 4 depicts the form of answer tree for the query this is initialized t0[60,60] (Cf: Figures 1 and 6) When

template given in this section. Figure 5 shows the result of Pr i ce nodes are merged, this counter is updated appro-

Q. against the input data of Figure 1. priately (see Section 4.2). Foredi an(#Sol d), since
it's a holistic function, we need a frequency table as the

counter, which keeps track of the frequency for each value.

In Figure 6, the first book has a frequency table edge counter

(5600, 1), indicating that there is 1 book with 5600 copies
ysold.

Figure 5. (Partial) Result of4

4 Overview of a Group-by Operator

We first consider a single block group-by. In [1], we
propose a group-by operator and develop a main-memor
based algorithm, called Merge-GB, for computing it. In this
section, we give an overview of Merge-GB (which does not
support nesting, having, or moving windows). It consists
of three steps: (i) initialization, (i) the merge* phaseavt When nodes are merged, counters get updated. Counter

the node merge operation is repeatedly applied, and (@) th update differs for nodes that were siblings in the original
answer extraction step. data tree compared to nodes that weren’'t. E.g., in Fig-

ure 6, all theBook nodes are siblings while all tHer i ce
nodes are non-siblings. For siblings, the counters can be
“summed” together. Fo®;, Figure 7 shows the interme-
Given a group-by query identifying node types 3's, diate stage when all the siblirgpok nodes are merged.
and y’s, we prune nodes other than those types. The Suppose there are 2B®0k nodes with the group-by label
outcome of this step is the creation of a “canonical tree” 1999 and 317 with group-by lab&l000. These respective
T.an, containing only these nodes but following the input sets of nodes are merged in Figure 7. The relevant child
data tree structure. We use the following running example nodes ofall the 1999Boo0k nodes in Figure 6 are now con-
Q7 throughout this section: ‘group //Book solidated to have the same parent. The situatioryéar
by //Year, return Year, nedi an(#Sold), = 2000 is similar. The edge counters are updated to re-
spread(Price), count(*)’'’ We use the input flect the summation. The counter on theaf al ogue,
tree shown in Figure 1. Figure 6 shows the canonical treeBook) edge in Figure 7 yieldsount (*) . We use proce-
after initialization. duredoner gesi bl i ngs() (not shown) for implement-
MERGE-GB computes group-bys by repeated merging ing this.
of nodes of the same type. The(e.g.,Book) nodes are The next phase is to merge non-sibling nodes and

4.2 The Merge* Phase of MERGE-GB

4.1 Algorithm MERGE-GB: Initialization

Catalogue

in the answer tree. Otherwise, appropriate updating may
% \3” take place. For instance, f@; and the tree shown in Fig-

“Book 1999 o o o 0Pk @0 ure 1, the first timéNane = Kauf man is encountered, a
\‘ \\ﬂ(w e o o newBook group node is created in the answer tree as a new
[e0.6 <8060,13 <goo1> child node of the root, wit{ Kauf man} as the group-by
<5600.1; (10) (29) (30) an \as @9 . . . -
®vear #50ld@ Price #S0ld Price vear = #Sold Price label. This node, in turn, has 3 child nodesNae child
1999 2000 with value Kauf man and child nodes foavg(Pri ce)
Figure 7. End of the Merge Siblings Pass far, ;s;r’lec(ijcount (*) with associated counters properly initial-

As more input data are scannedpodesPr i ce are en-
update their counters, for which we use procedure countered. Let us defer the discussiomonodes. Instead,
doner genonsi bl i ngs() (not shown). For our ex- let us consider the processing of the inffenodesYear .
ample, all thePri ce sibling nodes in Figure 7 (which Exactly like how outer} nodes are processed, if a new
were non-siblings in Figure 6) are merged. For brevity, Year value is encountered, a néfear group node is cre-
the resulting tree is suppressed. Suppose of the 258ated. E.g., the first tim&ear = 1999 is encountered, a
1999-books in Figure 7, the minimum price is $25 new group node is created as a child node of the appropriate
and the maximum price is $130. Then the counter for Nane group node, with group-by labéKauf man, 1999}

the first Book, Pri ce) edge from left is updated to . This node in turn has two child nodes. The first child
[(min{60, 25, ..., 130, ...}, max{60, 25, ..., 130, ...}] = node isYear with value 1999. The second child node is
[25,130]. Similarly, the frequency table of mnedian(#Sol d) with the counter initialized approrpri-
the first Book, #Sold) edge is updated to say ately.

{(5600,5), (8000, 3), (200, 10), }. In effect, this Q; discussed so far is simpler than the general case.

says, the price of the 258 1999-books is in the rangeE.g., consideQs. Ignore for now the node inversion part
(25,130], there were 5 books which sold 5600 copies, 3 for (i.e.,anc: : Publ i sher). Here there are tw@ elements
8000 copies, etc. Notice that we need frequency table for— Nane andSubj ect . As discussed above, there is check-
#Sol d since median is required. ing to see if a nevNane or a newSubj ect is encountered,
Both procedures donergesiblings() and which is implemented by hashing. Furthermore, associated
domer genonsi bl i ngs() are invoked in Figure 8. with eachp is a list of values. This list facilitates the cre-
The group-by summary tree after merging non-siblings ation of group nodes. For instance, when a 18abj ect
contains the necessary information to construct the an-values is encountered, then there is a new group node cre-
swer forQz. We omit the obvious detail on answer tree ated corresponding to the pdit, s) for eachNane value

construction. n in the list of Nane values seen so far. The appropriate
group-by label is created as well.
5 A Disk-based Algorithm for Nested Group- For node inversion, one complication is that th@ode
bys with Having Clauses (ory node) may be read before thenode. This is easily

dealt with by using a dummy node. That is, the nodes in
In this section, we develop a disk-based algorithm for the answer tree are created in exactly the same way, except

processing nested group-by queries. Section 5.2 deals Witﬁhere may be nodes with missing values to be filled in later
having clause, and Section 6 with moving windows. when they are read. The set of nodes to be created in this

manner is completely determined by the query, as discussed
before.
Processingy nodes and Updating counters There are

We assume the worst case, where there is no associatetivo cases for actions to be taken on reading mode. If
index for quickly selecting the required node types, and as-the aggregate operation is holistic, then all the valuebef t
sume we have to scan the input data tree with nodes stored/ node for the specifi® combination have to be collected
in pre-order fashion. As the input data is scanned, all nodesbefore the aggregation can be carried out. As these val-
that are not ofx, 3’s andy’s node types are ignored. The ues are being read one by one, they are accumulated in a
answer tree is constructed with aggregation computed on{requency table in main memory. However, our algorithm
the-fly as much as possible. For simplicity of presentation, does not assume that all the frequency tables will fit in main
we assume that the answer tree fits in main memory. memory simultaneously. Thus, these values are written out
Proceesingp nodes Whenever g3 node is encountered, to afile, called agammafile. FQr, medi an(#Sol d) is
the algorithm checks to see if this is a new value. If so, a holistic aggregation, and ea#$ol d value encountered
the value is used to create the corresponding group-by labels written out to the gamma file with the associated!. As

5.1 Dealing with Nesting

ﬁlgotr_it;rpﬂ LNtGB-I?lisk gamma file and processed in the final pass to compute the
Output amsweree median as discussed in the previous paragraph.

(1) Open input file and initialize answer tree.

(2) for each node encounterégd

(3) ifthe node is not amx, 3, ory node, skip the node 5.2 Dea“ng Wlth a HaVlng Clause
(4) ifitis an & node{
(5) update appropriate counteribunt (=) is specified) We first consider a having clause in an unnested group-
(6) if node type inversion is involved, update the dumomayode f :
(7) ititis a p node by query and Fhen general'lze to nested queries.
283 if a new value is enfcounteredd - o bl Anti-monotonic early pruning: In an unnested group-by
9 create a new set of group nodes with the group-by labe! . H : H
(10) otherwise, update appropriate countersiint (+) is specified} query, the obvious naive solution to process a having clause
(11) if itis ay node{ is to compute the aggregation in the clause and then to
(12) if the aggregation is holistic, : ’ o fi ;
(13) output the value and the-node id to the gamma file check if the aggregano_n res_u_lt satlsf!es the constrainiv-Ho
2143 othferafvise{ ’ i . ever, for some constraints, it is possible to apply earlypru
15 if the parent-id associated with the counter is the same : . : ; : ; i
as the parent-id of the current node, invoke domergesi&()ng Ing. As ?tUdIEd m_ [ll]' qn ant|-m0not(.)n'|c QO”St.ra'”t IS
(16)} otherwise, invoke domergenonsibling$(} a constraint that will remain false once it is first violated.
(17) } I* end-for */ : - ; i .
(18) scan through the gamma file, using thaode ids to form groups For mstance, if the having clause includes the constraint:
(19) use domergenonsiblings() to compute the aggregatioesich group max(Price) < 10, then as soon as we have encoun-
(20) put the computed values in the appropriate ndoes ofrtewer tree} tered a single item in that group with prioe 10. then
Figure 8. Algorithm NGB-Disk no item encountered later can reverse the violation of the

constraint. Other examples includeount (*) < 100,
o) i mn(Price) > 100, sum Price) < 1000. The
shown in Figure 8, there is a separate gamma file pass afteg|55s of anti-monotone constraints has been extended by the
all the input has been read. notion of convertible constraints studied in [14]. Bothiant
If the aggregation operation is not holistic, then the ag- monotonic and convertible constraints allow early pruning
gregation can be computed on-the-fly by updating the ap-of groups violating the constraint.
propriate counters. The updating can be done by invokingith Nesting: Let us first consider how early pruning can
either the domergesiblings() or domergenonsiblings() pro pe incorporated into Figure 8. First, whenever a counter is
cedures discussed earlier. To decide between which proceypdated in line (15) or (16), the constraint is checked if it
dure to use, the algorithm compares the current parent-idis anti-monotonic or convertible. If the constraint is aldg
with the stored parent-id associated with the last update ofyijp|ated, then the correspondifiggroup is flagged. Lines
the counter. If the two id’s match, then the curregmode (10), (15) and (16) check if the group to be updated is a
is a sibling of the lasy node, and domergesiblings() is in- flaggedp group. If so, no updating is required. E.g., sup-

voked; else domergenonsiblings() is invoked. pose inQ- that the having clause sount (*) < 100
To complete the discussion of processi@g, when the instead. Then once a particulargroup (i.e.,Nane in this
Pri ce nodes are read, favg(Pri ce) two counters — example) is flagged, there is no need to update the counters

sum and count — are maintained and updated as usual. Atorresponding tawount (*), andavg(/ Price). We

the end, the average value can be computed from the twouse a hash table to mapagroup to a corresponding node
Forcount (*), the first ime wherNane = Kauf man in the answer tree. Hereafter, we usesh(p,) to return

is encountered, the required set of nodes are created inhe corresponding node in the answer tree for a particular
the answer tree as discussed before. Furthermore, thes valuep,. Eachp node has a flag that indicates whether
counter associated wittount (+) isinitializedto 1. Next the group has been flagged due to the violation of a having
time whenNane = Kauf nan is encountered again, the clause.

counter is incremented. Finally, foredi an(#Sol d) , a Similar to the skipping of outey’s, all the processing
gammafile is used. Eaghvalue is associated with theid within the inner query can be skipped onc@ @roup has

so that in the final pass when these values are re-read intgyeen flagged. Fo®,, once the outer having clause fails,
main memory, the procedure domergenonsiblings() can bethe processing for the inngr (i.e., Year) and the innety
used to compute the median. For our example, a frequency(i.e., #Sol d) can be skipped. Thus, to process a having
table is used to aggregate th&ol d values, from which clause, lines (7) and (11) in Figure 8 are modified with the

the median can be computed. condition that the nodes are not flagged.
Recall that the proposed framework sup- So far the discussion focuses on the situation when anti-
ports nested aggregation. Suppose that monotonic early pruning has flagge@aiode. However, a

medi anMax(Revi ew Rat i ng) is specified inQsz. As similar kind of processing can be applied when there is an
the Revi ew/ Rat i ng nodes are read, domergesiblings() outer having clause. Recall that lines (18) and (20) ded&l wit
is used to compute the highest rating for that particular holistic aggregations. A condition is added to make sure
Book group. This highest rating is then written out to the that a holistic aggregation em inner block is not processed

until the having clauses in all the outer blocks have been manner.

processed. To have the maximum benefit, it is not sufficient

to have a single gamma file for all the holistic aggregations. 6.2 The Rolling-over Strategy
In the best case, for ea roup in a query block with . L
a having clause, there stcwﬁc:t?ld bg a se[?arati gamma file for One p_otentlal drawback of repeated aggreggnon Is that
each holistic aggregation. F@J, this corresponds to the aggregation may need to be repeated many times. E.g.,

situation when each publishBane has a separate gamma flogrgtge ?bovﬁwl exar:wplg, fora spgcﬁltﬁvthvail;e, say
file. (The#Sol d values of all the years for a particular 1991115;9?: 1ézg?fggg:ﬁ(;slgg%?fgwwgn thz 1;2 g;(lnugss
publisher shares the same gamma file.) In this way, if the ’ ' val

3 group is flagged because of failing the having clause the2'® essentially aggr_egated three separate times. In genera
entire gamma file need not be re-read. This leads to thethe larger the ratiovidth/step, the more often the aggre-
: P - tions are repeated. The rolling-over strategy avoids thi
following guarantee for minimizing 1/O’s. gations are rep : :
9g g potential inefficiency by making sure that eaghvalue is

Lemma 1 With the aforementioned setup;yavalue in an ~ aggregated at most once. _ _
inner block that does not appear in the answer is not read The strategy consists of 2 main steps, given a qu@ry

after the value was written into the appropriate gamma file. With at least one moving window. (1) Ri@w, which is
formed by removing the moving window specificatiorQn

Essentially,Q+=+ represents a degenerate moving window
with width = 1 andstep = 1. The outcome is an interme-
First, we consider the simpler case of no having clause in diat€ answer trééqy. (2) Use Ty to compute the mov-

the query (but possibly with nested group-bys). We proposeing windo_vy part ofQ a_nd to return the final answer tree.
two evaluation strategies. Later we consider more genaral' "€ SPecific computation depends on the nature of the ag-
cases. gregate function. First, consider a distributive functsoich

assum Once the sum for a particular window is calculated
(e.g., for 1991-1995), the sum for the next window (e.g.,
1992-1996) is obtained by subtracting the sums for those
A natural strategy for processing a moving window Yyears that left the window (e.g., 1991) and adding the sum
mw = (width, step, winType, domType) is to enumer- for those years that entered the window (e.g., 1996). If the
ate all the groups apriori, and then to aggregate for all aggregate function is algebraic sucheasy, by breaking it
these groups as if they were independent. E.g., first con-into corresponding distributive functiossimandcount ,
sider a standard domain moving window, igomType = we can use the same technique. If the aggregate is holis-
standard. Because the range is known without reading the tic like medi an, then the counter used is the frequency ta-
data, all the groups that are specifiedaw can be enumer- ble. The frequency table for 1992-1996 is obtained from
ated apriori. For these groups, the corresponding nodes ar¢hat of 1991-1995 by removing rows corresponding to 1991
created in the answer tree even before the data are read. and adding rows corresponding to 1996. Active domain and
E.g., letmw; = (5,1, fixedWidth, standard) be cumulative windows are handled similarly. For the rolling-
specified for Year and let that range of values be over strategy, we have:
[1991,2006]. Thus, all the groups can be enumerated apri-

ori, €.g., 1991-1995, 1992'1995’ and S0 on. W'th.theseguarantees that aggregation is done at most once.
groups created, the one extension to Figure 8 that is nec-

6 Dealing With Moving Windows

6.1 The Repeated-aggregation Strategy

Lemma 2 For each value of3, the rolling-over strategy

essary is line (7). When A node with a particular value While the above lemma guarantees that aggregation is
B, is read, there may be multiple groups that have to be done at most once for each valuegfthe rolling-over strat-
engaged. For instance, fonwq, if B, = 1993, coun- egy may perform aggregation for values that are not needed

ters of the three groups 1991-1995, 1992-1996 and 19934n the answer, whemvidth < step. It may incur unnec-
1997 should be updated. This is implemented by extendingessary overhead in first executiQgms. In contrast, when

the hash indexiash(p,) so as to direct the updating of width < step, repeated aggregation does not perform un-
all the appropriate group counters. This strategy is callednecessary aggregation for values not required. In the next

repeated-aggregation. The casevinType = cumulative section, we will give empirical results quantifying the per

is handled similarly. formance tradeoff between the two strategies under various
Whenstep > width, somef, values may not partic- circumstances.

ipate in the aggregation, and for thémsh(,) returns a Nested group-bys with a single moving window in the

null list of locations. outer inner clause can be handled in a straightforward way.
So far we have consideredomType = standard. The foregoing discussion essentially says how to extend the

The situation fordomType = active is handled in like algorithm in Figure 8.

6.3 Multiple Moving Windows such as levels of nesting etc. and also compare with com-
peting XML systems. We also did some intial probing to

A natural question to ask is whether the two strate- see how the “SQL approach” (using Oracle) compares with

gies work when there are multiple moving windows either

in the same block or in a nested relationship. Multiple

moving windows in the same block give rise to “hyper-

rectangular” windows. Essentially, the attributes withwmo ~ 7.2.1 Comparision with Oracle
ing window specifications are orthogonal to each other. For

the repeated-aggregation strategy, the formation of ngovin For comparing with Oracle, we shredded the XML data and

. . . loaded the relational database. We used XMark as a basis
window groups essentially performs a “cartesian product” . . .
group yp P for this comparison. For shredding, we followed the ap-

on the moving window groups from each such attribute. h of 1201. For lack of th h
The resultant answer tree may be big, but both repeated agEr(:ach_lo f[]'_ ?r ;‘IC IS spaceb, Wethsuppr?ss € graphs,
gregation and roling over work just as before. comparable, even with 1 level of nesting, Oracle was 2.3

Finally, consider the situation when there is a moving ' . ' 2o

naty ! fuation w ! ving times worse than N-GB. This factor went up to 12 with 2

window in both the outer and the inner blocks. The pro- levels of nesting. Since nested group-by is fairly fundamen
ing f h th - i he rolling- : i -
cessing for both the repeated-aggregation and the rolling tal to XML, this motivates the need for direct efficient algo-

over strategies is, modulo the nesting involved, similar to thms for thi
the previous discussion on multiple moving windows. rthms for this purpose.

6.4 Combined with Having Clauses 7.2.2 Comparision with Galax

The discussion so far on moving windows assumes thereas a sanity check, we compared N-GB wit Galax. As ex-
is no having clause. For moving windows with (nesting pected, Galax performance was quite poor, taking more than
and) having clauses, repeated aggregation works with no1000 sec in many cases. E.g., for a typical 1-level nested
changes. For rolling-over, as long as there is no holistic group-by on XMark 100 MB data set, Galax took 5 min —
aggregation, no change is needed. If a holistic aggregasome 30 times more than N-GB. We do not compare with
tion is involved, we only need to delay the processing of Galax further.
the gamma files. In sum, the algorithm follows the same
principle of not processing an inner block until the having .))
clauses in all the outer blocks have been processed. For lack-2-3 Comparision with Qizx

of space, we omit the details here. We considered various parameters of interest for testing

against Qizx.
7 Experimental Evaluation Size and Number of Groups : We measured the perfor-
mance when we vary the number and size of the groups in
7.1 Experimental Setup the answer. We designed two types of queries, one produc-

ing small number of large groups (Query Q1 and Q3) and
We implemented Algorithm N-GB in Java. For compar- other producing large number of small groups (Query Q2
ision, we picked Galax [7] (the single major complete ref- and Q4). Figure 9(a) shows how runtime varies for Qizx and
erence implementation of XQuery), and Qizx [17] (one of N-GB for various datasets and sizes. Note the cutoff of 1000
the most efficient XQuery engines available). We used the secs and logscale on the Y-axis. Clearly, N-GB outperforms
well known synthetic dataset XMark (50-500 MB) and real Qizx (sometimes by more than two orders of magnitude)
data sets DBLP (250 MB and 400 MB), and Protein [16] when there are a large number of groups in the answer. But,
(13 MB), chosen for its high heterogeneity. Experiments for queries producing small answers, Qizx performs excel-
were run on 2GHz CPU, 1GB RAM machine. All the run- lently —one of the reasons why we chose it for comparision.
times are trimmed averages of 10 runs. We consider threeAnother important observation is that, unlike Qizx, N-GB is
broad classes of queries for which we ran several tests. Fowery stable w.r.t. group number and size. Moreover, on the
Galax and Qizx, we had to simulate grouping via nesting. very heterogenous yet small Protein dataset, Qizx performs
For Oracle, we used the corresponding group-by features ofvery poorly onboth the queries. N-GB has consistent effi-

SQL. cient performance.
Fully Vs. Partially Specified Paths : We tested two types
7.2 Simple Nested Group-bys of queries which differ only in the fact that the-path is

fully specified in one (Q5 and Q7) and partially specified
Here we consider simple group-by queries with nesting in other (Q6 and Q8). Figure 9(b) shows the results for
only. We analyze the performance on varying parametersdifferent datasets. Surprisingly, whether paths are foily

partially specified affects the performance of Qizx quidr by query with MW clause and we varied the Width to Step
matically (up to an order of magnitude difference). On the ratio. Clearly for ratio< 1, repeated-aggregation is bet-
other hand, the performance of N-GB is stable. ter whereas for ratios- 1, rolling-over is more efficient.
Increasing levels of nesting :To study the effect of levels Also the percentage gain increases as the ratio increases.
of nesting, we designed simple nested queries where we in\We also measured the effect of early pruning on the above
creased the number of nesting levels from O (flat query with two strategies. We used 1-level nested group-by queries
no nesting) to 3. Due to lack of space, we show the resultswith moving window aggregate in the inner block and hav-
only for Xmark dataset of size 100MB (Figure 9(c)). Inter- ing clause with an anti-monotonic constraint in the outer
estingly, we observe that N-GB is stable even in this case:block. Figure 9(f) shows the variation in computation time
the number of levels hardly affects its performance. Qizx for the four self-explanatory exhaustive cases for DBLP
performance rapidly degrades (by more than two orders ofdataset of sizes 250 MB and 400 MB. Note that the gains
magnitude) from the flat query as the levels increase to 3. with early pruning are greater for the repeated-aggregatio
Scalability : From the above graphs, we can draw conclu- strategy as against the gains for rolling-over. As already
sions about scalability of N-GB. For example, both Figure discussed in Section 6, the reason is that repeated aggre-
9(a) & (b) show results for XMark dataset (50 MB to 200 gation involves updating counters for multiple groups for
MB). Qizx doesn’t run for XMark, size 500 MB and more eachf value as against a single group in case of rolling-
on a 1GB RAM machine (insufficient heapspace). (N-GB over. On the other hand, early pruning prunes away many
completed in 45-50 sec on XMark 500 MB.) For N-GB, we groups - which explains the reduced gains for rolling-over
observed the parsing time of course increases linearly, butover repeated-aggregation in this case.

the rest of the computation and I/O grow sub-linearly. On

the other hand, the scalability of Qizx is is sensitive thpat g conclusions

expressions (fully/partially specified) and the numbeési

of groups. Using a rich framework for expressing sophisticated ag-
gregate queries on XML data with grouping, nesting, hav-
7.3 Nested Queries with Having Clause ing, and moving window aggregations, we developed an ef-

ficient disk-based algorithm for computing all such queries

Our objective was to measure the benefits of early prun-Using a comprehensive set of experiments, we showed
ing on nested queries with having clause. We consider twothat our algorithm has stability, scalability, and effiagn
types of 1-level nested queries with having and an anti- and is often orders of magnitude faster than existing ap-
monotonic constraint in the outer block. One has a non-proaches. Furthermore, our algorithm naturally supports
holistic aggregate in the inner block (Q9 and Q11) and the several optimizations which improve its efficiency even fur
other has a holistic aggregate in the inner block (Q10 andther. In ongoing work, we are exploring these ideas for
Q12). Figure 9(d) shows the results for each query with fast computation of cube on XML data. The complete set
and without early pruning. Since the main impact of early of our experimental data, queries, and results are avail-
pruning is on computation and not parsing, in this graph, able from http://ww. cs. ubc. ca/thai 2006/
we show only the total aggregation time and gammafile /O xni GBExper i ment s.
time. As expected, there are substantial savings (200-300%
for early pruning in all the cases. Moreover, note that the References
savings are more for queries in which the inner-aggregate is

holistic. This is expected as holistic aggregate Commﬂlati [1] N.Bansal etal. Deep Processing of Group-bys for XML Attigk. submitted
involves gamma-file I/O as well as more intensive compu- to atechnical journal. July 2006.
tation and early pruning avoids aggregate computation for 12 ; Beyeretal."Extending XQuery for Analytics.” SIGMOBO0S, pp. 503~
those inner groups whose outer group has been pruned. [3] V.Borkar and M. Carey. Extending XQuery for Grouping, iDiate Elimina-
tion, and Outer Joins. XML Conference and Expo., Nov. 2004.
. . [4] A. Deutsch et al. “The NEXT framework for logical XQuerytimization,”
7.4 Moving Windows (MW) VLDB 2004, pp. 168-179.

. . . [5] L. Fegaras et al. Query processing of streamed XML dalisM2002: 126-
For group-by queries involving MW clauses, we 133.

wanted to measure the gain of ro||ing-0ver over repeated_ [6] T. Fiebig and G. Moerkotte. “Algebraic XML Constructi@nd its Optimiza-
. tion in Natix,” World Wide Web, 4(3), pp. 167-187, 2001.
aggregation as a function of the ratio of window width to .]
. . h .. IV W.rt. the movina window [7] Galax. Galax XQuery engine. http://www.galaxquerg.or
Step SIZE: SII’.ICG t e_ gfam IS only w.r.t. . g . [8] J. Gray et al. Data Cube: A Relational Aggregation Opsr&@eneralizing
aggregation time, this is what we show in the graph (Figure Group-by, Cross-Tab, and Sub Totals. Data Min. Know. Disdgl): 29-53
9(e)). The figure shows the percentage gain in the com- (1997). _
. . . . [9] N. May et al. Three Cases for Query Decorrelation in XQuéo-84.
putation time of rolling-over over repeated-aggregation f

[10] A.O.Mendelzon et al. Data warehousing and OLAP: A resieariented bib-
DBLP 250 MB dataset. The query used was a flat group- liography. http:/ww.daniel-lemire.com/OLAP/indeafi.

1000 1 1000 1
ON-GB ON-GB
. _]
T 100 1 T 100 i N N B
B B
i g 1
o "
E 10 — —_— — H E 10 — — -
F F
1 T T T T T T T 1 T T T T T T ’7
o1 0z Q1 oz a1 Qz a3 o4 a5 a8 Qs o8 Qs el=] a7 [e:3
XM 50 MB XM 100 MB XM 200 MB Protein XM50 MB XM 100 MB XM 200 MB Protein
(a) Varying Size of Groups (b) Fully vs Partially Specifiediza
For XM 100 MB 400 - -
oWithout Early Pruning
1000 2 350 | |mwith Early P runing
N ON-GB E
o Qizx 2 300
@ [% — 250 —
T 100 [| E §
2 & = 200 —
G 3 E
b1 E 7 1s0
¥] s M
£ 40 [£ 100
@ ﬂT
3 50
=X
1 o L i
[} 1 2 3 Q2 Q10 Q2 Q10 Q11 Qi12
Number of Nesting Levels XM 200 MB XM 500 MB Protein
(c) Increasing levels of Nesting (d) Early Pruning
For DBLP 250 MB 3000
100 g
= 2500
o E
0 — E 2000 D:roblllrﬁ:;rwim early
40 | 5 o Repeated Agg. With early
£ 5 E Py pruning
‘3 2 s Rollover without early
? o T - T E pruning
3 0.1 02 0.5 2 5 10 25 ; 1000 mRepeated Agg. Without
z 20 K eary pruning
L] £
40 H
> 500
60 -3
H -
80 o
- 100 250 VB 400 VB
Window Width / Step Size DBLP dataset
(e) MW with varying ratios (f) MW with having clause
Figure 9. Experimental Results.
[11] R. Ng et al. Exploratory Mining and Pruning Optimizat®of Constrained [16] Georgetown Protein Information Resource.
Association Rules. SIGMOD 1998: 13-24. ht t p: // pi r. geor get own. edu/ hone. shtm .
[12] S.Paparizos et al., “Grouping in XML,” EDBT 2002 Worlagh LNCS 2490, [17] Qizx/open. Qizx/open XQuery engirtet t p: / / wwv. Xf ra. net/ gi zxopen.
pp. 128-147. [18] R. Ramakrishnan et al. SRQL: Sorted Relational Quenygumge. SSDBM
L ’ 1998: 84-95.
[13] D. Pedersen et al. “Query Optimization for OLAP-XML Fegdtions,” ACM “ . - eyt
Workshop on Data Warehousing and OLAP 2002, pp. 57—64. [19] :\é.DFIQEagg)%réath et al. “IMAX: The Big Picture of XML Dynamict&tistics,
[14] J. Pei et al. Mining Frequent Item Sets with ConvertiBlenstraints. ICDE [20] J. Shanmugasundaram et al. Relational Databases feryldg XML Docu-
2001: 433-442. ments: Limitations and Opportunities. VLDB 1999: 302-314.
[15] N. Polyzotis et al. "Approximate XML Query Answers,”GMOD 2004, pp. [21] World Web Consortium (W3C) “XQuery 1.0: an XML Query Lgumage,”
263-274. April 2005. http://www.w3.org/TR/xquery/ .

10

