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Abstract—Coprocessors such as GPUs are increasingly being
deployed in clusters to process scientific and compute-intensive
jobs. In this work, we study if GPU-based heterogeneous clusters
can benefit client-server applications. Specifically, we consider
the practical situation where multiple client-server applications
share a heterogeneous cluster (multi-tenancy), and experience
unpredictable variations in incoming client request rates, includ-
ing steep load spikes. Even for “compute-intensive” client-server
applications, it is unclear if a GPU-based cluster can seamlessly
deliver acceptable response times in the presence of multi-tenancy
and load spikes. We argue that a cluster-level scheduler that is
aware of application load, request deadlines and the heterogeneity
is necessary in this situation. We propose a novel scheduler
called Symphony that enables efficient, dynamic sharing of a
GPU-based heterogeneous cluster across multiple concurrently-
executing client-server applications, each with arbitrary load
spikes. Symphony performs three key tasks: it (i) monitors the
load on each application, (ii) collects past performance data
and dynamically builds simple performance models of available
processing resources and (iii) computes a priority for pending
requests based on the above parameters and the requests’ slack.
Based on this, it reorders client requests across different appli-
cations to achieve acceptable response times. We also define how
client-server applications should interact with a scheduler such as
Symphony, and develop an API to this end. We deploy Symphony
as user-space middleware on a high-end heterogeneous cluster
with dual quad-core Xeon CPUs and dual NVIDIA Fermi GPUs.
An evaluation using representative applications shows that in the
presence of load spikes (i) Symphony incurs 2−20× fewer requests
that do not meet response time constraints compared with other
schedulers, and (ii) in order to achieve the same performance as
Symphony, other schedulers need 2× more cluster nodes.

I. INTRODUCTION

GPUs are increasingly being used to accelerate non-graphical

compute kernels, providing a 10−100× performance boost for

workloads such as linear system solvers, physical simulations,

partial differential equations and flow visualizations [1]–[5].

With improved programming support [6], GPUs are now being

introduced in mainstream clusters [7]–[9]. At the same time,

client-server applications which have traditionally been IO- or

network-intensive, are becoming more computationally inten-

sive. Examples of such computationally-intensive client-server

workloads are semantic search [10], video transcoding [11],

financial option pricing [12] and visual search [13]. As in

any client-server application, an important metric is response

time, or the latency per request. For applications with enough

parallelism within a single client request, latency per request

can be improved by using GPUs.

However, latency per request by itself is not enough. Multiple

applications must be able to concurrently run and share a GPU-

based heterogeneous cluster1, i.e., the cluster must support

multi-tenancy. Further, client-server applications in practice

experience varying rates of incoming client requests, sometimes

even unpredictable load spikes. Thus, any practical hetero-

geneous cluster infrastructure must handle multi-tenancy and

varying load, including load spikes, while delivering an ac-

ceptable response time for as many client requests as possible.

In this paper, we focus on the problem of a multi-tenant

GPU-based heterogeneous cluster delivering acceptable re-

sponse times (i.e., a response time that is less than or equal to

the pre-specified response time) in the presence of load spikes.

Response time is an important part of the system’s Quality-of-

Service (QoS), and is also the main concern of the client. We

argue that for a heterogeneous cluster to handle client-server

applications with load spikes, a scheduler that enables dynamic

sharing of heterogeneous resources is necessary. As an example,

client requests of applications incurring load spikes should be

processed by faster resources like the GPU, while requests of

other applications could be deferred, or processed by slower

resources. Without such a scheduler, decisions made for one

application may adversely affect another. For instance, sending

one application’s client request to the non multi-tasking GPU

could block a more critical application.

We present a novel cluster-level scheduler, Symphony, that

enables efficient sharing of heterogeneous cluster resources

while delivering acceptable client request response times de-

spite load spikes. Symphony manages client requests of differ-

ent applications by assigning each request a priority based on

the load and estimated processing time on different processing

resources like the CPU and GPU. It then directs the highest

priority application to issue requests to suitable processing

resources within the cluster nodes. If necessary, the scheduler

also directs applications to consolidate their requests (pack and

issue multiple requests together to the same resource), and load-

balances by directing client requests to specific cluster nodes.

Specifically, this paper makes the following contributions:

• We propose Symphony, a cluster-level scheduler, that

enables multiple client-server applications to run on a

GPU-based heterogeneous cluster. Such clusters accelerate

1The term GPU-based heterogeneous cluster is used to denote a cluster with
node-level heterogeneity (the cluster nodes have both CPUs and GPUs), and
cluster-level heterogeneity (the cluster nodes do not have to be identical to each
other).



large scientific jobs, but it is not clear if a GPU’s massive

parallelism can benefit multi-tenant client-server applica-

tions with varying load conditions in a realistic setting.

Symphony handles multi-tenancy and delivers acceptable

response times while being largely immune to load spikes.

• We underline a key property of Symphony in that it uses

user specification and information about the application

to make scheduling decisions. It has three characteristics:

it (i) monitors the load on each application, (ii) collects

past performance data and dynamically builds performance

models of available processing resources and (iii) com-

putes a novel priority metric for pending requests based

on the load, estimated performance and the request’s slack

(the time left before it must be processed).

• We define how client-server applications should interact

with a scheduler such as Symphony.

• We implement Symphony as user-space middleware on a

high-end heterogeneous cluster with CPUs and GPUs, and

compare it to other schemes such as first-come-first-served

(FCFS) and earliest-deadline-first (EDF).

We experimented with Symphony on a 7-node cluster with

each node consisting of two quad-core Xeons, and two NVIDIA

Fermi GPUs. We run four client-server applications simul-

taneously under different request load profiles injected with

random load spikes, and show that Symphony incurs fewer

QoS misses than other scheduling schemes. We also show that

other scheduling schemes require more cluster nodes to deliver

the same QoS, thereby demonstrating that they do not share

heterogeneous cluster resources efficiently under multi-tenancy

and varying load conditions.

The rest of the paper is organized as follows. Section II

discusses related research and puts our work in perspective.

Section III describes characteristics of the applications we con-

sider, our cluster architecture and elaborates how applications

interacts with Symphony. Section IV discusses Symphony in

detail, including its system architecture, different components

and the priority-based scheduling heuristics. Section V presents

a comparison of Symphony with other scheduling schemes,

and shows that the absence of a scheduler like Symphony

necessitates the provisioning of more cluster resources, thereby

increasing cost. We conclude in Section VI.

II. RELATED WORK

To the best of our knowledge, existing schedulers in the

literature do not address the specific problem of managing

client requests of multi-tenant client-server applications on

heterogeneous clusters with the goal of delivering acceptable

response times in the presence of load spikes. In this section, we

discuss closely related work on fair scheduling, heterogeneous

resource sharing and the use of accelerators and coprocessors

in distributed settings.

Fair scheduling policies for homogeneous clusters involve

allocating each job a fair share of the resources. For instance,

if a job takes time t to execute all by itself, then in the

presence of n jobs, it should take time nt. Many proposals offer

modifications to fair scheduling. Deadline Fair Scheduling [14]

provides processes with proportionate-fair CPU time in multi-

processor servers. Delay Scheduling [15] provides a cluster-

level fair scheduling scheme that exploits data locality for

MapReduce and Dryad, but their context does not cover proces-

sor heterogeneity or load spikes in user requests. A time-sharing

based fair scheduling mechanism is presented in [16], which is

developed for DryadLINQ cluster. Quincy [17] provides a fair

scheduling scheme that preserves and leverages data locality for

homogeneous clusters under MapReduce, Hadoop, and Dryad

where static application data is stored on the computing nodes.

All of these efforts target homogeneous clusters in specific

settings, and do not consider varying application load and

response times to make scheduling decisions. In a sense, our

work could be seen as a modification of fair scheduling taking

into account load spikes and resource heterogeneity.

Heterogeneous resource scheduling has been studied for

distributed and grid systems, mostly addressing issues that

arise from performance asymmetry instead of architectural

heterogeneity. Most of these efforts addressing heterogeneity at

the node-level [18]–[21] and distributed system-level [22]–[25]

represent scientific kernels as graphs with nodes representing

interdependent tasks of the entire job. Mesos [26] is a substrate

for sharing cluster resources across multiple frameworks, such

as Hadoop and MPI, and uses two-level scheduling where it

first offers resources to a framework, and the framework selects

some of the offered resources and uses its own scheduling

policy. This approach enables the resource sharing at the

granularity of frameworks, but does not incorporate application

performance requirements such as deadlines and response times

in the presence of load spikes. AJAS [27] provides an adaptive

job allocation strategy for heterogeneous clusters, but does not

consider varying application load and response time to make

decisions.

The use of computational accelerators such as IBM Cell/BE

and GPUs in distributed settings have also been explored [28]–

[31]. Traditional approaches for using these accelerators ex-

ploit their use for scientific applications and kernels, but not

client-server applications. Similarly, hosting multiple applica-

tions in a cloud using cooperative scheduling has also been

explored [32]–[34]. In contrast, we present an approach for

utilizing heterogeneous coprocessor resources such as GPUs in

clusters for client-server computing.

III. SYSTEM OVERVIEW

In this section, we describe our application characteristics,

the cluster architecture, and define how applications interact

with Symphony. Figure 1 shows a high-level overview of the

system. It consists of a heterogeneous cluster hosting multiple

client-server applications.

A. The Applications

We focus on applications that adhere to the client-server

model and process remote client requests. Each application

specifies an acceptable response time for its requests. We

assume that all requests are of the same type, and only differ in



API Arguments Description

void newAppRegistration(...) Application registers with scheduler.

float response_time Expected latency (ms) for each client request.
float average_load Average number of requests expected every second.
int * nodelist Possible cluster nodes on which a client request could be processed.
int nodelist_size Size of above nodelist.
int num_nodes Number of nodes necessary to process a client request.
int consolidate Number of requests that can be consolidated by application.

void newRequestNotification(...) Application notifies scheduler of the arrival of a new request.
int size Size of data sent by request.

bool canIssueRequests(...) Application asks scheduler if requests can be issued.

int * num_reqs Number of consecutive requests that can be consolidated and issued.
int * id Unique scheduler ID for this set of requests.
int * nodes Which cluster nodes to use.
int * resources Which resources to use within each cluster node.

void requestComplete(...) Application informs scheduler that issued requests have completed processing.

int id Scheduler ID pertaining to the completed requests.

TABLE I: List of APIs exposed by Symphony.

Fig. 1: High-level system architecture.

size, e.g., semantic search processes text queries, but the queries

can range in size from a single word to a large sentence. We

make no assumptions about inter-dependency of client requests;

after interfacing with Symphony, applications will still process

requests in the order in which they were received.

All applications have a client interface and a server portion.

The server portion, along with static application data, is mapped

to specific cluster nodes, and is expected to be online and

communicating with Symphony. When a client request arrives,

it may be processed by one or more nodes where the application

data is pre-mapped. Some applications may require all nodes

to process each request, while others may just need any one

node. Applications specify this information to Symphony, as

we explain soon.

Since we specifically target GPU-based heterogeneous clus-

ters, we focus on applications whose request processing in-

volves executing parallelizable compute kernels. We assume

that applications already have optimized CPU and GPU imple-

mentations available in the form of runtime libraries with well-

defined interfaces for such kernels. This enables Symphony to

intercept calls to these kernels at runtime, and dispatch it to

either CPU or GPU resources, as described later.

Finally, some applications may have the ability to consolidate

requests, i.e., pack and process multiple independent client

requests together to achieve better throughput via increased

parallelism. Symphony leverages this to drain pending requests

faster.

B. Cluster Architecture

The heterogeneous cluster has a cluster manager, which

is a dedicated general-purpose multicore server node. It runs

the cluster-level scheduler and application client interfaces. It

manages a number of back-end servers, or worker nodes. The

worker nodes contain heterogeneous computational resources

comprising conventional multicores and CUDA-enabled GPUs.

All cluster nodes are interconnected using any standard inter-

connection network.

C. Scheduler-Application Interface

We now define how client-server applications can commu-

nicate with a scheduler such as Symphony by making sim-

ple modifications. An application initially registers itself with

Symphony and sends a notification each time it receives a client

request. It then waits to receive the “go-ahead” from Symphony

to process pending requests. Once requests have completed

processing, the application informs Symphony. Applications

can use two threads to do this: one to notify the scheduler

of new requests, and the other to ask if requests can be issued,

and inform the scheduler of completion. This is not a major

change since most client-server applications already do this to

simultaneously fill buffers with incoming requests, and drain

requests from the other end. The application modifications only

require linking with the scheduler library and adding a few lines

of code, with no reorganization or rewriting.

Table I provides the lists of the APIs exposed by Sym-

phony. First, the application registers with the scheduler

(newAppRegistration()) and specifies its expected response

time for each client request (latency). The application also

specifies the average number of client requests it expects to

receive each second (average_load), the set of cluster nodes

onto which its static data has been mapped (nodelist), and

how many nodes each request will require for processing

(num_nodes). For example, an application’s data may have

been mapped to 4 cluster nodes, but any of those 4 nodes

can process a request. In this case, nodelist will contain

names (or other descriptor) of the 4 nodes, and num_nodes will

be 1. Finally, when an application registers with Symphony,

it must also specify how many requests it can consolidate

together (consolidate). For example, in the case of the

Semantic Search, several user queries can be packed and

executed simultaneously on a single worker node.



Fig. 2: Architecture of Symphony.

Applications notify Symphony of each new client re-

quest (newRequestNotification()) and specify the size

of the request. In parallel, the application polls the sched-

uler to receive the go-ahead for processing pending requests

(issueRequests()). Symphony tells the application how

many requests to consolidate (num_reqs) and provides a

unique identifier (id) for this set of requests. The application

then processes the requests, and informs Symphony after they

complete using requestComplete().

IV. ARCHITECTURE OF SYMPHONY

Symphony is a request scheduler for multi-tenant client-

server applications on heterogeneous clusters. Its goal is to

deliver acceptable response times in the presence of load spikes.

It combines application-specified parameters with its own in-

ferences to make scheduling decisions. Symphony consists of

cluster-level and node-level components. Figure 2 shows the

manager node running the cluster-level component and client

interfaces for the applications. The figure also shows the worker

nodes running the node-level components. Both components are

implemented as user-space middleware.

A. Cluster-level Component of Symphony

This is the primary orchestrator in our system. Given client

requests for different applications, it decides:

• which application should issue requests;

• how many requests should the application consolidate;

• to which cluster nodes should the requests be sent; and

• which resource (e.g., CPU or GPU) in the node should

process the requests.

The architecture of the cluster component of Symphony con-

sists of six portions as shown in Figure 2: (i) Pending Request

List, (ii) Resource Map, (iii) History Table, (iv) Performance

Estimator (v) Priority Metric Calculator and (vi) Load Balancer.

We describe each of these below.

1) Pending Request List: Each application notifies Sym-

phony upon the arrival of a client request. As shown in

Figure 2, the scheduler stores certain information pertaining

to pending requests, so that it can prioritize them and direct

the applications to consolidate and dispatch the requests for

processing. It does not store actual request data, but maintains

for each request, the application that received the request, the

time at which the request was received, the deadline by which

the request should complete and the size of the request data.

2) Resource Map: Symphony monitors current cluster re-

source usage using a map of the CPU and GPU resources

on each cluster node. For the CPU resource, it maintains a

count of the number of requests being processed, while for

the (non-multitasking) GPU, a BUSY/IDLE tag is maintained.

This information is used to determine resource availability as

well as to balance the load across the cluster. The resource

map is updated each time the scheduler asks an application

to issue requests (issueRequests()), and when an appli-

cation informs the scheduler that it has completed requests

(requestComplete()).

3) History Table and Performance Model: The history table

stores details of recently completed requests of each applica-

tion. Each entry of the history table contains a recently com-

pleted client request, resources that processed it, and the actual

time taken to process the request. The history table is updated

each time client requests complete (requestComplete()).

The information in the history table is used to build a simple

linear performance model, the goal of which is to quickly

estimate performance on the CPU or GPU so that the right

requests can be issued with minimal response time failures.

After collecting request sizes and corresponding execution

times, we fit the data into a linear model to obtain CPU or GPU

performance estimations based on request sizes. The model

is dependent on the exact type of CPU or GPU; in our case

we only have a single type of CPU and GPU, but if different

generations of CPUs and GPUs exist, a model can be developed

for each specific kind.

In addition to the dynamic performance model builder,

existing analytical models can also be used to estimate the

execution time of an application on available resources. Some

analytical models such as [35] may require application and

resource specific information at compile time to accurately



generate performance estimates. Although the performance

model builder used by Symphony is simple, it requires no

compile-time information to generate performance estimates.

4) Priority Metric: Symphony uses a priority metric to

calculate the urgency of pending requests from the point of

view of response time and overall load. Given N applications,

where application A has nA requests in the pending request list,

the goal of the priority metric is to indicate (i) which of the N
applications is most critical and therefore must issue its requests

and (ii) which resource (e.g., CPU or GPU) should process the

requests. Note that Symphony does not reorder requests within

an application, but only across applications.

We assume that our heterogeneous cluster has r types of

resources in each node, labeled R1 through Rr. For example,

if a node has 1 CPU and 1 GPU, r is 2. Furthermore, the

application itself is responsible for actual request consoli-

dation, but the scheduler indicates how many requests can

be consolidated. To do this, the scheduler is aware of the

maximum number of requests MAXA that application A can

consolidate (through newAppRegistration()). So if A is the

most critical application, the scheduler directs it to consolidate

the minimum of MAXA or nA requests.

If DLk,A is the deadline for request k of application A, CT
the current time, and EPTk,A,R the estimated processing time

of request k of application A on resource R, we define slack
for request k of application A on resource R as:

slackk,A,R = DLk,A − (CT + EPTk,A,R) (1)

Initially, in the absence of historical information, EPTk,A,R

is assumed to be zero. Resource R is either the CPU or GPU;

if the system has different types of CPUs and GPUs, then each

type is a resource since it would result in a different estimated

processing time (EPT ). A zero slack indicates the request

must be issued immediately, and a negative slack indicates

the request is overdue. Given the slack, we define urgency of

request k of application A on resource R:

Uk,A,R = −slackp (2)

The above is a polynomial urgency functions, and we find

that an exponent such as p = 3 provides good performance

for our applications. We compare linear, polynomial and also

exponential urgency functions in the results section. The above

is the urgency of issuing a single request, and it increases

polynomially as the slack nears zero. To account for load spikes,

Symphony calculates the load LA for each application A, using
the average number of pending requests in the queue and the

average number of requests expected every second (navgA)
specified at the time of application registration:

LA = nA/navgA (3)

We define the urgency of issuing the requests of application

A onR as the product of the urgency of issuing the first pending

request of A and the load of A:

UA,R =

{

U1,A,R ∗ LA , if R is available
−∞ , otherwise

(4)

We only consider the first pending request for each applica-

tion because all application requests are processed in the order

Algorithm 1 Application Selection Algorithm.

Input: appList, reqList, resList, DL, EPT
Output: app, q, R

for all A in appList do
k = getEarliestRequest(A)
slackk,A,R = calculateSlack(DLk,A, EPTk,A,R)
Uk,A,R = calculateReqUrgency(slackk,A,R)
nA = getAppReqCount(A)
navgA = getAvgAppReqCount(A)
LA = nA/navgA
for all R in resList do

if resAvailable(R) then
UA,R = Uk,A,R×LA

else
UA,R = -∞

end if
end for
UA = getMinimum(UA,R, resList)

end for
/* Select application app to issue q requests to resource R */
app = getAppHighestUrgency()
q = MIN(MAXapp, napp)
R = getResWithLowestUrgency(app)

they are received, while requests across applications may be

reordered. All pending requests of an application will therefore

be less urgent than the first request. Considerations such as

preferred customers with prioritized requests are outside the

scope of this paper.

The overall urgency UA for issuing A’s requests is the

minimum urgency across all available resources Ri. If there

are r different types of resources in each cluster node:

UA = minr
i=1

(|UA,Ri
|) (5)

Given the urgency for all applications, the scheduler will

request application A to consolidate and issue q requests to

resource R such that:

• Application A has the highest urgency among all applica-

tions;

• q is the minimum of MAXA and nA;

• Among all available resources, R is the resource when

scheduled on which application A has minimum urgency.

We note the following about the priority metric:

• If request falls behind in meeting its deadline, its urgency

sharply increases (Equation 2).

• If an application experiences a load spike, its urgency

sharply increases (Equation 4).

• Request processing is predicated on resource availability

(Equation 4).

• For an application, the resource with the lowest urgency

is the one with the best chance of achieving the deadline,

and is therefore chosen (Equation 5).

Algorithm 1 shows an approach to implement the priority

metric described above. It returns the application (app) with

the highest urgency, the number of requests (r) that should be

consolidated together in the next dispatch, and the resources

(R) on which the application should be executed. It is highly



Application Description Response Time Data Layout Data Size

Semantic
Search

Supervised Semantic Indexing [10] (SSI) matching to search
large document databases. It searches the indexed documents for
the user queries and ranks the results based on their semantic
similarity to the given queries.

5

msec/query
Document repositories distributed
across worker nodes so that each
document is available on at least two
worker nodes.

2

million
documents

Video
Transcoding

An implementation [11] of x264 that converts the video streams
into the H.264/MPEG-4 AVC format. Each cluster node executes
an instance of Video Transcoding application to encode the given
video stream.

500

msec/MB
Input video data accessible at each
worker node through Network File
System (NFS) [36].

4−45 MB

SQL Server An implementation [37] of a subset of SQLite commands pro-
cessor. Each worker executes an instance of SQL Server hosting
the same database.

150

msec/query
Database replicated on all the worker
nodes. Any worker node can process
the given query.

512 MB

Option
Pricing

An implementation [38] of Black-Scholes financial model to
compute the evolution of future option prices. Each worker hosts
an instance of Option Pricing and provides the option prices for
user queries.

800

msec/query
Input data accessible at each worker
node through NFS.

400 MB

TABLE II: Enterprise applications with execution resources and performance criteria.

scalable since we do not compute the slack and urgency for

every request in the pending request list, but only for the first

MAXA requests of every application. This keeps Symphony’s

overhead small, as we show in Section V.

5) Load Balancer: As stated earlier, we assume static ap-

plication data are pre-mapped to the cluster nodes. Client

requests can be processed by a subset of these nodes, and the

application tells the scheduler how many nodes are required to

process a request (through newAppRegistration()). When

the scheduler directs an application to issue requests, it provides

a list of cluster nodes where the request can be processed by

simply choosing the least loaded cluster node. The application

is expected to issue its requests to these nodes and thus maintain

overall load balancing.

B. Node-level Component

Besides the cluster-level scheduler that runs on the cluster

manager node, separate node-level dispatchers run on each

worker node. The node level dispatcher is responsible for re-

ceiving an issued request and directing it to the correct resource

(CPU or GPU) as specified by the cluster-level scheduler. In

order to do this, we assume that parallelizable kernels in the ap-

plications have both CPU and GPU implementations available

as dynamically loadable libraries. The node-level dispatcher in-

tercepts the call to the kernel, and at runtime directs it to either

the CPU or GPU. For example, if processing a Semantic Search

request requires a call to matrix multiplication, we assume

that CPU and GPU library implementations are available for a

specified function name, say sgemm. The node-level component

intercepts sgemm, and looks for a directive from the cluster-

level component. When the request was issued, the cluster

component directly intimates the node-level component that

sgemm in this instance of Semantic Search should be directed

to, say the GPU. Further details of the node-level dispatcher

implementation are presented in [39], [40], and are outside the

scope of this paper.

V. EVALUATION

In this section we describe our evaluation methodology

and present results. We run four, full-fledged client-server

applications concurrently on a high-end heterogeneous cluster

with Intel Xeon CPUs and NVIDIA Fermi GPUs over a period

of 24 hours. We subject the applications to load spikes, where

the duration and size of each spike are taken from published

observations. Using our implementation of the scheduler as

user-space middleware, we present the following results:

• Priority Metric: A comparison of Symphony’s perfor-

mance under different priority metrics and establish a

“good” working metric for the following experiments.

• Scheduler Performance Comparison: A comparison of

Symphony and baseline FCFS and EDF schedulers consid-

ering the number of dropped client requests, i.e., requests

that do not meet response time constraints.

• Efficient Cluster Sharing: Empirical data showing that,

compared to other schedulers, Symphony needs a smaller

cluster to achieve the same performance.

• Sensitivity to Load Spike Profile: Unlike the baseline

schedulers, Symphony performs well across a range of

load spikes, i.e., spikes with varying height and width.

• Scalability: Data showing the running time of Symphony

itself increases only marginally with increasing number of

cluster nodes and applications.

For the first four set of results, the common metric of

comparison is the number of client requests that do not meet

response time constraints (QoS). We also call this “dropped

requests”.

A. Methodology

Our methodology consists of different sized heterogeneous

clusters, with four real, end-to-end applications concurrently

running on each cluster. We compare Symphony with two

scheduling mechanisms, First Come First Served (FCFS) and

Earliest Deadline First (EDF). In FCFS, client requests are

processed in the same order as they arrive at the cluster

manager. In EDF, the client request with the closest deadline

is processed first. Both FCFS and EDF incorporate application

placement and pre-mapped data while making scheduling de-

cisions. Furthermore, FCFS and EDF consider GPUs as well

as CPUs while scheduling application requests on the available

nodes. However, GPUs are preferred: requests are processed on

the CPUs only if all GPUs are busy.



Spike Height Polynomial (−slack
3) Linear (−slack)

Spike Width: 5 minutes

1.25 0.02 0.19

1.5 0.05 0.32

2.0 0.8 3.31

Spike Width: 15 minutes

1.25 0.02 0.16

1.5 0.04 0.29

2.0 0.81 3.16

TABLE III: Average percentage of requests per minute not

meeting the specified QoS under different slack functions.

We now describe the applications, cluster configurations and

spike introduction mechanisms.

1) Applications: Emerging cluster computing workloads

consist of a mix of short- and long-running jobs. We have

selected four representative applications from different domains

covering the spectrum of latency- and throughput-intensive

workloads. We choose Semantic Search, SQL Server, Video

Transcoding and Option Pricing as our representative workload

set. Table II provides the brief description of each application

along with their performance requirements. Some of these

applications, i.e., Semantic Search, and SQL Server, execute

short-running tasks, while others execute long-running jobs.

The table also describes the application’s static data layout.

Based on data layout, a client request can be processed on

a subset of worker nodes (e.g., Semantic Search), or on any

available worker node (e.g., Video Transcoding, SQL Server,

Option Pricing) of the heterogeneous cluster.

2) Cluster Configurations: Our cluster consists of seven

high-end worker nodes, and a manager node. Each worker

node has two Intel Xeon E5620 processors (2.4 GHz each),

with QPI and 48 GB main memory. A worker node also has

two 1.3 GHz NVIDIA Fermi C2050 GPUs with 3 GB internal

memory, connected as coprocessors on PCI Express slots. The

worker nodes are interconnected together, and with the manager

using gigabit ethernet.

3) Spike Introduction Mechanism: According to published

observations, typical spike durations vary from 10−30 minutes,

while the peak of the spikes can be as high as 1.5× of the

normal load [41]–[44]. We introduce random load spikes with

duration and heights in this range, but extend our evaluation to

a broader range of spikes. Our spike introduction mechanism

injects spikes at random time points for each application,

independent of the other applications running at the same time.

B. Priority Metric

Before we present results with Symphony, we explore the

priority metric used in order to empirically establish a good

enough heuristic for the rest of the experiments. Specifically,

we replace the polynomial urgency function −slack3 from

Equation 2, with exponential and linear functions, and compare

the final performance of the system in terms of the number of

client requests dropped. The polynomial function (−slack3)
was replaced with exponential (2−slack) and linear (−slack)
functions. We find out that the average percentage of dropped

requests are similar for the exponential and polynomial urgency

functions, while the simple linear urgency function underper-

forms. Table III compares polynomial and linear functions for

different load spike heights and widths, where the height of

the spike is the ratio between the spike and normal application

load, and the width is the duration of the spike in minutes. The

data shows that using the linear urgency function table incurs

far more requests dropped than the polynomial (or exponential)

urgency functions.

This is expected since the urgency function defines how

responsive the system is to spikes. In a sense, the urgency

function has to “follow” a spike closely; the faster a spike

rises, the quicker the urgency of the those pending requests

should become. Our data establishes that in general polynomial

or exponential urgency functions follow random load spikes

well. We thus use the polynomial urgency function for the rest

of the experiments in this section.

C. Scheduler Performance Comparison

We now compare the performance of Symphony versus base-

line FCFS and EDF schedulers using a 5-node heterogeneous

cluster. The metric for the comparison is the number of client

requests that do not meet response time constraints.

1) Low Application Load: We first run all four applications

concurrently under low load conditions. Not surprisingly, we

find that at low loads, all scheduling schemes perform well,

i.e., the fraction of dropped requests is under 0.01% for FCFS,

EDF and Symphony. For instance, for EDF and Symphony

the maximum fraction of dropped requests at any instance is

0.012% for and 0.011% for Video Transcoding, respectively.

Thus EDF and Symphony exhibit similar performance for our

applications under low application load.

2) Realistic Application Load (with Spikes): Next we study

the performance under varying load conditions using the re-

alistic spike introduction model of Section V-A3. Figure 3

shows the results. For FCFS, the maximum observed percentage

of dropped requests is around 7%, which occurs for Video

Transcoding. On average FCFS drops 3.3% of requests across

all applications over 24 hours. For EDF and Symphony, the

maximum fraction of dropped requests is 3.5% and under 2%,

respectively, occurring for Video Transcoding and Option Pric-

ing. Across all four applications over 24 hours, EDF (which is

better than FCFS) drops close to 2% of requests on the average,

while Symphony drops under 1%. This shows that Symphony is

effective in handling load spikes when given a fixed number of

heterogeneous cluster nodes. This is inline with expectations

since FCFS does not consider request deadlines at all, while

EDF, although it prefers requests that are closest to missing

deadlines, does not consider estimated request processing time.

D. Efficient Cluster Sharing

We now study how Symphony performs with limited re-

sources. Specifically, we reduce the cluster size to 3 worker

nodes, and experimentally determine the number of dropped

requests for all three scheduling schemes. Then we gradually

increase the cluster size, and find that the baseline scheduling
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(c) Performance with Symphony.

Fig. 3: Requests missing QoS under spike load conditions for the four concurrently running applications.

Application
No. of Requests Average Desired 3-Node Cluster 7-Node Cluster

Processed Latency/Request FCFS EDF Symphony FCFS EDF Symphony

Semantic Search 17.2 M 5 msec. 24.1 20.2 3.0 2.9 1.2 0.05

Video Transcoding 52 K 45 sec. 27.2 21.6 3.3 3.2 1.3 0.05

SQL Server 576 K 150 msec. 21.8 14.7 2.8 2.6 1.1 0.04

Option Pricing 108 K 800 msec. 25.9 20.9 3.2 3.1 1.4 0.05

TABLE IV: Percentage of requests dropped under different cluster configurations for 24 hour period.

schemes need a cluster with more worker nodes to provide the

same fraction of requests dropped.

Table IV shows the results using the realistic load profile

from Figure 3(a). With thousands to millions of requests and a

3-node cluster, FCFS and EDF end up dropping 14 to 27% of

requests, while Symphony drops around 3%. FCFS and EDF

attain the same level of performance as Symphony, i.e., 3%
dropped requests, when provisioned with 7 cluster nodes. At

that cluster size however, and the same load profile, Symphony

drops only around 0.05% of requests. Therefore, with its

load- and heterogeneity-sensitive scheduling, Symphony shares

cluster resources more efficiently under varying load conditions,

leading to better utilization of the cluster.

E. Sensitivity to Load Profile

To study how Symphony performs under different types of

load spikes, we introduced spikes of varying height and width

and measured the average percentage of dropped requests on the

7-node heterogeneous cluster. Figure 4 shows the percentage of

dropped requests versus the height and width of the spikes. The

height of spike is relative to its height at low load, while the
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Fig. 4: Performance with increasing spike height and width.

width is its duration in minutes. The performance of FCFS

and EDF deteriorates sharply with spike height. The maximum

percentage of dropped requests is 20.5%, 18.0% and 2.15% for

FCFS, EDF and Symphony respectively. Across all points, the

average percentage of dropped requests per minute is 9.2%,

7.2% and 0.7% for FCFS, EDF and Symphony respectively.

This shows that Symphony is not very sensitive to the type of
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Fig. 5: Scalability with increasing workers and applications.

load spike, and can handle a broader range of spikes that are

outside previously published observations.

F. Scheduler Scalability

A concern with the single-manager design is the overhead

due to introduction of additional middleware layers, as this

could lead to performance bottlenecks when operating at scale.

To this end, we observed how the performance of Symphony

scales with the number of worker nodes and with the number of

applications. We increase the number of worker nodes from 3
to 16 and the number of applications from 4 to 18. To run more

than four applications, we replicate our existing applications.

Figure 5 shows the overhead of Symphony, i.e., the time

taken by the scheduler itself, normalized to the overhead for a

3 node heterogeneous cluster executing four applications. We

see that it scales nearly linearly (with a small slope) as the

number of worker nodes and applications increase. The four

corners of the 3-D plot represent: (i) 3-node cluster with four

applications; (ii) 3-node cluster with 18 applications; (iii) 16-
node cluster with four applications; and (iv) 16-node cluster

with 18 applications. The scheduler takes longest when both the
number of cluster nodes as well as the number of concurrent

applications are high. However, the running time of Symphony

at 16 cluster nodes with 18 concurrent applications is only

22% larger than the base case of 3 cluster nodes with four

applications. The marginal increase and Symphony’s scalability

is apparent from Figure 6 (the diagonal from Figure 5), which

shows the overhead versus cluster size where a cluster with m
nodes hosts m+ 1 applications.

In summary, we empirically demonstrated the performance

of our scheduling framework vis-a-vis two baseline schedulers

on a high-end heterogeneous cluster. We also demonstrate the

scheduler’s scalability as the cluster scales-out.

VI. CONCLUSION

Current GPU-based clusters mostly cater to large scientific

workloads. Using such clusters to handle client-server work-

loads, especially those with GPU-friendly compute intensive

portions, is a natural transition. However, for such applications,

a key requirement is maintaining acceptable response times in

the presence of unpredictable load spikes and multi-tenancy.

We argue that this requires a cluster scheduler that enables
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Fig. 6: Symphony overhead with increasing workers (diagonal

from Figure 5).

efficient, dynamic sharing of heterogeneous resources across

applications. We present a novel priority based scheduler called

Symphony that is characterized by three key attributes. First, it

continuously monitors the load on each application. Second, it

collects past performance data and dynamically builds simple

performance models of the available heterogeneous processing

resources. Third, it computes a priority for pending requests

based not only on user-specified parameters about the applica-

tion but also information inferred from its performance models.

We show Symphony is largely immune to load spikes and

maintains acceptable response times despite fairly large load

variations. We deploy it as user-space middleware on a 7-node
heterogeneous cluster with dual quad-core Xeon CPUs and

NVIDIA Fermi GPUs, and show that in the presence of load

spikes (i) Symphony incurs 2− 20× fewer requests that don’t

meet response time constraints compared with other schedulers,

and (ii) in order to match the performance of Symphony, other

schedulers need 2× more cluster nodes.

Our study has opened directions for further investigation.

For instance, Symphony can benefit from predicting client

request patterns. We are also looking into mechanisms to harden

Symphony against the system being gamed, especially because

its behavior is determined in part by parameters (such as

response time) specified by the application developer. Inves-

tigating latency and throughput trade-offs due to client request

consolidation is another direction. Finally, we are in the process

of extending Symphony to other heterogeneous resources and

testing it on a cluster comprising thousands of compute nodes.
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