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Abstract—Designing cloud computing setups is a challenging
task. It involves understanding the impact of a plethora
of parameters ranging from cluster configuration, partition-
ing, networking characteristics, and the targeted applications’
behavior. The design space, and the scale of the clusters,
make it cumbersome and error-prone to test different cluster
configurations using real setups. Thus, the community is
increasingly relying on simulations and models of cloud setups
to infer system behavior and the impact of design choices. The
accuracy of the results from such approaches depends on the
accuracy and realistic nature of the workload traces employed.
Unfortunately, few cloud workload traces are available (in the
public domain). In this paper, we present the key steps towards
analyzing the traces that have been made public, e.g., from
Google, and inferring lessons that can be used to design realistic
cloud workloads as well as enable thorough quantitative studies
of Hadoop design. Moreover, we leverage the lessons learned
from the traces to undertake two case studies: (i) Evaluating
Hadoop job schedulers; and (ii) Quantifying the impact of
shared storage on Hadoop system performance.

Keywords-Cloud computing, Performance analysis, Design
optimization, Software performance modeling

I. INTRODUCTION

Cloud computing, powered by frameworks such as

MapReduce [1], is emerging as a viable model for enabling

fast time-to-solution for modern enterprise applications. The

model has the potential to affect the IT industry in pro-

found ways. Creating a MapReduce setup involves many

performance critical design decisions, such as node compute

power and storage capacity, choice of file system, layout and

partitioning of data, and selection of network topology, to

name a few. Moreover, a typical setup may involve tuning

of hundreds of parameters to extract optimal performance.

Estimating how applications would perform on specific

cloud setups is critical, especially for optimizing existing

setups and building new ones. To this end, simulation based

approaches [2], [3] are becoming the main means for quickly

and efficiently exploring the impact of design choices in

cloud setups. These tools focus on studying how decisions

about cluster design, run-time parameters, multi-tenancy and

application design affect performance. A critical hurdle in

exploring this design space is the lack of comprehensive,

realistic workload characterizations and traces for driving the

simulations. The results obtained from simulation studies are

less valuable without realistic input traces. Unfortunately,

such traces have been difficult to obtain and the perfor-

mance and characteristics of commercial setups, such as

Google’s MapReduce [1], Hadoop [2], [4], Dynamo [5],

and Quincy [6], remain shrouded in mystery. The lack of

public traces prevents open-source research communities and

academics from measuring the impact of their contributions

on cloud systems, and thus hinders innovation.

Recently, cloud service providers, e.g., Google, have

published some job traces [7], which raised hopes that more

traces would soon become available. However, pertinent

information such as the kind of applications the traces used,

or even whether the traces are from a cloud system is

unknown. Nonetheless, a careful examination of such traces,

presented in this paper, shows that a number of lessons can

be learned about the workload.

The main contribution of this paper is to describe the steps

in analyzing available cloud traces to extract key workload

characteristics. Moreover, the aim is to use this information

to synthesize realistic cloud workloads, as well as allow for

customizing the workloads for studying the role of different

application configurations and settings.

Moreover, we leverage synthesized traces with realistic

characteristics to perform two case studies of the impact

of design changes on performance for one cloud system

– Hadoop [8]. The first case study compares different job

schedulers, and the second evaluates Hadoop design with

Network Attached Storage (NAS) in contrast to the node-

local storage used in standard systems.

In contrast to existing works on analyzing such traces [9],

[10], which classify jobs based on resource usage, we take

a binning approach where we classify tasks and jobs using

time periods. This enables us to go beyond analysis and

allows us to synthesize realistic cloud traces. We also employ

an innovative approach where we compose tasks in a job into

slots that let us infer how a job utilizes resources.

II. APPROACH

We are concerned with analyzing the distributed systems

trace made public by Google, and extracting information

that can be used for simulation of cloud setups. The trace is

not known to be from a specific model such as MapReduce.
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Figure 1. Distribution of number of tasks in a job.

However, our intuition is that the trace represents the kind

of large-scale application workloads that can be supported

through the cloud. Thus, this analysis can provide critical

information for characterizing cloud workloads.

We considered several choices in analyzing the trace. Ini-

tially, we attempted to simply play back the traces in a sim-

ulator, e.g., MRPerf [3]. However, the duration, characteris-

tics, and lack of detailed information in the traces prevented

us from going this route. Instead, we dissect the trace to

extract information such as job-length distribution, number

of jobs, job and data dependencies, and computation-I/O

ratios. This provides us with means to classify the jobs

into different categories, as well as yields information about

the different mix of jobs in a real trace. Next, we use the

classification to infer cloud workload characteristics. Finally,

we can use this information to synthesize new customized

workloads that exhibit the same statistical characteristics as

the original trace. Although the current synthesis process is

manual, the lessons learned from the traces enabled us to

study different design changes to Hadoop and their impact.

III. OVERVIEW OF AVAILABLE TRACE

We use the trace from Google for our analysis. The trace

spans a period of 370 minutes, with normalized processor

and memory usage metrics collected every 5 minutes for a

total of 74 intervals (timestamps). It represents 9, 174 jobs,

with several sub-tasks each, for a total of 176, 174 tasks.

A. Job Statistics

Number of tasks per job: First, we examine the number

of tasks associated with each job in the trace, as shown in

Figure 1. It is observed that most of the jobs (84.6%) have

a small number of tasks (< 5). Also, 6, 713 of the jobs have

only one task. In contrast, a few jobs have a large number

of tasks. E.g. the job with the most tasks has 4, 880.

Job Composition: We found that most jobs in the trace

are such that all their associated tasks begin in an identical

timestamp and end in another identical timestamp. The two

timestamps may or may not be equal. All the tasks of

such a job have the same length. We refer to these jobs as
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Figure 2. Kinds of jobs in the trace. (a) A synced job, (b) a one-task job,
and (c) a non-synced job.

Table I
DIFFERENT JOBS MAKING UP THE TRACE.

Job composition Number Percentage

Synced jobs 8738 95.2%
Jobs with only one task 6713 73.2%
Jobs with multiple tasks 2025 22.0%

Non-synced jobs 436 4.75%
Jobs that fits in slots 385 4.19%
Exceptions 51 0.56%

Total number of jobs 9174 100%

synced jobs. Conversely, jobs whose individual tasks start

or finish during different timestamps are referred to as non-

synced jobs. Figure 2 illustrates the different kinds of job

compositions observed in the trace. Job (a) is a synced job,

as all its tasks begin in the same timestamp 0, and end in

the same timestamp 5. Job (b) is a job consisting of only

one task, and is automatically a synced job. Job (c) is a non-

synced job. Table I summarizes the numbers of each kind

of tasks present in the trace. Note that 95% of all jobs in

the trace are synced jobs. Also, about 5% of the jobs are

non-synced jobs, which we discuss further in Section V.

B. Task Statistics

Task execution length: We examine the execution du-

ration of all tasks in the trace; Figure 3 shows the observed

distribution. It can be observed that a large number of tasks

(6, 341) run for only one timestamp, and 5, 118 of these

tasks are associated with a single-task job. Moreover, since

the trace represents a snippet of observed tasks, 60, 823 tasks

are cut off either because they started earlier than the trace

started, or because they did not finish before the trace ended.

35, 191 tasks are cut off at both ends, i.e., have an execution

length of the entire 74 timestamps. We refer to these tasks

as full-length tasks. Similarly, we define jobs that span the

entire trace as full-length jobs.

Resource consumption of full-length tasks: Next, we

examine the memory and CPU resources consumption of all

the tasks, as shown in Figure 4. It is seen that the full-length

tasks are responsible for a significant portion of both the

CPU (76.5% on average) and memory (82.8% on average)

consumed during the trace. Thus, even though the full-length

jobs have unknown start and finish times, we retain them in

our trace to ensure proper resource usage accounting.

Our examination of the trace shows that most jobs are
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Figure 3. Distribution of duration of tasks in the trace.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 90000  95000  100000  105000  110000

C
P

U
 a

n
d
 M

e
m

o
ry

Time

Memory consumed by all tasks
Memory consumed by full-length tasks

CPU consumed by all tasks
CPU consumed by full-length tasks

Figure 4. Normalized CPU and memory consumption of full-length tasks
compared to all the tasks in the trace.

synced jobs and the full-length tasks are crucial as they con-

sume a significant amount of CPU and memory resources.

Moreover, although many jobs are small, a few large jobs

have over a thousand tasks, run for a long time, and consume

a large amount of resources.

IV. TRACE ANALYSIS

In this section, we examine the trace, especially the length

of the tasks and jobs, in more detail and use this information

to classify the tasks and jobs.

A. Classifying Tasks

We classify the tasks based on their execution duration.

Specifically, we define three different categories. (i) Seconds

tasks that run on the order of seconds up to one timestamp,

i.e., 5 minutes. This category captures small tasks and bursty

job behavior. (ii) Minutes tasks that run for more than 5

minutes but for less than 1 hour. (iii) Hours tasks that are

long running tasks with a duration of more than 1 hour. This

category captures longer jobs as well as full-length jobs.

Table II(a) shows the number of tasks in each category.

Task categories over time: Next, we divided the trace

into six hourly intervals. For each interval, we determined

the number of tasks that fall into each of the three above

categories. Figure 5 shows the results. It can be observed that

the relative distribution of tasks in different categories does

not change drastically from hour to hour. This is promising,

as it allows for using the information from past intervals to

predict how the trace would behave in the future intervals.

We analyzed the relative hourly task distribution further

by examining the average and standard deviation of the

number of tasks in each category over the six intervals. Next,

we assumed a normal distribution for tasks and determined

Table II
(A) CLASSIFICATION OF TASKS BASED ON DURATION. (B) EXPECTED

TASKS CATEGORY DISTRIBUTION FOR ANY HOUR.

(a) (b)
Task category Number Expected number
Seconds tasks 48085 8014.2 ± 1084.2

Minutes tasks 74124 15561.8 ± 2250.5

Hours tasks 15934 8463.2 ± 2156.8

Full-length tasks 35202
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Figure 5. Distribution of different task categories over the duration of the
trace.

the expected hourly distribution of the tasks in each category.

Table II(b) shows the results with 95% confidence intervals.

Although the full-length tasks are not predicted due to lack

of duration data, a fixed number of full-length tasks can be

added to a predicted distribution to synthesize a trace.

B. Classifying Jobs

In this section, we leverage the classification of tasks into

different categories to classify jobs into different types. The

goal is the same as it was for the classification of tasks, i.e.,

to determine the expected jobs behavior in future intervals

based on past information.

For this purpose, we first divide the jobs into different

types depending on the categories of tasks comprising the

jobs. Table III(a) shows the number of jobs that contain

different categories of tasks. The first part of the table shows

jobs that contain only one category of tasks, followed by jobs

that contain two different categories, and finally, jobs with

all three categories of jobs are shown in the last part. We

can see from the table that the majority of the jobs (96.4%)

contain a single category of tasks only.

Next, similarly as for tasks, we examine the distribution

of different types of jobs over hourly intervals. The result

for this analysis is shown in Figure 6. The jobs with a single

category of tasks are shown on the left, and the jobs with

a mix of task categories on the right. Once again, we note

that the relative hourly distribution of different types of jobs

does not change drastically over the duration of the trace.

Based on these statistics, we determine expected job type

distribution for any hour based on 95% confidence intervals.

The results are reported in Table III(b).

The classification of jobs and tasks provides crucial infor-

mation that can be leveraged for synthesizing traces, which

we discuss in subsequent sections.



Table III
(A) CLASSIFICATION OF JOBS BASED ON TASK CATEGORIES.
(B) EXPECTED JOBS TYPE DISTRIBUTION FOR ANY HOUR.

(a) (b)
Job type Number Expected Number

Seconds tasks only 6370 1034.2± 147.0

Minutes tasks only 659 134.0± 14.4

Hours tasks only 1815 1759.0 ± 7.4

Seconds+Minutes 167 47.3± 4.2

Seconds+Hours 5 5.0± 0.0

Minutes+Hours 90 82.0± 3.1

Seconds+Minutes+Hours 68 58.2± 1.7
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Figure 6. Distribution of different jobs types over the duration of the trace.

V. ANALYSIS OF NON-SYNCED JOBS

In this section, we focus on the 436 non-synced jobs in

the trace (Table I). These jobs consist of tasks that run for

more than a single timestamp and the individual tasks do

not all share the same beginning timestamps and the same

ending timestamps.

Slots: The actual unit of resource consumption in the

trace is not known. Thus, for our analysis, we define the

notion of a virtual resource as a “slot.” Each task in one

timestamp interval utilizes one slot, e.g., one job with three

tasks running simultaneously would use three slots. If a

task finishes, its slot may be assigned to another task. A

job can have as many slots as it needs, which are assigned

when needed. Slots serve as virtual resources, and knowl-

edge about their utilization is helpful for understanding the

execution pattern of a job. For example, the number of slots

can be used to estimate the number of resources (e.g. in

terms of processor cores) that a job requires. Moreover, by

assigning the non-synced jobs to slots, we can visualize

how the jobs are utilizing the resources. Such visualization

can also provide more detailed information on the execution

pattern of tasks in a job, e.g., we can infer whether tasks

are reassigned or utilize the same slots until completion.

We examined all the non-synced jobs for their slot uti-

lization over the duration of the trace. Figure 7 illustrates

some of the interesting cases that were observed. Each

graph represents a single job with multiple tasks. The Y-axis

represents time from the start until the end of the trace. The

X-axis represents the different slots assigned to a task. Thus,

each bar in a slot represents a task in the job. A change in

a color/pattern of a vertical bar shows that a task is finished

and its associated slot is reassigned to a new task. White

space in the graphs shows idle time.

Lets consider Figure 7(a) in more detail. The job starts

with 46 tasks, each assigned to a different slot. Most

tasks run for the entire length of the trace, hence the

predominantly light green color observed in the graph. One

task completes at about 11, 100 seconds, and the slot is

reassigned to a different task as shown by the pink bar.

For different jobs, either their tasks fit almost perfectly

into the slots (Graphs (a)-(h)) or not very well (Graphs (i)-

(o)). However, some small white space may be due to the

5-minute granularity of the trace collection process.

A large number of jobs exhibit the patterns observed in

Graphs (a)-(c), i.e., most of their associated tasks are full-

length tasks. There are a few exceptions as observed by the

different color/pattern bars in these graphs.

In contrast, Graphs (d)-(f) represent jobs where most slots

are used by multiple tasks, and tasks in these jobs perfectly

fill concurrent slots. Graphs (e) and (f) show predictable

patterns. Further analysis shows that tasks in (e) all run for

the same amount of time, and never overlap with each other.

Graph (f) is only different from (e) in that (f) has 3 slots

versus 1 of (e). Of course, both job (e) and (f) are cut off

at both the beginning and the end of the trace, otherwise

the patterns may have lasted for a longer time period. Some

jobs, e.g., Graph (g), do not span the entire duration of the

trace, but are also well arranged in slots. Graph (h) is a

combination of many long running tasks and one slot that

is used by many small tasks. Graph (i) shows an example

of an exception to these observations. Tasks in Graph (i) all

run for just 1 timestamp, and they do not fill the entire slot.

Graphs (j)-(l) are three different jobs that share the same

irregular execution pattern. The graphs exhibit similar trends.

A major difference between Graphs (j), (l), and (k) is that

(j) and (l) have one full-length task, where as (k) has none.

Despite this, the analysis and visualization points to common

trends between these jobs. The intuition is that these jobs are

very likely from the same application. Finally, Graphs (m),

(n), and (o) represent jobs that have very irregular patterns.

From this visualization, we infer that most of the jobs for

trace synthesis can be predicted using the information from

the trace. Moreover, a small number of jobs can be added

randomly to account for the observed irregular pattern jobs.

VI. EXAMPLE TRACE SYNTHESIS

The trace statistics provide us with critical information for

synthesizing realistic cloud traces. While we can start from

scratch for this synthesis, we focus on extending the original

trace by several hours based on the observed statistics. Our

algorithm for this purpose is shown as Algorithm 1. We

first generate the total number of jobs based on number

of jobs aggregated from Table III(b). Then for each job,
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Figure 7. Example jobs showing slot utilization over duration of the trace. X-axis represents the slots assigned to the job. Y-axis represents the duration
of the trace in seconds.



Algorithm 1 Steps for synthesizing realistic cloud traces.

Input: duration

total jobs = jobs per hour × duration (Table III(b))

for all job in total jobs do

Determine whether job is synced (Table I)

if job is synced then

Generate task count from (Figure 1)

Generate type and length of the job (Table III(b))

else

Generate task count from (Figure 1)

Assign pattern (a)-(o) to job (Figure 7)

end if

end for

we determine whether it is synced or non-synced based on

distribution observed in Table I. The number of tasks in a

job is then generated for a synced job, based on Figure 1.

A synced job can be either a Seconds job, a Minutes job

or an Hours job. So the type and length of a synced job

can be generated from Table III(b). For a non-synced job,

the number of tasks in a job is also generated based on

Figure 1, with one-task jobs removed. Then a job is assigned

a pattern similar to (a)-(o) in Figure 7, so tasks of the job can

be generated. This algorithm yields a synthesized trace that

exhibits similar statistical properties as the analyzed trace.

In the synthesis process, we have made several choices

based on a random distribution. The reason for this is that

a lot of crucial data is missing (or has been removed)

from the trace available to us, such as information about

I/O operations, consistency of the trace across multiple

application runs, bursty nature of the workload that is not

captured due to the granularity of trace collection intervals,

and job and task dependencies. We believe that availability

of this information will reduce the approximation of missing

data points (that we had to employ) and enable us to create

more accurate traces. Regardless of this, our analysis shows

that the available trace serves as a good first step towards

developing cloud workload generators.

VII. APPLYING SYNTHESIZED TRACES: CASE STUDIES

In this section, we present two case studies that are

enabled by the availability of real or synthesized traces.

We incorporated different Hadoop design changes in our

MRPerf simulator [3], and then used the traces to drive

MRPerf and analyzed the results. In the first case study,

we evaluate different job schedulers for Hadoop tasks. In the

second case study, we examine the impact of adding an extra

NAS device to a Hadoop cluster on application performance.

Both the case studies are based on our synthesized traces.

A. Background

1) MRPerf: MRPerf [3] is a discrete event simulator

that simulates Hadoop [8] applications, and is a critical
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Figure 8. Job utilization under Fair Share and Quincy schedulers. The
two bold lines on top show the number of map tasks that are submitted
to the cluster, including running tasks and waiting tasks. Lower thin lines
show the number of map tasks that are currently running in the cluster.

Table IV
CHARACTERISTICS OF DIFFERENT TYPES OF JOBS.

Job type cycles per byte filter ratio

Terasort 40 1
Search 4–400 0–0.0001
Index 40 0.02–0.5

Compute 400–4000 1–10

resource as Hadoop is used by larger enterprises including

Yahoo! [11] and Facebook [4]. The original MRPerf simula-

tor takes as input the topology of a cluster, the parameters of

a job, and a data layout, and produces detailed simulation

results about how the job would behave on the specified

cluster configuration. In this work, we extended MRPerf to

support our case studies, and used MRPerf as the platform

to do experiments on. In the following, we detail the setup

of our case-studies and how we collected and analyzed the

results from the modified MRPerf.

B. Case Study I: Evaluating Hadoop Job Schedulers

1) Goal: Hadoop can run multiple jobs concurrently, and

multiple scheduling algorithms [4], [6], [11] for Hadoop

or similar systems have been proposed. To evaluate the

effectiveness of different scheduling algorithms, we generate

synthetic traces, and use the traces to drive MRPerf simula-

tor. The traces contain four types of jobs, namely Terasort,

Search, Compute, and Index. Table IV shows the description

of these jobs. Columns “cycles per byte” and “filter ratio”

are performance parameters used in MRPerf to characterize

different applications. Please refer to the original MRPerf

paper [3] for more details. The traces are then generated

using a simple model with arrival times following a Poisson

random process. We fix the maximum length of a time

window T during which jobs may be submitted, and the rate
1

λ
that jobs will arrive per second. On each arrival, a job of

a random type is submitted in virtual time in the simulation.

The type of a job is chosen among the four types with equal

probability (25%), and parameters are randomly generated

if necessary. The trace is generated for time period T . The

expected number of jobs that will be generated in a trace is
T

λ
. MRPerf is then driven by this trace.

The virtual cluster we modeled in MRPerf simulator is a



Table V
LOCALITY OF ALL TASKS UNDER FAIR SHARE AND QUINCY.

Locality Fair Share Quincy

Data-local 167 304
Rack-local 131 0
Rack-remote 6 0

Table VI
LOCALITY OF ALL TASKS IN DIFFERENT TRACES.

Locality Terasort Compute

Fair Share Quincy Fair Share Quincy

Data-local 440 652 258 361
Rack-local 198 0 96 2
Rack-remote 14 0 9 0

24-node cluster organized in two racks. The two racks are

connected over a 8 Gbps interconnection, and the network

bandwidth within a rack is 1 Gbps. We choose rate ( 1

λ
) as

1 (job per second) so that all jobs are submitted towards the

beginning of a trace, and the cluster quickly becomes fully

utilized and will remain so until most jobs are finished.

2) MRPerf Modification: We implemented the naive Fair

Share scheduler [4] in MRPerf simulator. The delay schedul-

ing in the Fair Share scheduler is not implemented because

the length of the traces is too short to reflect the advantage of

delays. We also implemented the Quincy [6] scheduler, and

ported it to Hadoop. We only studied the non-preemptive

Quincy scheduler since the Fair Share scheduler does not

support preemption. Since Quincy achieves overall optimal

locality, but naive Fair Share without delay scheduling does

not, Quincy is expected to perform better than Fair Share.

3) Evaluation: We generate a trace with 28 jobs, and

run the trace under Fair Share and Quincy. Table V shows

the locality of tasks under both schedulers. We denote the

node that a task runs on as the worker, and the node with

data as the host. Data-local means that the worker and host

are the same node. Rack-local means the worker and host

are not the same nodes, but they are in the same rack.

Rack-remote means the worker and host are in different

racks. Quincy achieves perfect locality, much better than

Fair Share. Figure 8 shows the overall utilization of the

cluster under Fair Share and Quincy. Bold lines on top show

the number of map tasks that are submitted to the cluster,

including running tasks and waiting tasks. Lower thin lines

show the number of map tasks that are currently running in

the cluster. Solid lines show total tasks and running tasks for

Fair Share, dashed lines show total tasks and running tasks

for Quincy. This figure confirms the advantage of Quincy

over Fair Share. Although driven by the same trace, Quincy

achieves better data locality and finishes tasks faster, so

Quincy finishes earlier overall.

Furthermore, we also use the same framework to study the

impact of data locality on different types of jobs. Instead of

a trace with mixed types of jobs, we generated four traces,

each of which consists of only one type of job. Figure 9 and

Figure 10 show results for traces of Terasort and Compute

jobs, respectively. Results from Search and Index are omitted
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Figure 9. Job utilization of Terasort trace under Fair Share and Quincy.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500

fair share tasks
fair share running

quincy tasks
quincy running

Figure 10. Job utilization of Compute trace under Fair Share and Quincy.

since they are similar to Terasort. Since Compute jobs

involve heavy computation, the overall completion times

are not significantly different under Fair Share and Quincy.

A much larger difference can be observed for Terasort

jobs. Table VI shows locality under both schedulers. Similar

locality is achieved for both traces. Therefore, we conclude

that Compute jobs are less affected by locality.

C. Case Study II: Evaluating the Role of NAS on Hadoop

Cluster Performance

1) Goal: In this case study, we focus on the performance

impact of a Network-Attached Storage (NAS) device added

to a Hadoop cluster on application performance. We assume

that the device is used for storing the input/output data of

Hadoop jobs, which usually sit on the Hadoop Distributed

File System (HDFS) and are distributed across all nodes.

Replacing or augmenting HDFS with NAS could provide

many benefits in practice, including ease of management,

reliability, reduced cost, backward compatibility, etc. The

trade-off between NAS versus HDFS is out of scope of this

paper. Rather, we focus on the performance impact of adding

an extra NAS device in a Hadoop cluster. Figure 11 shows

a common Hadoop cluster, and Figure 12 shows a Hadoop

cluster with NAS. In the following discussion, we will use

the word “Local” to refer to a common Hadoop cluster, and

the word “NAS” to refer to Hadoop cluster with NAS device.

Local and NAS refer to where the data is stored.

Since reading from and writing to NAS are always rack-

remote, and the NAS device is shared by all nodes, the I/O

performance of NAS will not be optimal for data-intensive

applications. Our aim is to investigate how the performance

of NAS is related to the number of racks serviced by a NAS
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Table VII
SLOW DOWN FACTOR OF NAS VERSUS Local IN DIFFERENT

CONFIGURATIONS.

Scenario Terasort Search Compute Index

2-rack 15-job 1.73 1.57 1.21 1.31
2-rack 30-job 1.69 1.52 1.05 1.68
4-rack 15-job 1.69 2.11 1.31 1.87
Faster NAS 1.34 1.11 1.04 1.02

Lost Locality (60%) 1.07 1.47 0.92 1.37
Increased Replicas 1.25 1.63 0.83 1.37

device, and to the overall workload. Moreover, for certain

types of compute-intensive applications, NAS may be good

enough to match or surpass the performance of Local. In our

experiments, different types of applications and the impact of

NAS on their performance will be examined and compared.

2) MRPerf Implementation to Enable Integration of NAS

with Hadoop: We implemented a new kind of device in

MRPerf, the NAS device, to enable this case study. The

NAS device is modeled as a storage device with a certain

capacity, and performance parameters including read and

write I/O bandwidth. To simulate applications in a Hadoop

cluster with a NAS device, input data must be placed on the

NAS device instead of on local disks of nodes. Schedulers

considering locality must be aware that reading data from

the NAS device is always rack-remote. Moreover, output

data must be written to NAS, not local disks on the node

where a reduce task is run. Note that intermediate map and

reduce task data is still stored on local disks.

3) Evaluation: The base configuration that we have

employed for our experiments in this section is a 2-rack

topology with 15 jobs (2-rack 15-job). The topology is

similar to the topology used in Case Study I. An extra

NAS device is added and connected to the core network

via a 2 Gbps link. We also looked at other configurations

including 2 racks with 30 jobs (2-rack 30-job) and 4 racks

with 15 jobs (4-rack 15-job). In each configuration, we

generate four traces, each of which contains only one type of

job. Then we drive the simulator with the four traces, and

observe the difference in results. The results show which

types of applications are more friendly to NAS, and which

types of applications suffer severe performance degradation

with NAS. We employ Fair Share as the scheduler for both

Local and NAS for a fair comparison.

The results are presented in Table VII. In the base case (2-

rack 15-job), all workloads suffer when using NAS compared

to Local. Among all workloads, Compute achieves the lowest

slowdown factor, because the input and output data are much

larger than the other cases. Next we tried to decrease the

average load on the storage by increasing the number of

racks to 4. In the 4-rack 15-job configuration , however, we

see that all workloads suffer greater slowdown than the base

case. This occurs because the nodes read from and write to

local disks in Local, and the load on local disks is smaller.

In contrast, load on the NAS device is not changed since

number of jobs remains the same. Results of the 2-rack 30-

job configuration shows the opposite approach, increasing

average load on every node. Compute trace achieves lower

slowdown, while Index slowdown is higher, and Terasort

and Search remain the same. As we checked the simulation

results in detail, we found that Compute in Local is stretched

by a single long job. If the trace were without the job,

Compute in Local would finish earlier, and NAS slowdown

factor would be higher. Therefore, we conclude that NAS

slowdown is related to the number of racks, not to the

number of jobs. The more racks one NAS device supports,

the higher slowdown factor will become.

4) Extreme Cases Where NAS Would be Preferable: To

demonstrate that NAS may be beneficial in at least some

cases, we come up with several extreme situations where

NAS could get better results over Local. Although these

situations are less likely to occur in real world, they do help

in understanding the trade-offs to consider when employing

NAS versus Local in Hadoop clusters.

Faster NAS Device: A straight-forward way to boost

NAS performance is to increase the performance of the NAS

device. The default NAS I/O bandwidth is 1000 MB/s for

read and 300 MB/s for write, and it is connected via a

2 Gbps link. We increased the I/O bandwidth of the NAS

device to 3000 MB/s for read and 1000 MB/s for write. We

also increased the bandwidth of the link connecting it to

the router to 8 Gbps. As a result, the NAS device is turned

into a roughly 3x-4x faster device. The performance of such

NAS configuration will be better than the original NAS, if

not better than Local.

Comparing to the base case (2-rack 15-job) , we can see

that each type of application has a lower slowdown factor.

NAS performance of the Compute and Index applications

almost match Local’s performance. Search also achieves a

lower slowdown factor. Terasort seems to be the application

that faster NAS does not help. Just by increasing the

performance of the NAS device, the performance of some

applications could catch up with the performance in Local,

but our tentative results show that NAS may never surpass

Local even if the NAS device is very fast.

Lost Locality: Another situation we examined is Lost

Locality in Local. Since Local can achieve good locality

and hence good performance, we are interested in how

Local would perform if part of the locality is lost. We
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Figure 13. NAS slowdown factors in all cases studied.

implemented an artificial scheduler, which on probability

p gives up locality by scheduling tasks arbitrarily (random

scheduler), and with remaining probability 1 − p schedules

tasks with best achievable locality. By tweaking p between

0% and 100%, the artificial scheduler works like a mix of

Fair Share and a random scheduler.

The NAS slowdown factor is calculated against Local

with p = 60%. The meaning of the experiment can be

interpreted as following. If 60% locality is lost, Local will

likely perform worse. In this case, how will NAS compare

to Local? The Compute trace performs better in NAS than

in Local. This is the first case where NAS performs faster

than Local, although under unusual assumptions. Compute

jobs are heavy in terms of computation as well as the size

of output data. With a faster NAS device, Compute jobs can

write over network to NAS faster than to remote disks.

Increased Replicas: In our default implementation, the

output of every reduce task is put on local disk, and not

replicated on other nodes. Support for multiple replicas

was not implemented due to an issue in legacy code. The

current MRPerf simulator has evolved so that we can support

multiple replicas. We change Local so that every reduce task

writes out 3 replicas of the same data on randomly selected

nodes like Hadoop does. Writing multiple copies on different

nodes incurs overhead. However, in NAS, since everything

goes to NAS, writing multiple copies is not required. By

comparing NAS against Local with multiple replicas, we

hope to see NAS perform better than Local which suffers

from the overhead of creating replicas.

Results show that Compute performs better in NAS than

in Local with replicas. Terasort achieves 125%, a closer

gap between NAS and Local, compared to the base case

(173%). Compute and Terasort both output large amounts

of data, and Compute more so than Terasort. Therefore,

Compute achieves the largest improvement and Terasort

a smaller improvement. We conclude tentatively that in

Hadoop clusters where output data is replicated, applications

with large amounts of output could benefit from NAS.

Figure 13 shows all slowdown factors presented in Ta-

ble VII. Apparently Compute benefits the most from NAS.

Compute jobs are heavy in terms of computation. Therefore,

computation-intensive jobs will likely benefit from NAS.

Among all cases, Faster NAS provides the best overall

performance improvementm, though it does not surpass

Local. It works across all workloads.

VIII. CONCLUSION

We have presented an initial analysis of a distributed

computing trace released by Google. We found that jobs can

be classified into different types based on their execution

duration and the categories of associated tasks, and that

the tasks exhibit specific usage patterns. We are also able

to predict, within narrow 95% confidence intervals, hourly

relative distribution of the types of jobs. Manual synthesis

also revealed that these characteristics can be used to build

realistic workload traces, which can then be used to drive

cloud setup simulators. We leveraged the lessons learned

from the traces to undertake two Hadoop design case studies

and found that: (i) scheduling for better locality indeed

yields better overall performance; and (ii) compute-intensive

applications are less sensitive to locality and can benefit

more from a design that uses an extra NAS device.
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