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ABSTRACT
This paper presents Kosha, a peer-to-peer (p2p) enhance-
ment for the widely-used Network File System (NFS). Kosha
harvests redundant storage space on cluster nodes and user
desktops to provide a reliable, shared file system that acts
as a large storage with normal NFS semantics. P2p stor-
age systems provide location transparency, mobility trans-
parency, load balancing, and file replication – features that
are not available in NFS. On the other hand, NFS provides
hierarchical file organization, directory listings, and file per-
missions, which are missing from p2p storage systems. By
blending the strengths of NFS and p2p storage systems,
Kosha provides a low overhead storage solution. Our ex-
periments show that compared to unmodified NFS, Kosha
introduces a 4.1% fixed overhead and 1.5% additional over-
head as nodes are increased from one to eight. For larger
number of nodes, the additional overhead increases slowly.
Kosha achieves load balancing in distributed directories, and
guarantees 99.99% or better file availability.

1. INTRODUCTION
This paper presents Kosha, a peer-to-peer (p2p) enhance-

ment for the widely-used Network File System (NFS) [27,
6]. Kosha provides a single file system image identical to
NFS, yet offers features commonly found in p2p storage sys-
tems [25, 12], such as location transparency, mobility trans-
parency, load balancing, and high availability through file
replication and transparent fault handling. Kosha leverages
p2p technology and the unused disk space of desktop ma-
chines to enhance NFS. It does not entail changes to the
underlying operating system, and requires only minimal con-
figuration. The result is a simple yet effective system, which
is readily deployable, does not burden the user with the need
to learn a new interface, and supports unmodified applica-
tions.

The design of Kosha is aimed at academic and corpo-
rate networks on the order of 104 nodes, where NFS cross-
mounting facilities are used extensively to provide users ac-
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cess to storage beyond their local disk. In such environ-
ments, efficiency and economics dictate the widespread use
of off-the-shelf desktops for fulfilling the computing needs.
These machines have become increasingly powerful, both in
terms of processing power and storage capacity [16], and
therefore have the potential to be used as shared resources
if so desired. Unfortunately, a large amount of free disk
space that exists on typical desktops is wasted as individual
users are served mostly by central NFS servers, which must
be upgraded to scale with the client population. Therefore
a prime goal of Kosha is to utilize the cheap storage that is
available in such environments, while achieving higher data
availability and an acceptable level of load balancing.

It seems desirable to solve this problem, though likely it
is not practical to replace NFS in an established comput-
ing environment (For similar reasons switching to AFS [17]
or xFS [3] may not be possible.) Kosha addresses these is-
sues, and provides additional features of fault tolerance and
high availability, which come naturally from the use of a p2p
overlay. Since the widespread use of NFS is indispensable
in the targeted environments, the key idea here is to extend
NFS without incurring any changes to the underlying file
system. Specifically, Kosha organizes the nodes that con-
tribute disk space into a structured p2p overlay which then
uses NFS to replicate files across peers and make the loca-
tion of the files transparent to the user. Unique to the design
of Kosha is that instead of distributing individual files over
the distributed storage provided by the nodes in the p2p
overlay, it distributes at the level of directories, i.e., files in
the same directory are by default stored in the same node as
that directory. Furthermore, Kosha controls the granularity
of directory distribution via a parameter that controls the
depth beyond which subdirectories are not distributed, i.e.,
they are stored on the same node as their parent directory.
As we will show, distribution at the directory level allows
Kosha to impose less overhead on NFS operations, while
achieving load balancing comparable to distribution at the
file level.

Kosha is built on top of NFS; it does not entail that nodes
running Kosha cannot use standard NFS. The standard NFS
is not affected, and the node owner can decide on the por-
tion of a node’s storage space that will be used for Kosha
and standard NFS. Once this is done, the standard NFS and
Kosha operations will not interfere with each other. In order
for users to reap the benefits of Kosha, they should explic-
itly store their files under the Kosha mount points. This
process can be simplified for users if the system administra-
tors move all the users’ files to Kosha mount points and set
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their home directories to those on Kosha. In this way, users
can transparently benefit from Kosha features.

The main contributions of this work are as follows:

1. the aggregation of unused disk space on many com-
puters into a single, shared file system with standard
NFS semantics,

2. location transparency,

3. mobility transparency (i.e., transparent migration of
files and subdirectories),

4. load balancing via an efficient scheme of distributing
directories instead of files,

5. high availability through replication and transparent
fault handling, and

6. a detailed evaluation of the approach, including its per-
formance compared to unmodified NFS, and its ability
to provide load balancing and fault tolerance.

The rest of the paper is organized as follows. Section 2
presents the enabling technologies on which this work is
based. Section 3 presents the main idea of file distribu-
tion across multiple nodes in Kosha. Section 4 presents the
design of Kosha and how it handles various NFS operation.
Section 5 describes our prototype implementation. Section 6
presents a detailed evaluation of Kosha. Section 7 discusses
the related work. Finally, Section 8 gives concluding re-
marks.

2. ENABLING TECHNOLOGIES
Two aspects, advancement in hardware technology and

p2p routing algorithms, serve as enabling technologies for
our proposed approach. In the following sections we discuss
these aspects in more detail.

2.1 Large unused local disk space on desktops
Most desktop computers in today’s academic or corporate

environments are purchased mainly for processing power.
Nevertheless, standard packages, which are rampant in such
environments, usually ship with large capacity disk drives [13,
11]. In order to support our conjecture that a large amount
of disk space is wasted in the focused environments, we per-
formed a survey of over 500 instructional machines at Pur-
due University. The survey showed that more than 80% of
machines have 1.5 GHz Intel Pentium 4 or better proces-
sors, and the total available disk space ranged from 8 GB
(for older systems) to 60 GB (for the latest systems). A
little over 84% of the machines have a local disk of 40 GB;
however, the local disk utilization is only up to 4 GB for
holding the operating system and temporary user files. For
the systems that have at least 40 GB disk space, at least
90% of the local disk space on each machine is unused. As
disks become cheaper and larger in capacity, this wastage is
bound to worsen. On the other hand, the three NFS servers
used by these machines have about 75% space being used.
The servers have to impose strict quotas in order to avoid be-
ing full. Such central servers require regular addition of new
disk space to accommodate new users and the ever grow-
ing storage needs of many users, an obviously expensive and
cumbersome procedure.

Simply running NFS servers on every machine that has
unused local disk space and letting users share the space is
far from practical. The maintenance of a huge number of
servers can be inhibiting, and human interaction and config-
uration errors may poorly affect the performance. Further-
more, if all nodes are NFS servers, users must remember
on which machines their files are stored – a difficult and
cumbersome task if many machines are used for storage.
Symbolic links can help the user to locate their files quickly,
but stale links can make the situation even more confusing.
Another issue is that NFS does not provide redundancy, so
if machines fail or are taken offline for maintenance, the in-
formation stored on them becomes inaccessible. The failure
often causes other machines (repeatedly trying to access the
failed machines) to respond slowly to requests they receive –
an effect which spreads rapidly to degrade the performance
of the entire system. The user may retrieve files from a daily
or weekly backup storage, but in a large organization it may
not be economically feasible to backup the data from the
local disks of all machines. These observations stress the
opportunity of, and the need for, a utility layer above NFS
to manage locally available disk space as an economical way
of fulfilling the ever growing storage demands of users.

2.2 Structured p2p overlay networks
Structured p2p overlay networks such as CAN[22], Chord[30],

Pastry[24], and Tapestry[32] effectively implement scalable
and fault tolerant distributed hash tables (DHTs), where
each node in the network has a unique node identifier (nodeId)
and each data item stored in the network has a unique key.
The nodeIds and keys live in the same name space, and each
key is mapped to a unique node in the network. Thus DHTs
allow data to be inserted without knowing where it will be
stored and requests for data to be routed without requiring
any knowledge of where the corresponding data items are
stored.

The key aspects of these structured p2p overlays are self-
organization, decentralization, redundancy, and routing ef-
ficiency. Self-organization promises to eliminate much of
the cost, difficulty, and time required to deploy, configure
and maintain large-scale distributed systems. The process
of securely integrating a node into an existing system, main-
taining its integrity invariants as nodes fail and recover, and
scaling the number of nodes over many orders of magni-
tude is fully automated. The heavy reliance on randomiza-
tion (from hashing) in the nodeId and key generation pro-
vides good load balancing, diversity, redundancy and robust-
ness without requiring any global coordination or central-
ized components, which could compromise scalability. In an
overlay with N nodes, messages can be routed with O(logN)
overlay hops and each node maintains only O(logN) neigh-
bors.

The functionalities provided by DHTs allow for transpar-
ent distribution of files on multiple servers. In the next sec-
tion, we discuss how this facility is leveraged in the Kosha
design. While any of the structured DHTs can be used to
implement file distribution in Kosha, we use Pastry for this
paper. In the following, we briefly explain the DHT mapping
in Pastry.

Pastry Pastry [24, 7] is a scalable, fault resilient and self-
organizing p2p substrate. Each Pastry node has a unique,
uniform, randomly-assigned nodeId in a circular 128-bit iden-
tifier space. Given a message and an associated 128-bit key,
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Figure 1: Virtual directory hierarchy: /kosha is the
virtual directory and is the union of /kosha store on
all the nodes.

Pastry reliably routes the message to the live node whose
nodeId is numerically closest to the key.

In Pastry, each node maintains a routing table that con-
sists of rows of other nodes’ nodeIds which share increas-
ingly longer prefixes with the current node’s nodeId. In
addition, each node also maintains a leaf set, which con-
sists of l nodes with nodeIds that are numerically closest to
the present node’s nodeId, with l/2 larger and l/2 smaller
nodeIds than the current node’s nodeId. The leaf set en-
sures reliable message delivery and is used to store replicas
of application objects. Pastry routing is prefix-based. At
each routing step, a node seeks to forward the message to a
node whose nodeId shares with the key a prefix that is at
least one digit longer than the current node’s shared prefix.
The leaf set helps to determine the numerically closest node
once the message has reached the vicinity of that node. A
more detailed description of Pastry can be found in [24, 7].

3. DISTRIBUTION OF A FILE SYSTEM
ACROSS NODES

Kosha distributes data to various nodes that participate
in storage-space sharing by joining the Pastry overlay. The
virtual mount point /kosha serves as an access point to the
distributed file system provided by Kosha. On each node,
the directory /kosha store serves as the storage for Kosha.
From a user’s perspective, the /kosha/$USER directory ac-
tually corresponds to the union of the /kosha store/$USER
directories on all nodes, as shown in Figure 1. For Kosha
$USER is the same as in NFS, i.e., the user’s home directory
and is typically the same as the login of the user.

3.1 Directory distribution across multiple
nodes

To achieve load balancing, Kosha employs hashing pro-
vided by Pastry and distributes directories created under
/kosha to multiple nodes. It is assumed that all the files
in a directory reside on the same node, i.e., the node to
which the directory name is mapped, except for subdirec-
tories, which reside on the nodes selected via mapping of
the subdirectory names. This design helps to reduce costs
of hashing and subsequent lookups for the actual storage
nodes, while maintaining a good load balance.

For example, to locate a node for a file /a/myFile Kosha
performs the following mapping:

/kosha/a/myFile

=⇒ DHT (hash(a)) : /kosha store/a/myFile

Hash
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Figure 2: Example of file distribution to multiple
nodes. The virtual mount point is /kosha. The
directory name is first hashed using the Generate
Hash function to generate a unique key, which is
then routed using Pastry to a node whose nodeId is
numerically closest to the key. The selected Pas-
try node will provide the physical storage for the
directory. The actual file operations, however, are
performed via the NFS protocol (not shown).

The following steps are done for this purpose. A 128-bit
unique key is created via a SHA-1 [1] hash of the directory
name. Next, this key is used to lookup a node according to
the DHT implementation of the p2p substrate. For example,
in the case of Pastry [24], the selected node is the one whose
identifier is numerically closest to the key value. The event
of key collisions due to two or more subdirectories sharing
the same name only implies that the colliding directories will
be stored on the same node, and does not pose a problem
in distinguishing them, as their paths are unique.

Figure 2 shows an example distribution of directories to
various nodes. When directories are distributed to nodes
other than the ones that store their parent directory, an
empty special link as described in Section 3.3 is placed in
the parent directory to serve as a place holder for properly
listing contents of the parent directory.

3.2 Controlling the granularity of distribution
Kosha maintains a system-wide parameter, the distribu-

tion level, which dictates how many levels of subdirectories
will be distributed to multiple nodes. For instance, distri-
bution level 1 implies that hashing is performed for only
direct subdirectories (first level subdirectories) of the vir-
tual file system mount point (/kosha) to distribute them to
multiple nodes. As a result, all lower level subdirectories
are stored on the same node as the node on which their par-
ent directory is stored. For example, with distribution level
1, the directories /kosha/a and /kosha/b may be stored on
different nodes as determined by the p2p substrate, but the
directories /kosha/a/x and /kosha/a/y are both stored on
the same node as the one which stores /kosha/a. Similarly,
distribution level 2 implies that another level of subdirecto-
ries will also be distributed to multiple nodes. In this case,
/kosha/a/x and /kosha/a/y may be stored on different nodes
than the one that stores /kosha/a. Hence, distribution level
controls the granularity of distribution and load balancing.



3.3 Optimization
Because of the heterogeneity in the storage space con-

tributed by nodes and variations in directory size, the node
selected for storing a directory may not have enough local
disk space to hold the directory and all its files. Since de-
ciding the size of a directory a priori (i.e., without knowing
the size of the files that will be created in it) is not possible,
redirection is done for all newly created directories when the
local disk space has exceeded the pre-specified utilization.
When this happens, the directory is redirected and stored
on a different node. Redirection is done by concatenating a
random salt to the directory name, and rehashing the new
name to find a suitable node. The redirection due to storage
capacity is an iterative operation rather than recursive, i.e.,
the redirection process repeats till a node with enough disk
space is found, or a pre-specified number of retries is ex-
hausted. This approach is derived from a similar approach
in PAST [25].

When a directory is redirected, a special soft link to the
redirected directory is created in the parent directory. A
special link is a soft link that serves to connect the redirected
directory to its actual location in the parent directory. The
name of the link is the same as the name of the redirected
directory; this helps Kosha list the directory contents of the
parent directory. The target of the link is the directory name
concatenated with the salt value. When Kosha comes across
a special link, it follows the special link and accesses the
redirected directory. This provides users with transparency
to redirection. Figure 3 shows an example of file distribution
with this optimization.

4. KOSHA DESIGN
In Kosha, nodes contributing disk space join a p2p overlay

network, and are identified by unique nodeIds assigned to
them via the Pastry interface [24]. The nodes are assumed
to run NFS servers, so that their contributed disk space can
be accessed via NFS. It is assumed that only the system
administrator has full access to these nodes, and the users
cannot modify the system arbitrarily.

Various file operations performed on /kosha are handled as
follows. At first Kosha determines the node on which a file is
stored by performing the mapping described in Section 3.1,
and following any redirection as necessary. Next, the NFS
Remote Procedure Call (RPC) for performing the file oper-
ation is modified to occur on /kosha store on the selected
node, instead of /kosha on the client node. Kosha does this
by forwarding the modified RPC to the selected node. The
receiving node performs the operation and returns the re-
sults to Kosha, which then records the information needed
for future accesses, and finally returns control to the client.
Hence, the client remains unaware of the underlying RPC
forwarding, and the whole operation is transparent, except
for a delay caused by the lookup for the appropriate storage
node.

4.1 NFS operations support
In the following, we describe the semantics supported by

Kosha, followed by a discussion of how Kosha handles vari-
ous NFS operations.

4.1.1 Semantics in absence of failures
The semantics of Kosha are the same as NFS in the ab-

sence of failures. All accesses to a file are guaranteed (by the

DHT-based storage node location) to be sent to the same
storage node, and therefore, every user sees the same in-
stance of a file. In case of failures, Kosha differs from NFS
in that it continues to provide access to files, whereas NFS
does not. See Section 4.3 for more on the failure semantics
of Kosha. The behavior of Kosha in the presence of client
caching also remains the same as that of NFS.

4.1.2 Virtual file handles
NFS uses file handles to access files. These handles are

opaque, i.e., they only have meaning to the NFS server, im-
plying that the clients can be given any identifier for a file
as long as it corresponds uniquely to a file handle in the
server. The opacity provides Kosha with a way to decou-
ple actual file handles from identifiers handed to the clients.
We refer to these identifiers as virtual file handles, as they
serve to access files in the /kosha virtual file system. Kosha
maintains a table of mappings from virtual file handles to
real file handles, which allows it to provide location trans-
parency. As explained below, Kosha also stores the full file
path for each entry in the table. The extra level of indirec-
tion enabled by the use of virtual handles allows Kosha to
transparently substitute handles for file replicas in the event
of node failures.

4.1.3 Locating files
In NFS, a lookup RPC is used to obtain a file handle for a

file. The RPC contains the handle for the parent directory,
and the name of the file for which the lookup is desired.
Note that in NFSv3, the RPC does not contain the full path
to the file. Once a handle is available, other NFS opera-
tions can be performed on the file or directory by presenting
the handle. Looking up the full path by an NFS client re-
quires a sequence of lookup RPCs, unless the handles for
the ancestor directories have already been cached.

To perform a lookup RPC from the local NFS client,
Kosha first looks up the full path to the parent directory
in the virtual handle table, which is already known because
of previous lookup calls, and appends the name of the file to
the parent directory’s full path. Kosha then examines the
full path to the file and uses the distribution level to deter-
mine what directory name should be used for node lookup.
Performing this lookup gives Kosha the remote node R on
which the file is stored.

Next, Kosha looks up the entire path on R, as if it is
an NFS client of R. Finally, when the call returns with a
handle, a virtual handle (as described in Section 4.1.2) is
created, and the virtual handle is given to the client.

All subsequent RPCs that supply the virtual handle are
mapped to the real handle to perform the NFS operation.
For instance, RPCs such as read, write, getattr, and setattr

provide the virtual handle, which is mapped by Kosha to the
actual handle, and the operations can then be completed.

4.1.4 File creation and renaming
To create files or directories, the first step is to locate

the node on which the newly created files should be stored.
To create a file, Kosha locates the node R to which the
parent directory is mapped and the handle to the parent
directory on the node as in Section 4.1.3, and then sends
a message with the client provided RPC parameters to R.
R uses this information to create the file, which becomes
the primary replica of the file, and returns the file handle of
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the created file to Kosha. Kosha stores the returned handle
in the virtual handle table, and returns the corresponding
virtual handle to the client, completing the RPC.

The creation of a subdirectory that is below the distri-
bution level is similar to the file creation process described
above. If the subdirectory is within the distribution level
and thus needs to be distributed, the remote node R is first
located by hashing the directory name using the DHT. One
or more RPCs are then sent to R to create the new subdi-
rectory as well as all the missing ancestor directories in the
hierarchy on R.

A rename operation on a file does not imply migration to a
different node as all files in a subdirectory reside on the same
node. Therefore, if the file is not redirected, rename is per-
formed as in the standard NFS. If the file is redirected, a spe-
cial link is present, e.g., in Figure 3, A:/kosha store/alpha/
sdir2/sdirM (assume it is a file) points to the file on B.
In this case, the rename is achieved by renaming the link
and the actual file, e.g., /kosha store/alpha/sdir2/sdirM to
/kosha store/alpha/sdir2/sdirM NewName on both A and
B. The target of the link needs not be changed, because
DHT (hash(sdirM#)) = B remains true. This prevents
unnecessary moving of files on each rename call, and yields
an efficient solution. The same process is used for renaming
subdirectories that are not distributed.

Renaming of distributed subdirectories is complex, and in
essence is equivalent to a copy to a new location followed by
a delete of the old location. The process involves traversal
of all subdirectory levels on all replicas and is expensive.

4.1.5 Removing files
An NFS client uses remove or rmdir RPCs to delete files

or directories, respectively. To delete a file, the first step
is to determine the remote node on which the file is stored

by looking up the virtual handle mapping. Next, Kosha
forwards the RPC to the remote node, where it is processed
and the file is removed. Once again, as in the previous
Kosha operations, the reply values are returned to Kosha
and finally to the client.

The directories that are not distributed are deleted in a
similar manner. In the case of distributed directories, sub-
directories are also traversed and removed. The empty di-
rectory structure created to support the distributed subdi-
rectory is then examined for possibly being used by other
subdirectories with some common path prefix. The empty
hierarchy leading to the subdirectory is then deleted, and
the special link in the parent directory on the node to which
the parent directory is mapped is also removed. This action
completes the directory deletion process.

4.1.6 Security
Security in Kosha is identical to NFS since files in Kosha

maintain their permissions. Also, in most of the targeted
academic or cooperate networks, the users either are not
given administrative access to their machines, or NFS servers
are not run on such machines. Therefore, it is safe to assume
that the files stored on distributed nodes are at least as se-
cure as on a central NFS server. For added security, however,
Kosha can be extended to support a majority consensus sys-
tem based on Byzantine agreements [9], as utilized in [26].
The performance of the system may be sacrificed, if the need
for supporting mutually untrusted nodes arises. The p2p
substrate can support tighter security extensions [8]; how-
ever, in our implementation we did not incorporate such
approaches.



4.2 Managing replicas
Kosha maintains K replicas of a file on the neighboring K

nodes in the node-identifier space. The random assignment
of node identifiers ensures that the replicas are dispersed
fairly and can provide good fault tolerance. Neighbors in
the node identifier space have no relationship in terms of
physical proximity.

For each file, there is a node that is located using the
techniques of Section 3; we refer to this node as the pri-
mary replica. All accesses to the file are sent to the primary
replica. The primary replica is responsible for maintaining
K replicas of the file on K neighboring nodes in its leaf set.
The replicas are inaccessible to the local users, as they may
accidentally or maliciously modify the replica. The direc-
tory hierarchy structure (containing the file) is replicated
along with the file on the replica nodes. In addition, special
links in the same directory, i.e., those pointing to distributed
subdirectories, are replicated as well.

The primary replica is also responsible for removing files
from all replicas when they are deleted. When the primary
replica receives an RPC for deleting a file, it removes the file
locally and also forwards the RPC to all the replicas, hence
removing all instances of the file. If a replica node fails
before performing the delete operation, it does not create
any inconsistency as explained in the node failure discussion
below.

It should be noted that with the present design the pri-
mary replica is in charge of all file operations unless it fails
and a new primary replica is selected. Since there are K
replicas of the files available, there is potential for perfor-
mance improvement by leveraging these replicas. We cur-
rently are exploring optimization techniques that allow at
least read operations to be served from any one of the K
replicas.

4.3 Node addition and failure
The p2p component of the system handles nodes join-

ing or leaving (including failure) the system at will, and
informs Kosha on a node N when nodes in N’s leaf set are
affected. Kosha then dynamically adjusts the file distribu-
tion to maintain proper locations of the primary replica and
the K additional replicas.

4.3.1 Primary replica
Pastry evenly divides the key space between adjacent nodes

in the circular identifier space, with the node with nodeId

numerically closest to the file key responsible for the file.
In case of node addition, action is required only at the two
nodes that become immediate neighbors of the new node.
If N is one of these neighbors, the key space distribution
changes for it, implying that some of the files, for which N
is the primary node, now belong to its new neighbor and
should be moved. Kosha examines the files stored on N and
the N’s leaf set to determine which files need to be moved.
If a move is required, the files are copied to the new node,
and their copy on N becomes one of the replicas. The mi-
gration of files ensures that a new node always has the files
for which it is the primary node.

4.3.2 Additional replicas
In case a replica node fails, or a new node is added, Pastry

detects the change and informs the local Kosha of the event
via a callback function. In response to this, the local Kosha

creates a copy of its contents for which it is the primary
replica, and sends the copy to the newly added node, which
now serves as one of the K replicas.

Note that since a node can be revived with a different
identifier which places it in a different location in the p2p
node identifier space, all Kosha data on a revived node is
purged. Purging ensures that nodes do not end up accu-
mulating replicas from their previous locations in the p2p
identifier space as they fail and recover.

4.4 Transparent fault handling
The failure of a primary replica node is handled trans-

parently. For the purpose of this discussion we assume only
crash failure. The client has a virtual handle to the file,
which Kosha transparently can change to index the handle
of a file replica when the primary replica node fails. The
following sequence of events occur in case of such failure.
When any client accesses a file whose primary replica has
failed, Kosha detects an RPC error and removes the map-
ping for the virtual handle. It then proceeds as though a
lookup RPC was made and locates the handle for another
replica of the file. The p2p-based replication of Section 4.2
guarantees that the lookup automatically will be sent to a
node that already stores a valid replica. An error occurs
when no valid replica for the file can be found. By effective
replication Kosha provides very high availability, and due
to the highly-randomized physical location of the neighbors
in the node identifier space, there is a high probability of
finding a replica even under a large number of node failures.

Another interesting scenario may occur when the primary
replica fails while performing content migration (due to ei-
ther a node join or failure) to a newly inducted replica node.
With the design described so far, the new replica may not
have the correct contents. To overcome this problem, when
a primary replica performs migration it also creates a file
named MIGRATION NOT COMPLETE in the root directory of the
replicated hierarchy, and removes it after the migration com-
pletes. In the case of failure of the primary replica before
migration is completed, the file MIGRATION NOT COMPLETE

serves as a flag to indicate problems with content migra-
tion. The new primary replica checks for the existence of
this file on all the K replicas, and perform the content mi-
gration as before to make all the replicas current. In this
way, fault tolerance is achieved even for this scenario.

Finally, storing a mapping from virtual handles to real
handles means Kosha is not stateless. But this mapping
is only provided as a service to the kernel, and due to our
crash failure assumption, if Kosha fails, the entire machine
including the kernel must have failed. Therefore, virtual
handles need not be persistent.

5. SOFTWARE ARCHITECTURE
Each node participating in storage sharing runs an in-

stance of the Kosha software. A local disk partition is cre-
ated and used for space contribution. The size of the par-
tition provides control over the amount of disk space con-
tributed to Kosha.

The Kosha loopback daemon koshad is implemented as
two tightly-coupled components: an NFS loopback server [20]
and one of the p2p routing substrates, Pastry, as shown in
Figure 4.

Koshad on each machine is assigned to the same virtual
mount point, /kosha. Afterwards, whenever an applica-
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tion performs a file I/O on any path beginning with /kosha
(step 1 in Figure 4), the NFS portion of the OS kernel will
make a remote procedure call (RPC) to the loopback server
koshad (step 2).

5.1 Prototype implementation
The implementation of Kosha is divided into two parts.

One part is dedicated to managing p2p communication be-
tween nodes and utilizes the Pastry API. The only available
version of this API is FreePastry [14] and is written in Java.
Therefore, for our experiments we implemented a simplified
version of the Pasty API using 800+ lines of C++ code.

The second and larger part called koshad handles accesses
to the file system and manages NFS RPCs. It is imple-
mented as an NFS loopback server built on top of the SFS
toolkit [20] with 4000+ lines of C++ code.

In order to start the system, the p2p part is started first,
followed by the execution of koshad. Once started, koshad
establishes communication with the local p2p component
using sockets. The messaging between the nodes occurs at
two levels. The node lookup and other p2p messages are
relayed using the p2p substrate. Once a node is chosen
for a specific operation, koshad uses direct NFS RPCs to
communicate with remote NFS servers.

6. EVALUATION
In this section we present experimental results obtained

from our prototype implementation of Kosha.

6.1 Performance
To determine the performance of the proposed scheme, we

measured Kosha execution times for a modified 1 Andrew
benchmark (MAB) [26] and compared it to NFS Version 3.

1The benchmark was modified to run on FreeBSD with a
larger workload.

These experiments were performed on an 8-node configura-
tion. Each node has a 2.0 GHz Intel P4 with 512 MB RAM
and a 40 GB 7200 RPM Barracuda Seagate hard disk, and
runs FreeBSD 4.6. The nodes are connected via a 100Mb/s
Ethernet switch. The file distribution used is 51MB in size,
with a maximum subdirectory level of 4.

6.1.1 Scalability
Table 1 shows the first set of measurements comparing the

performance of Kosha, varying the number of nodes, relative
to that of NFS. In this case, the distribution level was fixed
at 1, i.e., only the first level directories under /kosha were
distributed to multiple nodes. The level was chosen to re-
move the effect of subdirectory distribution, and thus isolate
the performance overhead due to p2p lookups. The replica-
tion factor was also fixed at 1 for similar reasons. Moreover,
each node contributed 35 GB of disk space, enough to ac-
commodate all the files to be stored on it, hence eliminating
the effect of file redirection. For each overlay size, 50 runs
of the benchmark were made, and the execution time for
each phase was recorded. For Kosha, we measured the per-
formance as we successively increased the number of nodes
from 1 to 8. The NFS configuration consists of two nodes
with one running as a client, and the other running as a
server.

The total overhead introduced by Kosha, as compared to
the performance of NFS, is under 6%. Adding more nodes
into the system does not affect the overall performance dras-
tically (only 1.5% additional total overhead introduced when
the number of nodes increased from 1 to 8), this is because
the DHT lookup is always one hop in the small p2p overlay.

6.1.2 Discussion
The average overhead D introduced by the design of Kosha

can be categorized as:

D = I + (H ∗ hc) ∗
(N − 1)

N

where N is the number of nodes in the network, I is a con-
stant overhead introduced by the interposition code for redi-
recting NFS calls to different nodes, H is the number of hops
a message has to travel to the destination node, and hc is the
average latency of each hop. H is a function of N and equals
log2b(N) where 2b is the base of a digit in Pastry nodeId

with a typical value of 16 or 32. The factor (N−1)
N

(referred
to as the overhead factor for this discussion) accounts for the
percentage of total files stored on remote nodes compared
to those stored on the local node. For small N, a higher
percentage of files are stored locally and file operations to
them are not affected by the network latency. When N is in-
creased initially, the main overhead introduced is from the
increase in the number of files served from remote nodes,
which becomes constant as N becomes large. For exam-
ple, when N is increased from 1 to 8, the percentage of re-
motely stored files increases from 0% to 87.5%, whereas for
16 nodes 93.75% files are stored remotely, an additional in-
crease of only 6.25%. For a typical network of 10,000 nodes,
the maximum value of H is 4, hc is under 1ms (this is typ-
ical within an organization), and the overhead factor ≈ 1.
Hence, the overhead D does not exceed 4ms plus a constant
factor. This shows that Kosha is highly scalable; additional
nodes can be introduced into the system with little impact
on the performance.



Table 1: Performance of a modified Andrew benchmark on Kosha with increasing number of nodes. The table
shows execution times of each phase in seconds and respective overhead compared to NFS. The distribution
level for Kosha was fixed at 1 for these measurements.

Kosha
One Node Two Nodes Four Nodes Eight NodesBenchmark NFS

exec. time ovrhd exec. time ovrhd exec. time ovrhd exec. time ovrhd

mkdir 0.201 0.203 1.010 0.205 1.020 0.207 1.030 0.208 1.035
copy 24.644 25.834 1.048 25.872 1.050 25.888 1.050 26.101 1.059
stat 0.594 0.711 1.197 0.756 1.273 0.761 1.281 0.810 1.364
grep 2.803 2.829 1.009 2.899 1.034 2.901 1.035 2.954 1.054
compile 27.418 28.391 1.035 28.510 1.040 28.515 1.040 28.712 1.047
Total 55.660 57.968 1.041 58.242 1.046 58.272 1.047 58.785 1.056

Table 2: Performance of a modified Andrew benchmark on Kosha as the distribution level is increased. For
these measurements, the number of nodes was fixed at 4. All times are in seconds.

Dist-level 1 Dist-level 2 Dist-level 3 Dist-level 4
Benchmark

exec. time exec. time overhead exec. time overhead exec. time overhead

mkdir 0.207 0.232 1.12 0.245 1.18 0.248 1.20
copy 25.888 28.324 1.09 28.943 1.12 29.010 1.12
stat 0.761 0.930 1.22 0.977 1.28 0.981 1.29
grep 2.901 3.012 1.04 3.101 1.07 3.143 1.08
compile 28.515 28.952 1.02 30.100 1.06 30.487 1.07
Total 58.272 61.450 1.05 63.366 1.09 63.869 1.10

6.1.3 Subdirectory distribution
To measure the effect of subdirectory distribution on the

overall performance, we varied the distribution level between
1 to 4, while fixing the number of nodes in Kosha to be
4. Once again, 50 runs of the MAB were made, and the
execution times were recorded.

Table 2 shows that the overhead in distribution levels 2, 3,
and 4 relative to distribution level 1 are 5%, 9%, and 10%,
respectively. This implies that having a large distribution
level is not inhibiting. Also observe that the cost on mkdir

and copy is significantly more than on compile and grep.
The reason for this is that when the directories are created
in the mkdir and copy phases, Kosha has to perform two
hashes to locate the node on which the subdirectory will be
stored, and to locate the parent directory where the special
link will be created. Then the empty hierarchy as well as the
special link have to be created, adding to the overall cost.
On the other hand, during the compile phase for instance,
only one hash of the directory name results in the location
of the physical node storing the file.

6.2 Load distribution
The load distribution facilities of Kosha are evaluated in

this section. For the purpose of these evaluations, we simu-
lated a Kosha cluster of 16 nodes and fixed the number of
replicas to 3. The simulation was driven by a file system
trace, which we collected from the central NFS server of our
department. The trace contained 221K files of 130 users, for
a total of 17.9 GB of data.

The first set of experiments measured the effect of sub-
directory distribution on the load balancing characteristics
of the system. Each node contributed 10 GB of disk space

to avoid file redirection. The distribution level was varied
from 1 to 10, and for each level, we collected the distribu-
tion information from all nodes, and measured the number
of files and their collective sizes on the individual nodes.
The simulation was repeated 50 times varying the nodeId

assignments in the Pastry network, and the results were av-
eraged. We also calculated these quantities for a hypothet-
ical scheme which distributed individual files among differ-
ent nodes. This finest grained distribution gives the upper
bound on the best load balancing (for the trace used) that
can be achieved using DHTs.

Figure 5 shows the result of the load balancing experi-
ments. The dotted horizontal lines show the mean and the
standard deviation of the distribution of the number and
the collective size of files on the different nodes when each
individual file was hashed and distributed. The results show
that as the distribution level is increased, the load balancing
in terms of the number of files converges toward the upper
bound. The file size distribution improves, but the improve-
ment is not monotonic. This is because the distribution
process is not based on file sizes. Using directory distribu-
tion with distribution level 4 or greater provides comparable
load balancing to that of individually hashing all files.

The next set of experiments measured the effect of file
redirection on the overall disk utilization. The simulation
for this was done for a cluster of 16 nodes, 8 of which con-
tributed 3 GB each, 4 nodes contributed 4 GB each, and
4 nodes contributed 5 GB each of disk space. These num-
bers were chosen to study the system under high utilization.
The distribution level was fixed at 4, and the number of the
replicas was fixed at 3. The file system trace from our de-
partment was once again used to drive the simulation, and
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Figure 5: The mean and standard deviation of the
percentage of the number of files and their sizes per
node across 16 nodes as the distribution level is in-
creased. The dotted horizontal lines show the mean
and the standard deviation when each individual file
was distributed to a different node, i.e., with the
finest grained distribution.

the number of insertion failures was recorded as the files were
added. The simulation was repeated with file redirection at-
tempts varying from 1 to 15. Each simulation was run 50
times varying the nodeId assignment in the Pastry network,
and the results were averaged. In [25], the cumulative failure
ratio is defined as the ratio of all failed file insertions over all
file insertions that have occurred up to the point when the
given storage utilization was reached. We use the same def-
inition. Figure 6 shows the cumulative failure ratio versus
the percentage utilization. It shows that with 4 redirection
attempts and distribution level 4, the failure ratio remains
near 0 for utilization as high as 60%, and it does exceed
12% when the utilization approaches 100%. Note that while
increasing the number of redirection attempts results in a
higher utilization of the total disk space, each redirection
attempt requires hashing of the file name which can hinder
the file operation performance.

6.3 Fault tolerance
The experiments in this section measured the availabil-

ity of Kosha under failures. We used an availability trace
of 51663 machines in a large corporation over a consecutive
35-day (840-hour) period [4]. The trace contains the status
of machines (up or failed) recorded hourly. We simulated
Kosha for the cluster of 51663 machines. We distributed
the files obtained from the file system trace from Purdue
University’s servers as described earlier, and then used the
availability data to introduce failures and node joins. For
each hour, we determined the total number of files that re-
main available. The distribution level was fixed at 3, and
the experiments were repeated with the number of replicas
varying from 0 to 4. For each case, 100 runs were made
with various nodeIds for the nodes in the Pastry network,
and the results were averaged.

Figure 7 shows the percentage of total files available over
the 840 hours period. The lower spike in the graph for
Kosha-0, i.e., with no replicas, shows that the system per-
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Figure 6: The cumulative failure ratio versus uti-
lization, as the number of redirection attempts is
increased. The distribution level is fixed at 4.

formance is affected when a large number of failures occur.
However, even maintaining a single replica (Kosha-1) in-
creases the availability significantly, even for the case of a
large number of simultaneous failures at hour 615. For the
case of Kosha-3, the average availability is 99.991%, signi-
fying that Kosha can guarantee near 100% availability with
only three replicas. The reason for this is that Kosha contin-
uously maintains the K replicas it was configured for (Sec-
tion 4.2); node failures are tolerated as new replicas are
created when old ones become unavailable.

7. RELATED WORK
The main driving force behind widespread use of p2p

techniques has been large-scale data sharing facilities such
as Gnutella [15], Freenet [10], and Kazaa [28]. The basic
data sharing is extended by providing strong persistence
and reliability in p2p distributed storage projects, such as
Pond [23] which is a prototype of Oceanstore [18], CFS [12],
and PAST [25]. Kosha uses a similar p2p substrate but
also provides a virtualized NFS interface that creates a file
system abstraction to the distributed storage.

Scalable distributed [17] or serverless [3, 31] file systems
provide some p2p aspects, but may not be practical to switch
to in an established environment because of their fundamen-
tally different designs and requirements.

There are several wide-area file system projects such as
Ivy [21], Farsite [2], and Pangaea [26], which also provide
reliability. In contrast to these file systems, Kosha does
not focus on wide-area scalability. Instead, it focuses on
extending the capabilities of a local-area NFS.

Kosha is more likely to see actual use since wide-area file
storage raises more issues of trust and consistency, despite
the numerous approaches that have been developed to ad-
dress these problems, such as encryption [10], agreement
protocols [9, 5], and logs [21]. Kosha avoids most of these
problems since it is only concerned with maintaining accu-
rate replicas, while supporting standard NFS consistency
semantics.

Finally, NFSv4 [29] also provides features of file system
replication and migration. However, the replication is static.
In NFSv4, a client first queries the main server which can



95

96

97

98

99

100

0 100 200 300 400 500 600 700 800P
er

ce
nt

ag
e 

of
 fi

le
s 

av
ai

la
bl

e

Number of hours

Kosha 1

95

96

97

98

99

100

0 100 200 300 400 500 600 700 800P
er

ce
nt

ag
e 

of
 fi

le
s 

av
ai

la
bl

e

Number of hours

Kosha 3

88

90

92

94

96

98

100

0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e 

of
 fi

le
s 

av
ai

la
bl

e

Number of hours

Kosha 0

Figure 7: Percentage of total files that are available
over a period of 840 hours. The distribution level
was fixed at 3 for these results. The largest number
of failures (4890) occurred at hour 615, where over
12% files became unavailable for Kosha-0 compared
to only 0.16% for Kosha-3.

provide it with a list of locations from where to obtain the
files. The client then directs its queries to that location.
In Kosha, this location is transparent and multiple queries
are not required. Moreover, the goal of NFSv4 is to provide
load balancing and fault tolerance, where as Kosha has an
additional objective of utilizing unused disk space on cluster
nodes and desktops. In the long run, Kosha can benefit
from the file migration and replication facilities provided by
NFSv4 which can lead to a simplified design and a more
efficient system.

8. CONCLUSION
We have presented Kosha, a p2p enhancement for the

widely-used NFS. By blending the strengths of NFS with
those of p2p overlays, Kosha aggregates unused disk space
on many computers within an organization into a single,
shared file system, while maintaining normal NFS semantics.
In addition, Kosha provides location transparency, mobility
transparency, load balancing, and high availability through
replication and transparent fault handling. Kosha effectively
implements a “Condor” [19] for unused disk storage.

We have built our Kosha prototype on top of the SFS

toolkit [20], using the Pastry p2p overlay for node loca-
tion in distributing directories. Performance measurements
in a LAN show that Kosha over eight nodes incurs a to-
tal overhead of 5.6%. Simulations using a large file sys-
tem trace shows that Kosha’s directory distribution tech-
niques achieves a balanced load distribution similar to that
of distributing individual files. Simulations using a machine
availability trace collected in a large business organization
show that Kosha guarantees near 100% availability during
node failures by maintaining three replicas of each stored
file. Since Kosha exports the NFS interface and consistency
semantics, it is more likely to see actual use than techniques
that provide fundamentally different interfaces.
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