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Motivation: Security/Privacy as Enablers 

Ongoing & future work: Intelligent secure systems and platforms 
that benefit large populations

Improve quality of lifeEnable new infrastructures

My past work: Security 
Methodology Development

Near-0 false alarm enables 
analysts to focus on real attacks

Enable new discoveries



A Scenario:  
Cloud Data Analytics for Organizational Security

Real-time	

monitoring



Another Scenario: 
Cloud Data Analytics for Smart Home Security

• Embedded Linux servers 
• mini-httpd, apache
• ARM devices, MIPS, 

Realtek chipset 
• Open telnet, an SMTP 

server 

https://www.proofpoint.com/us/thr
eat-insight/post/Your-Fridge-is-
Full-of-SPAM

Origins of spam in a 
2014 botnet study



• Cloud anti-virus, e.g., Sophos 
and Symantec

• Protection of the cloud, e.g., 
VM sandboxing, [CloudDiag
2013] 

• Software-as-a-sevice [Cloud 
Terminal 2012]

What have been done in cloud?

A	vision:	To	lift	host	protection	to	the	cloud

• Firewalls, host-based anti-virus
• Isolation, e.g., VMM
• Reference monitor, e.g., SELinux
• Trusted computing, e.g., TPM 

attestation
• Data-driven anomaly detection

What have been done on host?

Gap



Setup Type 1: the Cloud AV model
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Setup	Type	2:	Everything	in	the	cloud

[Gagzo.com]



https://www.comprompt.co.in/services/cloud-services/



Cloud terminal [Martignoni 2012]

Client



Setup	Type	3:	Your	refrigerator	cannot	be	in	the	cloud	



http://theweek.com/article/index/241237/	(2011)

Drone	Control	Station	Operating	System From	NBC	news	(2013)
http://nbcnews.tumblr.com/post/47882129464#.UzGICChfd38



What does it take to lift program anomaly 
detection to the cloud?

In	Setup	Type	3:

autonomous	host with	detection	in	the	cloud
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Anti-virus Scanning is the First Line of Defense

14

For	files	(apps	and	PDFs),	URLs

Vtzilla plugin

Cuckoo	Sandbox	for	
dynamic	analysis

File	Types
[From	VirusTotal]

Number of submissions in a week 
(March 19, 2017 – March 25, 2017)

[From	VirusTotal]



Code or Behavior Classification is Undecidable 

1. Program	X	
2. main()
3. {	…		
4. if  ! isVirus(X) 
5. then infect;
7. else goto next;
8. …	}
9. }

15From	[Fred	Cohen,	J.	of	Virology	1987]

Scanner
Thinks

IsVirus	returns	
True

IsVirus	returns	
False

Actual 
Behavior of 

X 
X	chooses	not	to	

infect

X	chooses	to	
infect

Contradicts

Contradicts



How to detect/prevent zero-day malware/exploits?

Formal	verification,	Control	flow	integrity	

N-variant,	Moving	target	defense	

In summary, the contributions of the analysis presented
in this paper are as follows:

• We discuss the scope of anomaly detection and classi-
fication for intrusion detection and define prerequisites
for practical application.

• We devise suitability criteria for n-gram models for
intrusion detection that help selecting an appropriate
learning scheme.

• Finally, we demonstrate the validity of the developed
criteria in a case study on client-side and server-side
web intrusion detection.

The rest of the paper is structured as follows: The two
prevalent learning schemes for intrusion detection are pre-
sented in Section 2, while n-gram models are discussed in
Section 3. In Section 4 we analyze datasets from different
domains and develop our suitability criteria. These criteria
are evaluated in a series of experiments, whose results are
presented in Section 5. Section 6 discusses related work and
Section 7 concludes.

2. LEARNING SCHEMES
In many fields of application where learning methods are

applicable for decision making one often is confronted with
the selection of the underlying learning scheme. For intru-
sion detection two schemes are prevalent: classification and
anomaly detection. In this section we shortly review both
of these schemes in order to identify possible indicators for
deciding when to use the one or the other.

malicious

benign

(a) Classification

normal

anoma-
lous

(b) Anomaly detection

Figure 1: Schematic depiction of learning schemes.

Classification.
In computer security often very strict definitions are in

demand for deciding about something being benign or mali-
cious, which immediately suggests a classification task. The
identification of the two classes is achieved by learning a
discrimination as illustrated in Figure 1(a). Several learn-
ing methods, such as decision trees, neuronal networks and
boosting can be used for learning a classification [8]. An
intuitive example is the two-class SVM that learns a hy-
perplane separating two classes with maximum margin in
a feature space [see 43]. Learning a classification, however,
requires enough data of both classes in order to be able to
generalize to unseen samples. If one class is represented by
a few instances only, it is likely that the learning will overfit
and thereby impede detection of unknown attacks. In this
regard a lack of data for one class is already a crucial factor
for abstaining from using classification.

In some cases of intrusion detection, sufficient data for
both classes can be acquired automatically. For example,
for learning a client-side detection of web-based attacks, it
is possible to actively visit benign and malicious web pages

using honeyclients and special crawlers [e.g., 18, 42]. This
crawling enables one to assemble a recent collection of train-
ing data for both classes. In other settings, as for example
the server-side detection of web-based attacks, one is re-
stricted to passively wait for attacks using network honey-
pots. As a consequence, it is not possible to put together a
representative set of server-side attacks in a timely manner
and classification methods should not be employed.

Anomaly Detection.
Detecting unknown attacks is of critical importance in se-

curity, as these may relate to zero-day exploits or new in-
stances of known malware. Fortunately, it is possible to take
this scenario into account using anomaly detection—even if
no attacks are available for learning. By focusing on the
prominent class and learning its structure, it is possible to
differentiate that class from everything else, as illustrated in
Figure 1(b). Several methods are suitable for learning such
a model of normality, for example, by analyzing the density,
probability or boundary of the given class [8]. A common
method for anomaly detection is the spherical one-class SVM
(or SVDD) that determines a hypersphere enclosing the data
with minimum volume [see 43].
At this point it is important to stress that anomaly detec-

tion methods do not explicitly learn to discriminate benign
from malicious data, but instead normality from anomalies.
This semantic gap requires one to design features and de-
tection systems carefully, as otherwise identified anomalies
may not reflect malicious activity [13, 45]. Moreover, it is
also necessary to sanitize the training data to avoid incor-
porating attacks in the model of normality [5]. Nonetheless,
anomaly detection is the learning scheme of choice if little
or no data is available for the attack class, as for example,
when learning a server-side detection of attacks.

Prerequisites.
In summary, both learning schemes offer their advantages

if used in the right setting. We thus arrive at the following
prerequisites for learning-based detection:

• Classification. If enough representative data is avail-
able for both classes, this scheme allows to learn a
model for discriminating one class from the other. De-
pending on the type of attacks, this discrimination may
generalize to unknown attacks but is not guaranteed
to do so.

• Anomaly Detection. If only one class is available for
learning, anomaly detection allows to learn a model for
detecting unknown attacks. However, a careful design
of the detection system is necessary in order to limit
the semantic gap between attacks and anomalies.

3. N-GRAM MODELS
Most learning methods operate on numeric vectors rather

than on raw data. Therefore, it often is necessary to con-
struct a map to a vector space for interfacing with learning
methods. In some settings, this can be achieved by defining
numeric measures describing the data, such as the length or
the entropy of packets. A more generic map, however, can
be developed using the concept of n-gram models. Initially
proposed for natural language processing [3, 6, 46], n-grams
have become the representation of choice in many detection
systems [e.g., 21, 24, 32, 37, 38, 49].

[Wressnegger 2013]

Anomaly-based	detection	[D.	Denning	’87,	Forrest	et	al.	’96]
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[Lorie	1968,	Lakonishok 2001,	Tamersoy 2014]

wigblog.blogspot.com/2004/07

Is	Typical	Insider	Trading	Detection	Anomaly	Detection?

Purchase	Patterns Sell	Patterns

Buy	low	performing	
stocks

Sell	high	performing	
stocks

Buy	before	stock	
prices	go	up

Sell	before	stock	
prices	drop

Purchase	followed	by	
purchase

Sell	followed	by	sell



18

Security	logs,

Network	headers,

Traffic	payloads,

System	traces,

Transaction	logs

…

Novelty	
detection

Binary	
classification

Prog analysis	

My Work on Anomaly Detection Methodology Development

Program	Tracing
(Library	call,
System	call,

Instruction	sequences)

Program	Analysis
(static)

ML/DM
(train	and	test)

Post	Classification	
Analysis



19

Simplest Program Anomaly Detection: n-gram

[Forrest	1996,	Wressnegger	2013]

ioctl()
open()
write()
read()
setpgid()
setsid()
fork()

A 2-gram example:

ioctl() open()
open() read()
read() setpgid()
setpgid() setsid()
setsid() fork()

1.	From	syscall	traces	of	
normal	program	executions

(training	data)

Runtime program trace

Ioctl(),	open()
open(),	write()
write(), read()
read(),	setpgid()
…...

Found in DB?

2.	Test	data 3.	Classification
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• Average	$1.27million/year	on	false	alerts	by	an	enterprise.	

• 4%	of	alerts	are	investigated,	due	to	high	false	positives.

• An	organization	receives	an	average	of	17,000	alerts/week.

Who Uses Anomaly Detection on Programs/Systems? 

From	[Ponemon Institute]

Twitter	Anomaly	Detection.
https://blog.twitter.com/2015/



Manual alert confirmation is 
costly

21FireEye.com

157	minutes



Big Data, Big Bucks

22



23

Distribution of function calls in libpcre Anomaly

0.

0.5

1.

0. 0.1

De
te
ct
io
n	
ra
te

False	positive	rate
(1-class	SVM	on	libpcre)

Challenges: Diverse Normal Behaviors, High FP

Normal

Too low!



False alarms & missed detection can be harmful

Voice-recognition based 
authentication [CITI Taiwan]

24

Spam detection Pavement distress detection 
w/ sensors

Child pornography detection 
(FP 1 out of 2 billions)
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You	found	some	weird	data.	Are	they	meaningful?

Images	from	[Wang	2016]

rPCA [Candes 2009]	works	well	
for	motion	detection	in	videos	

`

Low-level	data	observed

[Netflix	Robust	Anomaly	Detection]

High-level	
Anomalous	Activity

Gap
• Semantic

• Workflow

• Research



Semantics of Anomalies in Security

• Service abuse attacks
– Denial of Service (DoS)
– Memory overread

• Workflow/state violation
– E.g., bypass authentication

• Exploit preparation
– Heap manipulation
– Address space layout 

randomization (ASLR) 
probing

26

Actions of Attacks and Attack Preparations

• Control-flow hijacking
– Return-oriented programming 

(ROP)
– Backdoors

• Control-flag hijacking
– Data-oriented programming 

(DOP) (not be detected by CFI)
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SSHD	flag	variable	overwritten attack

void do_authentication(...) {
int authenticated = 0;
while (!authenticated) {
[…buffer overflow vulnerability…]
if (auth_password(...)) {
memset(...);
xfree(...);
log_msg(...);
authenticated = 1;
break;

}
memset(...);
xfree(...);
debug(...);
break;

}
if (authenticated) { 
...

Pass	auth.

Fail	auth.

Attack

Expected

Expected

Local	analysis
cannot	detect
the	anomaly

From	[Chen	’05]
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…
sys_ioctl()
sys_open()
sys_read()
sys_setpgid()
sys_setsid()
sys_fork()
…

Tim
e

n-gram
[Forrest	1996] FSA	[Sekar	2001,	

Wagner	2001]

Xj+1
Xj
…
Xi+1
Xi
…
X1
X0

Yj+1
Yj
…
Yi+1
Yi
…
Y1
Y0

PDA	[Feng	2003,	Feng	
2004,	Giffin	2004]

x	=	1

y	=	x+1
y	=	x*2

w	=	x*y

Data-flow	analysis	[Giffin	
2006,	Bhatkar	2006]Machine	learning	[Lee	1998,	

Mutz	2006,	Xu	2015,	Xu	2016,	
Shu	2015]

Static	Program	Analysis

Dynamic	Program	Analysis

Hybrid	detection
[Gao	2004,	Liu	2005]

+

[Wagner	2002]

[Forrest	2008]

[Feng	2004]
[Chandola	2009]

[Shu,	Yao,	Ryder.	RAID	2015]



Old	and	New	Challenges	of	Data-driven	Anomaly	Detection

29

Scale	of	Data
• Cloud	support
• HPC
• Transparency

Subtlety	
• Stealthy	attacks,	e.g.,	ROP,	DOP

Definition	of	
Anomalies

• Domain	knowledge
• Inter-discipline

• Usability	

Interpretation	
of	Anomalies
• Semantic	gap

• Meanings	of	anomalies
• Usability

Accuracy	
of	Detection



How to Lift Host Protection to the Cloud?

1: HMM-based local anomaly detection

2: Global trace analysis for frequency anomalies

3: Triggering relation discovery of system and network events

Use 3 Host Protection Solutions as Examples



From	SIR

Incomplete	Traces

Incomplete	Behavior	
Model

False	Alarms
Missed	Detection

Issue 1: Incomplete Traces

By	Shel	Silverstein

a distinct system call or library call. This is done by as-
signing high emission probability (0.5) to each hidden
state for the system/library call it represents, and random
low probabilities to other observation symbols. The state
transition probability matrix A is initialized with the tran-
sition probabilities {Pt

i j} of call pairs in the program’s
call transition matrix. The initial probability distribution
p of hidden states is computed based on the normalized
frequency of occurrence of that state (the call) in the pro-
gram’s call transition matrix. In this way, the actual call
transition information obtained by program analysis is
written into the initial model of our HMM.

4 Experimental Evaluation

4.1 Experiment Setup
Our prototype for the static program analysis is imple-
mented in C/C++ using the Dyninst library. The HMM
training and evaluation code is written in Java using the
Jahmm library. We refer to our prototype STILO, short
for STatically InitiaLized markOv. We use the system
tools strace and ltrace to intercept system calls 4 and li-
brary calls 5 of running application processes. System
calls may be wrapped up in different names when they
are exported to user space. We obtain the wrapper func-
tions for system calls from the glibc source code. The
library calls of interest are the glibc library calls, which
is a collection of C standard libraries.

We compare the performance of STILO with the
widely accepted HMM-based classification (e.g., [19,
48]). We refer to that model as the regular model.
For the regular HMM, the libcall/syscall set (observa-
tion symbols) includes all distinct calls from execution
traces. The number of hidden states is same as the size
of the call set. Also regular model uses random num-
bers to initialize transition probabilities, emission prob-
abilities, and initial distributions which differs from our
STILO. The programs and test cases used in our exper-
iments are from Software-artifact Infrastructure Reposi-
tory (SIR) [40], and are summarized in Table 2.

We aim to answer the following questions.

1. How does STILO compare to a regular HMM
model? (In Section 4.6 and 4.3)

2. Can STILO detect real-world attack traces and syn-
thetic abnormal traces? (In Section 4.5 and 4.2)

3. kui How well does the parameter selection of
STILO perform, compared to regular models with
different number of hidden states to start? (In sec-
tion 4.4)

4Around 200 distinct system calls.
5Over 1000 distinct library calls.

Program # of test cases branch coverage line cov.
flex 525 81.34% 76.04%
grep 809 58.68% 63.34%
gzip 214 68.49% 66.85%
sed 370 72.31% 65.63%

bash 1061 66.26% 59.39%
vim 976 54.99% 51.93%

Table 2: Statistics of programs and test cases used in ex-
periment.

4. What is the impact of segment length on classifica-
tion accuracy? (In Section 4.2)

Statistics of calls observed during execution and calls
in the program code (flex, grep, gzip, sed, bash and
vim) are shown in Tables 6 and 7 in the appendix.

Standard machine learning procedures are followed.
We perform 10-fold cross validation on the prepared data
set. Convergence status is determined by the test results
of trace segments in the training termination set. All
comparable HMM models are subject to the same con-
vergence criteria.

Training and classification are on n-grams of traces,
where n =15 in our experiments. Duplicate segments are
removed in our training datasets in order to avoid bias.

Normal call sequences are legitimate sequences that
are obtained by running the target executable and record-
ing the library call sequences or system call sequences
as the result of the execution. A HMM classification
model needs to give high probabilities to these normal
sequences.

The training of hidden Markov models requires nor-
mal sequences, not abnormal sequences. We test the
trained models with two types of abnormal call se-
quences. These sequences should give 0 or low proba-
bilities.

• Abnormal-A sequence segments (or attack segment)
are obtained by reproducing real-world attack ex-
ploits.

• Abnormal-S sequence segments (or synthetic seg-
ments) are obtained by consecutively replacing one
third of normal call segment with randomly selected
calls from the legitimate call set, which is con-
structed based on a program’s traces.

We assume that all the synthesized segments are abnor-
mal.

Our experiments were conducted on a Linux machine
with Intel Core i7-3770 CPU (@3.40GHz) and 16G
memory.

9
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No. of Hidden States

Observable States

Call sequences 
(training data)

Transition Probabilities

Emission Probabilities

How	to	do make	HMM	smarter	in	anomaly	detection?	

Random

Better	HMM	initialization	based	on	programs

Random

Random

Program	analysis	for	HMM
• Xu,	Yao,	Ryder,	Tian.	IEEE	CSF	’15
HMM	with	context
• Xu,	Tian,	Yao,	Ryder.	IEEE	DSN	’16
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Hidden Markov 
Model (HMM)

Markov process 
(memoryless) where 
some states are not 
observable

OBSERVABLE 
STATES

HIDDEN 
STATES



34[Adapted	from	Udacity]

80%

15%

5%

OBSERVABLE 
STATES

HIDDEN 
STATES
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[Forrest et al. 1999]

HMM-based Program Anomaly Detection
Probabilistic, Path sensitive, Local analysis, Semi-supervised training

Can we do better than random initialization?

write()
read()
ioctl()
open()
write()
read()
setpgid()
setsid()
setsid()
fork()
setpgid()
setsid()
fork()

80%

15%

5%

ioctl()
open()
write()
read()
ioctl()
open()
write()
read()
setpgid()
ioctl()
open()

write()

read()

open() open()

read()

write()

write() read() open()
TRAINING 

DATA



read

write
execve

Function:	f

!g f‘

!g f

εf’(exit) read write execve
εf (entry) p(1-q) 1-p 0 pq
read 0 0 1-p 0
write 1-p 0 0 0
execve pq 0 0 0

p 1-p

q
1-q

Transition	probability	of	a	call	pair	is	its	
likelihood	of	occurrence	during	the	execution	
of	the	function

Example	of	call	pair Transition	probability
read																write 1-p
read read 0
execve εf’	 pq

STILO: STatically InitiaLized markOv

p,	q	are	statically	estimated.



Host Security Solution 1: 
Local Anomaly Detection with STILO

37

Static Program Analysis based HMM Initialization (New Contributions)
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Why	need	context	sensitive	detection?

Improvement with Context Sensitivity



Improvement with Context Sensitivity

BEFORE:	Context	insensitive	
(STILO-basic)

AFTER:	1-level	calling	context	sensitive	
(STILO-context)

read

Function f

Function g

read

…	read	….	read	....

read@f

Function	f

Function	g

read@g

…	read@f ….	read@g ....

Scalability:
K-mean clustering reduces the 
# of hidden states[Xu,	Tian,	Yao,	Ryder.	IEEE DSN ’16]



Reduction of Hidden States for Efficiency

• K-mean	clustering,	based	on	similarity	between	call-transition	vectors	
• Aim	at	1/2	to	1/3	reduction	of	nodes

40

After clustering

Many-to-one	mapping	-- a	hidden	
state	may	represent	multiple	similar	
calls

Before clustering

One-to-one	mapping	-- a	hidden	
state		represents	a	single	call

Program 
Model 

# distinct calls # states after 
clustering 

Estimated 
training time 

reduction
bash 1366 455 88.91%
vim 829 415 74.94%

proftpd 1115 372 88.87%



Model With Static 
Analysis

With Caller 
Context 

Regular-basic - -
Regular-context - Yes
STILO-basic Yes -

STILO-context Yes Yes

Dyninst	for	static	program	analysis,	Jahmm	library	for	HMM,	1st-order	Markov,	strace/ltrace	
for	collection,	SIR	for	test	cases,	10-fold	cross	validation,	15-grams	from	traces

1. Normal: total 130,940,213 segments

2. Abnormal-S: 160,000 Abnormal-S segments (permute 1/3 calls)
3. Abnormal-A: attack call sequences obtained from exploits

STILO Evaluation

2	Linux	server	programs:	nginx,	proftpd
6	Linux	utility	programs:	flex,	grep,	gzip,	sed,	bash,	vim



For libcalls, false negative (missed detection) of 
context-sensitive models drops by 2-3 orders 

False	positive	rate	
(False	alarm)

libcall:nginx libcall:proftpd

(M
iss
ed
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te
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	1
0)

Regular-basic
Regular-context X

STILO-basic
STILO-context *

STILO-basic	improves	
Regular-basic	HMM

STILO-context	improves	
STILO-basic



Regular-basic
Regular-context

syscall:nginx syscall:proftpd

False	positive	rate False	positive	rate

STILO-basic
STILO-context
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For syscalls, context improves false negative rate by 10 folds.
Less dramatic improvement than libcalls.
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Increasing hidden states in regular HMM 
does not guarantee classification accuracy 
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Exploit Payload
Buffer	Overflow	
(gzip)

ROP
ROP_syscall_chain

Backdoor	
(proftpd)

bind_perl
bind	perl	ipv6

generic	cmd	execution
double	reverse	TCP

reverse_perl
reverse_perl_ssl

reverse_ssl_double_telnet
Buffer	Overflow	
(proftpd)

guess	memory	address

Detection of Real-world Attacks

ID Prob in 
STILO

Prob in 
Regular  

HMM
S1 0 0.2
S2 2.20	× e−15 0.29
S3 1.54	× e−5 0.25
S4 0 0.27
S5 0.0005 0.33
S6 0 0.23
S7 0.0004 0.26

STILO	gives	much	lower	
probabilities	for	attack	

sequences	

ROP	attack	
segments	against	
gzip	(syscalls)



A	control	block	of	libc	library
7ffff7a54b01	libc.so	<__libc_start_main+177>

A	control	block	for	main	function
400506	a.out	<main+0>
4003e0	a.out	<puts@plt+0>

A	control	block	from	loader	to	resolve	call
7ffff7df02f0	ld.so	<_dl_runtime_resolve+0>

In	collaboration	with	Trent	Jaeger	(PSU)

1.1X

2X

1X

10X

Ongoing Work: Hardware-assisted Program 
Tracing for Anomaly Detection
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Training Traces 
(host)

HMM
classification

Probability
forecast

Could be Fast Fast and slow

HMM init
& training Test traces

(host)

Painfully slow Extremely fast 

Moderate Not easy Not easy to set up Moderate

Performance and Ease of Deployment



What does it take to outsource STILO detection 
to the cloud?

47

Training Traces 
(host)

HMM
classification

Probability
forecast

HMM init
& training Test traces

(host)
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Local	analysis	is	inadequate

Issue 2: Local Analysis

Anomalies consisting	of	normal
execution	fragments



a b d a c e a

c b e a c c e c f

f d c e c c f e d

a b d a c c f e d
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Attack examples:
• Non-control	data	attack
• Fragment-based	mimicry	attack
• Workflow	violation	attack

Cooccurrence	Anomaly

Normal	1:

Normal	2:

Normal	3:

Anomaly:

Attack Model, Problem Statement

• Given	an	extremely long trace,	
should	any set	of	events	co-occur?

• With	the	expected	frequency?

Problem	Statement:

Frequency	Anomaly
Attack examples:
• DoS	attacks
• Directory	harvest	attacks

Can	n-gram	still	work?
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…	bar,	main,	foo,	bar,	bar,	…

0 24 0 0
0 0 30 0
2 6 89 1
0 0 0 0

main
foo
bar
goo

convert							into

An	infinite	long	call	trace:

chop						into
Behavior	instanceBehavior	instanceBehavior	instance

Long	trace	
segments

Behavior	instance

F T F F

F F T F

T T T T

F F F F

2. Event co-occurrence matrix1. Transition frequency matrix 

[Shu, Yao, Ramakrishnan. ACM CCS ’15]

Host Security Solution 2: Global Anomaly Detection

Matrix representation is 
path insensitive



51

Anomaly
Anomaly

Our Solution: Grouping Similar Normal Behaviors

A trace segment represented by matrices

Training Phase Detection Phase
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Pass Auth. (expected)

…
do_auth	>	xfree
do_auth	>	log_msg
do_auth	>	packet_start
…
pwrite	>	buffer_len
do_auth	>	do_auth
…

Anomalous: attack

…
do_auth	>	debug
do_auth	>	xfree
do_auth	>	packet_start
…
pwrite	>	buffer_len
do_auth	>	do_auth
…

sshd

Function	call	trace	
(collected	through	Pintool)

Fail Auth. (expected)

…
do_auth	>	debug
do_auth	>	xfree
do_auth	>	packet_start
…
pwrite	>	buffer_len
do_auth	>	pread
…

Montage Anomalies Fall Between Clusters



Our Operations

• Inter-cluster	training

• Intra-cluster	training

• Inter-cluster	detection

• Intra-cluster	detection

Montage	
anomaly

Frequency	
anomaly

63

on	co-occurrence	matrices

on	frequency	matrices
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Exp 1: Detection Accuracy vs. False Positive in 
Synthetic Anomalies

Under	10-fold	cross-validation	with	10,000	normal	test	cases,
1,000	synthetic	anomalies.

Frequency	Anomalies

Our approach (w/ FVA) Our approach (w/ PCA) One-class SVM (w/ FVA) One-class SVM (w/ PCA)
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High-frequency anomaly Low-frequency anomalyIncomplete path anomalyMontage anomaly

Figure 7: libpcre ROC of our approach and basic one-class SVM. X-axis is false positive rate, and y-axis is detection rate.

cluster detection (Co-occurrence Analysis) because in-
valid usernames occur in normal training dataset.

This experiment demonstrates that our approach can con-
sume coarse program behavior descriptions (e.g., system calls)
to detect attacks. Most of the probing emails do not have
valid receivers. They result in a di↵erent processing proce-
dure than that for normal emails; the batch of DHA emails
processed in an execution window gives anomalous ratios
between frequencies of valid email processing control flows
and frequencies of invalid email processing control flows. In
sendmail, these di↵erent control flows contain di↵erent sets
of system calls, so they are revealed by system call profiles.
More precise detection requires the exposure of internal pro-
gram activities, such as function calls.

6.3 Systematic Accuracy Evaluation
We systematically demonstrate how sensitive and accu-

rate our approach is through receiver operating characteris-
tic (ROC). Besides normal program behaviors ground truth
(Sect. 6.1), we generate four types of synthetic aberrant path
anomalies. We first construct F 0 for each synthetic anoma-
lous behavior instance b0, and then we use (1) to derive O0

(of b0) from F 0.

1. Montage anomaly : two behavior instance b1 and b2 are
randomly selected from two di↵erent behavior clusters.
For a cell f 0

i,j in F 0, if one of f1i,j (of F1) and f2i,j
(of F2) is 0, the value of the other is copied into f 0

i,j .
Otherwise, one of them is randomly selected and copied.

2. Incomplete path anomaly : random one-eighth of non-
zero cells of a normal F are dropped to 0 (indicating
events that have not occurred) to construct F 0.

3. High-frequency anomaly : three cells in a normal F are
randomly selected, and their values are magnified 100
times to construct F 0.

4. Low-frequency anomaly : similar to high-frequency anoma-
lies, but the values of the three cells are reduced to 1.

To demonstrate the e↵ectiveness of our design in handling
diverse program behaviors, we compare our approach with
a basic one-class SVM (the same ⌫-SVM and same configu-
rations, e.g., kernel function, feature selection, and parame-
ters, as used in our Intra-cluster Modeling operation).
We present the detection accuracy results on libpcre in

Fig. 7, which has the most complicated behavior patterns

among the three studied programs/libraries11. In any sub-
figure of Fig. 7, each dot is associated with a false positive
rate (multi-round 10-fold cross-validation with 10,000 test
cases) and a detection rate (1,000 synthetic anomalies). We
denote an anomaly result as a positive.
Fig. 7 shows the e↵ectiveness of our clustering design.

The detection rate of our prototype (with PCA12) is usu-
ally higher than 0.9 with FPR less than 0.01. Because of
diverse patterns, basic one-class SVM fails to learn tight
boundaries that wrap diverse normal patterns as expected.
A loose boundary results in false negatives and low detection
rates.

6.4 Performance Analysis
Although performance is not a critical issue for the train-

ing phase, a fast and e�cient detection is important for en-
abling real-time protection and minimizing negative user ex-
perience [32]. The overall overhead of a program anomaly
detection system comes from tracing and analysis in general.
We evaluate the performance of our analysis procedures

(inter- and intra-cluster detections) with either function call
profiles (libpcre) or system call profiles (sendmail). We
test the analysis on all normal profiles (libpcre: 11027,
sendmail: 6579) to collect overhead for inter-cluster detec-
tion alone and the combination of inter- and intra-cluster
detection13. The analysis of each behavior instance is re-
peated 1,000 times to obtain a fair timing. The performance
results in Fig. 8 illustrate that

• It takes 0.1~1.3ms to analyze a single behavior instance,
which contains 44893 function calls (libpcre) or 1134
system calls (sendmail) on average (Table 1).

• The analysis overhead is positively correlated with the
number of unique events in a profile (Table 1), which is
due to our DOK implementation of profile matrices.

• Montage anomalies takes less time to detect than fre-
quency anomalies, because they are detected at the first
stage (Co-occurrence Analysis).

11Results of the other two programs share similar character-
istics as libpcre and are not presented.

12PCA proves itself more accurate than FVA in Fig. 7.
13PCA is used for feature selection. FVA (results omitted)
yields a lower overhead due to its simplicity.
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sshd libpcre sendmail
Training	w/	

4,800	normal	behavior	
instances	(34K	events	

each)

Training	w/
11,027	normal	behavior	

instances	(44K	events	each)

Training	w/
6,579	normal	behavior	

instances	(1K	events	each)

Flag	variable	
overwritten	attacks	
w/	various	lengths

Regular	Exp.	DoS
3	malicious	patterns
8-23	strings	to	match

Directory	harvest	attack
w/	probing	batch	sizes:

8	to	400	emails

Exp 2: Detection of Real-world Attacks in Complex Programs

100%	Detection	accuracy
0.01%	Average	false	alarm	rate
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How to lift this host security solution to the cloud?

• Trust the provider or not?

• What is leaked, if detection is outsourced to 

the cloud?

• Is it possible to relax the privacy model?

• Does the client need to be involved?

• Client gives feedback on detection results, 

like spam detection?

• How can client trust provider do a decent job?

Privacy

Transparency

Correctness



Host Security Solution 3: Triggering Relation Discovery
TRG Model

D1

D2

H1 D3 H5

H6 H9

H10H7D4

H8 H11

H2

H3

H4

U1 U2 U3 U4 U5

User event DNS queryUi HiDi HTTP

Triggering Relation Graph (TRG)

[Zhang AISec ‘16] [Zhang C&S 2016] 
[Zhang ASIACCS ‘14] [Xu IEEE TDSC ’12]

US Patent Granted.
NSF CAREER Award. 

How to lift this analysis to the cloud?

Prototypes for  
• Android traffic, Linux traffic
• Filesys events
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Future Work: Anomaly Detection as a Cloud Service

[Goldstein	and	Uchida	2016]	

• Some algorithms are not good for global anomalies;

• The safe bet is to try first global detection algorithms;

• If willing to wait (not real-time detection), use nearest neighbor;

• If the dataset is small, definitely avoid clustering;

• Restart k-mean multiple times to obtain stable clusters;

• Avoid unsupervised anomaly detection for extremely high dimensions;

Can domain experts understand these suggestions?



• US Internet service providers (ISP) to monitor customers’ behavior online 
• without users’ permission, 
• to use personal information to sell highly targeted ads

[Washington	Post,	March	28,	2017]

Privacy, is it a lost battle (at least in US)? 
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Thank you for your attention!

Questions?

More information:

• http://people.cs.vt.edu/danfeng/

• CCS program anomaly detection tutorial video and slides

• System traces, hands-on exerises

Lifting data-driven host protection 
to the cloud 


