Cloud Data Analytics for Security: Applications, Challenges, and Opportunities

Daphne Yao Associate Professor of Computer Science Turner Fellow and L-3 Fellow Virginia Tech

500 Productions

Motivation: Security/Privacy as Enablers

My past work: Security **Methodology Development**

Near-0 false alarm enables analysts to focus on real attacks

Ongoing & future work: Intelligent secure systems and platforms that benefit large populations

Enable new infrastructures

Improve quality of life

Enable new discoveries

Source: Google

A Scenario: Cloud Data Analytics for Organizational Security

Another Scenario: Cloud Data Analytics for Smart Home Security

Origins of spam in a 2014 botnet study

- Embedded Linux servers
- mini-httpd, apache
- ARM devices, MIPS, Realtek chipset
- Open telnet, an SMTP server

https://www.proofpoint.com/us/thr eat-insight/post/Your-Fridge-is-Full-of-SPAM

A vision: To lift host protection to the cloud

What have been done in cloud?

- Cloud anti-virus, e.g., Sophos and Symantec
- Protection of the cloud, e.g., VM sandboxing, [CloudDiag 2013]
- Software-as-a-sevice [Cloud Terminal 2012]

What have been done on host?

- Firewalls, host-based anti-virus
- Isolation, e.g., VMM
- Reference monitor, e.g., SELinux
- Trusted computing, e.g., TPM attestation
- Data-driven anomaly detection

Setup Type 1: the Cloud AV model

Setup Type 2: Everything in the cloud

[Gagzo.com]

https://www.comprompt.co.in/services/cloud-services/

Cloud terminal [Martignoni 2012]

Setup Type 3: Your refrigerator cannot be in the cloud

WIRED

Exclusive: Computer Virus Hits U.S. Drone Fleet

USINESS

CULTURE

DESIGN

GEAR

SCIENCE

EXCLUSIVE: COMPUTER VIRUS HITS U.S. DRONE FLEET

SHARE

Drone Control Station Operating System http://theweek.com/article/index/241237/ (2011)

From NBC news (2013) http://nbcnews.tumblr.com/post/47882129464#.UzGICChfd38

What does it take to lift program anomaly detection to the cloud?

In Setup Type 3: autonomous host with detection in the cloud

Acknowledgments

Drs. Kui Xu (Google)

Xiaokui Shu

Hao Zhang

Collaborators

COMMUNICATIONS ΆCΜ

- US Patent
- ACM CCS Tutorial 2016 on Program Anomaly Detection
- Work featured in Comm. of ACM

Network causal analysis

Zhang, Yao, Ramakrishnan. AlSec '16, ASIACCS '14, Computers & Security '16

Global trace analysis

- Shu, Yao, Ramakrishnan. ACM CCS *'15*
- Shu, Yao, Ramakrishnan, Jaeger (journal version under review)

Program analysis in HMM

- Xu, Yao, Ryder, Tian. IEEE CSF '15 HMM with context
- Xu, Tian, Yao, Ryder. IEEE DSN '16 Unified framework for program AD
- Shu, Yao, Ryder. RAID 2015

Anti-virus Scanning is the First Line of Defense

Code or Behavior Classification is Undecidable

How to detect/prevent zero-day malware/exploits?

Formal verification, Control flow integrity

N-variant, Moving target defense

Anomaly-based detection [D. Denning '87, Forrest et al. '96]

Is Typical Insider Trading Detection Anomaly Detection?

Purchase Patterns	Sell Patter	rns	
Buy low performing stocks	Sell high perfo stocks	orming	
Buy before stock prices go up	Sell before s prices dro	stock op	
Purchase followed by purchase	Sell followed	by sell	Closing prices of shares of ImClone Systems, Inc.
[Lorie 1968, Lakonishok 2001,	Tamersoy 2014]	180 160 140 140 120 0 120 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0	December 27, 2001 - Martha Stewart sold at \$58.43 9 Oct-00 Aug-02

My Work on Anomaly Detection Methodology Development

Simplest Program Anomaly Detection: n-gram

[Forrest 1996, Wressnegger 2013]

Who Uses Anomaly Detection on Programs/Systems?

- Average **\$1.27million/year** on false alerts by an enterprise.
- 4% of alerts are investigated, due to high false positives.
- An organization receives an average of **17,000 alerts/week**.

Twitter Anomaly Detection. https://blog.twitter.com/2015/

Manual alert confirmation is costly

FireEye makes alerts worthwhile again

It takes 157 minutes for an expensive expert analyst to correctly identify a true po

- **he MVX engine** identifies true positive alerts without volumes of alerts or fall automation leaves them free for more important tasks. It even finds signs of the **Contextual intelligence** accompanies validated alerts to help your analysts of such as attacker profile, threat severity and attack scale and scope.
- Comprehensive visibility across the entire lifecycle to reduce alerts by up to the alerts that would be generated from subsequent stages of the attack (e.g.

"We haven't seen any false positives and going on across our whole infrastructure. minimize wasting resources on having to posture is even more valuable for us." **Big Data, Big Bucks**

The Security Intelligence Company

Challenges: Diverse Normal Behaviors, High FP

False alarms & missed detection can be harmful

Voice-recognition based authentication [CITI Taiwan]

Child pornography detection (FP 1 out of 2 billions)

Pavement distress detection w/ sensors

Spam detection

You found some weird data. Are they meaningful?

rPCA [Candès 2009] works well for motion detection in videos

Background

Background

Background

Images from [Wang 2016]

Semantics of Anomalies in Security

Actions of Attacks and Attack Preparations

- Control-flow hijacking
 - Return-oriented programming (ROP)
 - Backdoors
- Control-flag hijacking
 - Data-oriented programming
 (DOP) (not be detected by CFI)

- Service abuse attacks
 - Denial of Service (DoS)
 - Memory overread
- Workflow/state violation
 - E.g., bypass authentication
- Exploit preparation
 - Heap manipulation
 - Address space layout randomization (ASLR) probing

SSHD flag variable overwritten attack

From [Chen '05]

[Forrest 2008]

Machine learning [Lee 1998, Mutz 2006, Xu 2015, Xu 2016, Shu 2015]

Static Program Analysis

Hybrid detection

[Gao 2004, Liu 2005]

Dynamic Program Analysis

[Wagner 2002]

PDA [Feng 2003, Feng 2004, Giffin 2004]

[Feng 2004]

Data-flow analysis [Giffin 2006, Bhatkar 2006]

[Shu, Yao, Ryder. RAID 2015]

Old and New Challenges of Data-driven Anomaly Detection

Use 3 Host Protection Solutions as Examples

- 1: HMM-based local anomaly detection
- 2: Global trace analysis for frequency anomalies
- 3: Triggering relation discovery of system and network events

How to Lift Host Protection to the Cloud?

Issue 1: Incomplete Traces

From SIR

How to do make HMM smarter in anomaly detection?

Better HMM initialization based on programs

Program analysis for HMM

- Xu, Yao, Ryder, Tian. *IEEE CSF '15* HMM with context
- Xu, Tian, Yao, Ryder. IEEE DSN '16

HMM-based Program Anomaly Detection

Probabilistic, Path sensitive, Local analysis, Semi-supervised training

[Forrest et al. 1999]

Can we do better than random initialization?

STILO: STatically InitiaLized markOv

Transition probability of a call pair is its likelihood of occurrence during the execution of the function

Example of call pair	Transition probability		
read> write	1-p		
read> read	0		
execve $\longrightarrow \epsilon_{f}'$	pq		

	ε _f '(exit)	r	read		write	execve		
ε _f (entry)	p(1-q)		1-p		0		pq	
read	0	0			1-p	0		J
write	1-p		0		0		0	
execve	pq		0		0	0		

p, q are statically estimated.

Host Security Solution 1: Local Anomaly Detection with STILO

Static Program Analysis based HMM Initialization (New Contributions)

Improvement with Context Sensitivity

Why need context sensitive detection?

Improvement with Context Sensitivity

... read read

[Xu, Tian, Yao, Ryder. IEEE DSN '16]

... read@f read@g

Scalability: K-mean clustering reduces the # of hidden states

Reduction of Hidden States for Efficiency

Before clustering

After clustering

One-to-one mapping -- a hidden state represents a single call

Many-to-one mapping -- a hidden state may represent multiple similar calls

Program Model	# distinct calls	# states after clustering	Estimated training time reduction
bash	1366	455	88.91%
vim	829	415	74.94%
proftpd	1115	372	88.87%

- K-mean clustering, based on similarity between call-transition vectors
- Aim at 1/2 to 1/3 reduction of nodes

STILO Evaluation

Model	With Static Analysis	With Caller Context
Regular-basic	-	-
Regular-context	-	Yes
STILO-basic	Yes	-
STILO-context	Yes	Yes

2 Linux server programs: nginx, proftpd6 Linux utility programs: flex, grep, gzip, sed, bash, vim

1. Normal:	total 130,940,213 segments
2. Abnormal-S:	160,000 Abnormal-S segments (permute 1/3 calls)
3. Abnormal-A:	attack call sequences obtained from exploits

Dyninst for static program analysis, Jahmm library for HMM, 1st-order Markov, strace/ltrace for collection, SIR for test cases, 10-fold cross validation, 15-grams from traces

For libcalls, false negative (missed detection) of context-sensitive models drops by 2-3 orders

False positive rate (False alarm)

For syscalls, context improves false negative rate by 10 folds. Less dramatic improvement than libcalls.

Increasing hidden states in regular HMM does not guarantee classification accuracy

Detection of Real-world Attacks

	ROP a	ittack				
segments against			Exploit	Payload		
				E	Buffer Overflow	ROP
				((gzip)	ROP_syscall_chain
	ID	Prob in	Prob in			bind_perl
		STILO	Regular			bind perl ipv6
				Backdoor	generic cmd execution	
	S ₁	0	0.2	(proftpd)	double reverse TCP
	S ₂	2.20 × e ⁻¹⁵	0.29	,	,	reverse perl
	S ₃	1.54 × e ⁻⁵	0.25			reverse perl ssl
	S_4	0	0.27			reverse ssl double telnet
	S_5	0.0005	0.33		Ruffor Overflow	guess memory address
	S_6	0	0.23	(proftpd)		guess memory address
	S ₇	0.0004	0.26			

STILO gives much lower probabilities for attack sequences

Ongoing Work: Hardware-assisted Program Tracing for Anomaly Detection

A control block of libc library 7ffff7a54b01 libc.so <___libc_start_main+177>

A control block for main function 400506 a.out <main+0> 4003e0 a.out <puts@plt+0>

A control block from loader to resolve call 7ffff7df02f0 ld.so <_dl_runtime_resolve+0>

In collaboration with Trent Jaeger (PSU)

Performance and Ease of Deployment

Moderate Not easy Not easy to set up Moderate	
---	--

What does it take to outsource STILO detection to the cloud?

Issue 2: Local Analysis

Local analysis is inadequate

Attack Model, Problem Statement

Attack examples:

- Non-control data attack
- Fragment-based mimicry attack
- Workflow violation attack

Frequency Anomaly

Attack examples:

- DoS attacks
- Directory harvest attacks

Problem Statement:

• Given an extremely long trace,

should **any** set of events co-occur?

• With the expected **frequency**?

Can n-gram still work?

Host Security Solution 2: Global Anomaly Detection

[Shu, Yao, Ramakrishnan. ACM CCS '15]

Matrix representation is path insensitive

Our Solution: Grouping Similar Normal Behaviors

A trace segment represented by matrices

Montage Anomalies Fall Between Clusters

Function call trace (collected through Pintool)

Our Operations

- Inter-cluster training Inter-cluster detection on co-occurrence matrices
- Intra-cluster training Intra-cluster detection on frequency matrices

Exp 1: Detection Accuracy vs. False Positive in Synthetic Anomalies

Under 10-fold cross-validation with 10,000 normal test cases, 1,000 synthetic anomalies.

Exp 2: Detection of Real-world Attacks in Complex Programs

sshd

libpcre

Training w/ 4,800 normal behavior instances (34K events each) Training w/ 11,027 normal behavior instances (44K events each)

sendmail

Training w/ 6,579 normal behavior instances (1K events each)

Flag variable overwritten attacks w/ various lengths Regular Exp. DoS 3 malicious patterns 8-23 strings to match Directory harvest attack w/ probing batch sizes: 8 to 400 emails

100% Detection accuracy0.01% Average false alarm rate

How to lift this host security solution to the cloud?

Privacy

- Trust the provider or not?
- What is leaked, if detection is outsourced to the cloud?
- Is it possible to relax the privacy model?

Transparency

- Does the client need to be involved?
- Client gives feedback on detection results, like spam detection?

Correctness

How can client trust provider do a decent job?

Host Security Solution 3: Triggering Relation Discovery

Heatmap

Prototypes for

- Android traffic, Linux traffic
- Filesys events

How to lift this analysis to the cloud?

[Zhang AlSec '16] [Zhang C&S 2016] [Zhang ASIACCS '14] [Xu IEEE TDSC '12]

US Patent Granted. NSF CAREER Award.

Future Work: Anomaly Detection as a Cloud Service

Can domain experts understand these suggestions?

- Some algorithms are not good for global anomalies;
- The safe bet is to try first global detection algorithms;
- If willing to wait (not real-time detection), use nearest neighbor
- If the dataset is small, definitely avoid clustering;
- Restart k-mean multiple times to obtain stable clusters;
- Avoid unsupervised anomaly detection for extremely high dimensions;

Privacy, is it a lost battle (at least in US)?

- US Internet service providers (ISP) to monitor customers' behavior online
- without users' permission,
- to use personal information to sell highly targeted ads

[Washington Post, March 28, 2017]

Lifting data-driven host protection to the cloud

Thank you for your attention!

Questions?

More information:

- <u>http://people.cs.vt.edu/danfeng/</u>
- CCS program anomaly detection tutorial video and slides
- System traces, hands-on exerises