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Abstract

As mobile computing becomes an integral part of the modern user experience,
malicious applications have infiltrated open marketplaces for mobile platforms.
Malware apps stealthily launch operations to retrieve sensitive user or device
data or abuse system resources. We describe a highly accurate classification
approach for detecting malicious Android apps. Our method statically extracts
a data-flow feature on how user inputs trigger sensitive API invocations, a prop-
erty referred to as the user-trigger dependence. Our evaluation with 1,433 mal-
ware apps and 2,684 free popular apps gives a classification accuracy (2.1% false
negative rate and 2.0% false positive rate) that is better than, or at least com-
petitive against, the state-of-the-art. Our method also discovers new malicious
apps in the Google Play market that cannot be detected by virus scanning tools.
Our thesis in this mobile app classification work is to advocate the approach of
benign property enforcement, i.e., extracting unique behavioral properties from
benign programs and designing corresponding classification policies.
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1. Introduction

Malicious mobile apps and vulnerable mobile computing platforms threaten
the confidentiality of personal and organization data and device integrity Davi
et al. (2010); Enck et al. (2010). Malicious applications can exfiltrate sensitive
data, abuse of system resources, and disrupt the normal usage of the device.
With the increased connectivity to organizational networks, vulnerable smart-
phones increase the attack surface of organizations, threatening the security
of systems and data at a grand scale. Recent studies show that there exist
hundreds of thousands of unique Android malware samples belonging to over
300 malware families forti-guard. Because of the pervasive use of Android as
a mobile operating system (over 50% market share in western and some Asian
countries), solutions for detecting malicious applications in the Android mar-
ketplace are urgently needed. Our work presents a new quantitative program
analysis approach for detecting malicious Android applications that achieves a
higher accuracy than previously reported classification methods.

Classification solutions have been proposed to model and approximate the
behaviors of Android apps and distinguish malicious apps from benign ones.
Classification decisions are made by analyzing apps’ static (e.g., Grace et al.
(2012b)) or dynamic (e.g., Amos et al. (2013)) behavior features. Static fea-
tures can be extracted from intermediate code representations obtained through
decompiling Android Dalvik bytecode. Dynamic features are collected by ob-
serving the run-time behaviors of the program. Various types of features can be
extracted from Android permission, code, or execution for app classification.

The detection accuracy of a classification method depends on the quality of
the features, e.g., how specific the features are. The accuracy of existing Android
classification solutions is still far from ideal. The state-of-the-art classification
with pure static features gives a false negative rate (i.e., missed detection, FN)
of 9% Grace et al. (2012b). These features are extracted through data- and
control-flow analyses. Hybrid features (i.e., a combination of static and dy-
namic features) extracted from programs give a better FN rate 4.2% Zhou et al.
(2012) (e.g., dynamic features related to dynamic code loading and native code
invocation). Most of the dynamic classification solutions give 10% or higher false
positive rates (FP) while trying to maintain a reasonable FN rate, e.g., 10% FP
in Shabtai et al. (2012) and 15% FP in Amos et al. (2013). The false positive
rate tells the percentage of benign apps wrongfully classified as malicious.

This work presents a high-precision Android app classification method based
on one complex feature that leverages the dependence effects of program behav-
iors. Specifically, we extract the definition-and-use (i.e., def-use) data depen-
dence properties related to sensitive operations and their user triggers in the
app. Smartphone apps (Android, i0OS, or Windows Phone) are unique in their
user-centered and interaction-intensive design, in which operations typically re-
quire initiation by users’ specific actions (or triggers). Our classification lever-
ages the dependence relations between user inputs/actions and sensitive API
calls providing critical system functions. Our feature extracted from programs
reflects the expected causal relations in the execution.



Our classification recognizes legitimate and desirable behavioral
patterns in programs, as opposed to identifying malicious patterns.
Those behaviors are commonly found in trustworthy programs, but not in mal-
ware. Our classification is based on whether or not a program possesses these
benign properties.

Specifically, we analyze the def-use graph to extract a TriggerMetric feature
for each API call. The TriggerMetric feature statically approximates whether
or not the occurrences of the call (i.e., call sites) are triggered by the user.
Specifically, the TriggerMetric value represents the number of wvalid call sites
among all the call sites of a specific API. The validity of an API call is defined
based on def-use semantics; a call is valid if at least one of the call’s arguments
depends on some user input(s). In other words, the TriggerMetric values of an
app reflect the degree of sensitive operations that are triggered or intended by
the user. The classification decision is made based on TriggerMetric values (i.e.,
an app is classified as malware if it has an overwhelming number of triggerless
sensitive operations).

Our contributions are summarized as follows.

e We present a new Android app classification method that uses one com-
plex feature rather than multi-feature as in the existing malware detection
methods which focus on the presence of simple features such as permis-
sion or API call. The TriggerMetric feature captures the static dependence
relations between user inputs/actions and sensitive operations providing
critical system functions in programs. This feature is extracted through
nontrivial Android-specific static program analysis and is used in several
quantitative analytical methods.

e Our experimental evaluations on 2,684 free popular apps and 1,433 mali-
cious apps suggest that our rule-based classification with the single feature
of user-trigger dependence is very effective. It detects 97.9% of the mal-
ware apps with a low (2.0%) false positive rate.

e Our analysis reveals hundreds of malicious apps in the Google Play market,
some of which were previously unreported and were not detected by any
of the 48 VirusTotal ! scanners.

The purpose of our work is not to advocate the use of fewer features in pro-
gram classification. Multiple classification tools and features should be utilized
to paint a comprehensive picture about a program.

Rather, our thesis in this mobile app classification work is to advo-
cate the approach of benign property enforcement. Our analysis verifies
whether or not a program is in compliance with our benign-property standards.
In the face of rapid malware evolution, this type of benign-property enforce-
ment may yield a more proactive defense than the malware-oriented detection
approaches.

Thttps://www.virustotal.com/



2. Overview and Definitions

Our classification methodology aims at exposing possible privileged actions
of apps that are not intended by the user and lack proper dependences in the
code. In this section, we give the description of how the trigger-based dependence
feature is extracted from programs through static program analysis. We also
discuss several metrics formed from our feature analysis.

2.1. Data Dependence Graph

A data dependence graph (DDG) is a common program analysis structure
which represents inter-procedural flows of data through a program Horwitz et al.
(1990). The DDG is a directed graph representing data dependence between
program instructions, where a node represents a program instruction (e.g. as-
signment statement), and an edge represents the data dependence between two
nodes. The data dependence edges are identified by data-flow analysis. A direct
edge from node ni to node ny, which is denoted by n; — mo, means that no
uses the value of variable x which is defined by n.

Formally, let I be the set of instructions in a program P. The data depen-
dence graph G for program P is denoted by G = [I, E], where E represents the
directed edges in G, and a directed edge I; — I; € E if there is a def-use path
from instructions I; to I; with respect to a variable = in P.

We show two DDG examples to motivate our data-flow analysis based on
the dependence relations. The first example is a legitimate app for sending
SMS messages. Figure 1 shows its partial def-use dependence graph. The graph
indicates that the API call sendTextMessage() depends on the some inputs
from the user, as one of its argument is entered by the user via text fields,
through getText () API. There are direct dependence paths between user inputs
(e.g., data and actions) and the sendTextMessage () APL.
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Figure 1: Partial abstract dependence graph for a legitimate app. sendTextMessage () has the
required user dependence property. User triggers are shown in green nodes.

Another example is about a real-world Android malware HippoSMS, which
affects Android smartphones by subscribing to premium SMS services. The



malware sends SMS messages to a hard-coded premium-rated number with-
out the user’s knowledge. Figure 2 shows a partial def-use dependence graph
for HippoSMS. It shows the dependence relations associated with the argu-
ments to a sensitive API call sendTextMessage (). Specifically, Figure 2 shows
that sendSMS(p0, pl, p2) method is called with a hard-coded premium-rated
number 1066156686 as its pO argument. The subsequent sendSMS method
calls a sensitive API sendTextMessage() with the same hard-coded value p0
as its phoneNum argument. There is no direct dependence path between the
sendTextMessage () API call and any user inputs (e.g., data and actions).

We accurately extract these types of dependence properties and quantify
them for classification. Existing program analysis solutions cannot be directly
applied to solve the problem, in part because of the lack of proper handling
of Android-specific features such as Intents. In our work, we formalize the
security problem of dependence-based app classification, and design efficient
algorithms for parsing large specialized data-dependence graphs for extracting
the trigger-based dependence feature. We refine our data-dependence graph
with reachability analysis obtained from control-flow analysis. The reachability
analysis prunes unused code for high program analysis accuracy. The workflow
of our analysis is shown in Figure 3.
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Figure 2: Partial abstract dependence graph for HippoSMS malware. There is no direct path
showing a dependency between user triggers and sendTextMessage().

2.2. TriggerMetric Tuple Per Operation

In this section, we give the definitions for the terminology used in our clas-
sification, including operation, trigger, dependence path, and valid call site. For
each operation in a program, we give our definition for the TriggerMetric tuple,
which represents properties associated with call sites of the operation.

An operation is an API call which refers to a function call providing
system service such as network I/O, file I/O, telephony services in the program.
We focus on a subset of function calls — the critical API calls that can be used
for accessing private data and utilizing system resources.

Examples of the operations in our analysis are send/receive network traffic,
create/read /write/delete operations for files, insert/update/delete operations
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Figure 3: Workflow of our analysis.

in database and content provider, execute system commands using java.lang.
Runtime.exec, access and return private information such as location informa-
tion and phone identifiers, and send text messages in telephony services.

A trigger refers to a user’s input or action/event on the app. A trigger is
a variable defined in the program. For example, the user’s input may be text
entered via a text field, while the user’s action/event is any click on UI element,
such as a button. Relevant API calls in Ul objects that return a user’s input
value or listen to user’s action/event are defined as triggers.

Our classification is based on analyzing unauthorized privileged operations
that are not intended by the user. Because the analysis is automated (i.e.,
without any user participation), user-intention needs to be approximated. In
our analysis user-intention is embodied in the trigger variables. We specify the
names of functions corresponding to triggers and operations in the program
analysis.

A valid dependence path is a (directed) dependence path between a trigger
and an operation in a data dependence graph (DDG). In our static data-flow
semantics, the path specifies a definition-and-consumption (def-use) relation,
where a trigger is defined and later used as an argument to an operation. The
existence of a valid dependence path means that the operation depends on a
user trigger.

Figure 4 illustrates two different operations ¢ and ¢’ in a program, each
having two call sites (i.e., each call occurs twice in the program), s; and sy for
¢, 84 and s} for ¢. Three dependence paths are valid, with proper user triggers
on the paths, whereas a valid dependence path for call site s}, does not exist.

The trigger may be transformed before being used as an argument in the
operation, thus the dependence path between them may be long. In Section 3
we present our detailed program analysis and graph algorithms.

A wvalid call site s of an operation c is a call site that has a valid user-trigger
dependence path. A call site is the occurrence of an operation. An operation
may have one or more call sites in a program.

Definition 1. TriggerMetric feature is a two-item tuple < k,l > for an opera-
tion ¢ in a program, where



o k is the number of valid call sites of operation ¢, and

e [ is the total number of call sites of operation c.

For the example in Figure 4, the TriggerMetric values for operations ¢ and ¢’
are < 2,2 > and < 1,2 >, respectively. For an app with n distinct operations,
there are n TriggerMetric tuples associate with it, < ki,l1 >, ..., < kn, 1, >,
one corresponding to each operation.

Assurance Score (V) :
3valid call sites / 4 call sites = 75%

©
i-0-0O

% of valid call site of c:
2 valid call sites / 2 call sites = 100%

% of valid call site of ¢’:
1 valid call sites / 2 call sites = 50%

Normalized DPVC Vector:
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(0%, 10%)

[10%, 20%)
[20%, 30%)
[30%, 40%)
[40%, 50%)
[50%, 60%)
[60%, 70%)
[70%, 80%)
[80%, 90%)
[90%, 100%)
100%

TriggerMetric(c) = <2, 2> TriggerMetric(c’) = <1, 2>

(@) (b)

=}
o
o
o
o
o
o
o
o
o
o
=}
=}
13

Figure 4: Illustration of dependence paths and various metrics for a program having two
distinct operations ¢ and ¢’. Each operation has two call sites s; and sz and s} and s,
respectively. A solid line represents the existence of a dependence path from some user trigger
to a call site. A dashed line represents that none of the call site’s dependence paths has a user
trigger.

2.3. Aggregated Metrics

One can compute several useful values aggregated from the n TriggerMetric
tuples of a program. These aggregated metrics provide a behavioral summary
of the program. Intuitively, the assurance score V is a single value for an app
representing the portion of call sites that are intended by the user across all
operations in the app.

Definition 2. Assurance score V € [0%, 100%)] of a program is the percentage
of valid call sites out of the total number of call sites across all the operations.
Given the n TriggerMetric tuples {< ki, l; >} of a program, where k; is the
number of valid call sites and l; is the number of total call sites for operation i,
and n is the total number of distinct operations, V is computed as follows.

> "

For the example in Figure 4, V = %, as there are total 4 call sites in the
program, among which 3 are valid.

One can also compute the distribution associated with TriggerMetric values
in a program, which provides useful insights into the program’s behaviors.

—



Definition 3. DPVC Vector W of a program is the normalized Distribution of
the Percentages of Valid Call sites per operation. For operation i, the percent-
age of valid number of call sites is defined as ’lﬁ, where k; is the number of valid
call sites and l; is the number of total call sites for the operation i. Let n be the
total number of distinct operations in the program.

FEach percentage value determines the bin whose contents are augmented by
one. After all percentage values are distributed, the value of each bin is divided
by n, the total number of operation in the program. This yields a normalized
distribution. Specifically, the distribution of the n percentage values {%, s

’l“—*:} is represented by the following 12 bins: 0%, (0%, 10%), [10%, 20%), [20%,
30%), ..., [90%, 100%), 100%.

For the example in Figure 4 (n = 2), the percentages of valid number of call
sites for the two operations (c and ) are 100% (%) and 50% (), respectively.
Thus, most of the corresponding DPVC vector is 0, except for bins [50%, 60%)
and 100%, i.e., one count in the [50%, 60%) bin, and one count in the 100% bin.
After normalization, the entry for both the 100% bin and [50%-60%) bin is 0.5.
Therefore, the final normalized distribution vector is {0, 0, 0, 0, 0, 0, 0.5, 0, 0,
0, 0, 0.5}, whose components are summed to 1.

The DPVC vector is computed from the TriggerMetric feature. Intuitively,
it provides the in-depth statistics on the dependence-based validity of the calls
in the program. The vector is used in our classification in Section 4, where we
compare the DPVC vector of an unknown app with ones of known malware
apps to infer their behavior similarities.

2.4. Program Analysis for Feature Extraction

The TriggerMetric feature is extracted from programs through static pro-
gram analysis. In this section, we justify our use of data-flow analysis (as
opposed to control-flow analysis) for this purpose. Our method tracks how a
user’s input propagates throughout the program using data-flow analysis. Al-
ternatively, one may attempt to capture how the user control action leads to a
sensitive API call, which requires control-flow analysis.

For our trigger-based dependence analysis, data-flow analysis is more appro-
priate than control-flow. For example, control-flow analysis cannot be used to
track the user’s input (data) that is used as arguments in sensitive API calls.
However, data-flow analysis alone may overestimate the dependences due to the
lack of the control analysis on branches (e.g., if). In this work, our feature
is extracted from data-flow dependence analysis, which is coupled with event-
specific control-flow dependence analysis. Our approach can be generalized to
comprehensive control-flow analysis for improved accuracy.

Our dependence analysis tracks the propagation of triggers through events,
including Android Intent. Intent is an event-based mechanism for communi-
cation between applications or components (Activity, Service, Receiver) in An-
droid. For example, information entered by the user in one Activity may be



passed through an Intent to another Activity or Service for processing. There-
fore, the dependence graph needs to be augmented in order to obtain the com-
plete set of operations that depend on trigger variables through events. Without
this expansion, the dependence analysis may underestimate the dependence re-
lations (i.e., fail to report legitimate trigger-operation dependence relations).
Because of our focus is on dependences related to user activities, we perform
Intent-specific control-flow analysis, as opposed to general control-flow analysis.

Next, we give a detailed description of the techniques used in our program
analysis. The program analysis outputs TriggerMetric values for all the sensitive
operations in the program. Then in Section 4, we present our classification
method based on the TriggerMetric values. Our evaluation results are given in
Section 5.

3. Feature Extraction Using Dependence Analysis

We present in detail our technique used for extracting the TriggerMetric
feature from Android applications. To that end, we generate and analyze the
data dependence graph, including i) the general data-flow dependences, ii) the
event-specific data dependence analysis for handling Android Intent and gath-
ering comprehensive data dependence information, 44) reachability analysis for
pruning unused code, and iv) backward depth-first search for finding dependence
paths and computing a TriggerMetric for each operation.

Our program analysis takes as inputs the trigger set and the operation set,
which are manually selected based on their semantics. The output of the pro-
gram analysis is a set of TriggerMetric values {< k.,l. >}, one value for each
sensitive operation c, e.g., sendTextMessage ().

The pseudocode of our procedure for computing TriggerMetric values of a
program is shown in Algorithm 1.



Algorithm 1 ComputeTriggerMetric

Input: A + {App code}
U <+ {Set of user triggers of an app}
M <+ {Set of operations call sites of an app}
entryPoints of the app
Output: TriggerMetric set S = {< k;,l; >}, where k; is the number of valid call sites and [; is
total number of call sites for operation ¢
1:
2: RUT <« 0 //a list of Reachable User Triggers (RUT)
3: RCS « 0 //a list of Reachable Call Sites (RCS)
4: S+ 0 //a set of TriggerMetric values
5: parse AndroidManifest.xml file
6: G < ConstructDataDependenceGraph(A)
7: (RUT, RCS) <+ identifyReachable Components(U, M, entryPoints)
8:

9: for each operation i do

10: C; « {set of call sites of operation i} € RCS
11: k; < checkPathExistence(RUT, C;, G)

12: l; + |Cy]

13: S SU<kil; >

14: end for

15:

16: return TriggerMetric set S

17:

18: procedure identifyReachable Components(U, M, entryPoints)
19: G’ + ConstructControlFlowGraph(A)

20: for each v € U do

21: perform DepthFirstSearch(u, entryPoint, G')

22: if a path € G’ exists between u and entryPoint then

23: RUT + RUT U {u} //Reachable User Triggers (RUT)
24: end if

25: end for
26: for each m € M do

27: perform DepthFirstSearch(m, entryPoint, G”)

28: if a path € G’ exists between m and entryPoint then
29: RCS « RCS U {m} //Reachable Call Sites (RCS)
30: end if

31: end for
32: return RUT and RCS
33: end procedure

34:

35: procedure checkPathExzistence(RUT, C;, G)

36: k; < 0 //initialize k; for operation i

37: for each ¢ € C; do //for each call site of operation %
38: for each w € RUT do //for each user trigger

39: perform backward DepthFirstSearch(c, u, G)
40: if a directed path € G exists between ¢ and u then
42: break

43: end if

44: end for

45: end for

46: return k;

47: end procedure

We first describe our construction of the dependence graph based on explicit
def-use relations. The basic DDG graph is then augmented in order to capture
def-use relations due to events.

3.1. General-Purpose Data-Flow Dependence

We use data-flow analysis to construct the data dependence graph (DDG)
with intra- and inter-procedural call connectivity information to track the de-
pendences between the definition and use of user-generated data in a given
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program. The intra-procedural dependence edges are identified based on local
use-def chains. On the other hand, the inter-procedural dependence edges are
identified based on constructing a call-site context-sensitive call graph supported
by points-to analysis to build accurate call graphs. Context-sensitive analysis
differentiates calling contexts of a function during analysis. Context-insensitive
analysis analyzes a function summarizing over all calling contexts.

Thus, a context-insensitive analysis may not provide as accurate a solution.

The above general-purpose data-flow analysis does not cover the data-flow
associated with events, as Android event communications are usually implicit.
To achieve a comprehensive dependence coverage, we describe our technique for
the necessary event-specific dependence analysis next.

8.2. Augmentation with Fvent-Specific Data Dependence

Our augmented analysis handles two types of events — i) implicit method
invocation (e.g., through listeners in GUI) and i) Android-specific Intent-based
inter-app or inter-component events. Our approach is to perform necessary
control-flow analysis, which finds bridges between disjoint graph components,
so that one can obtain the complete reachability of triggers. We describe our
Android Intent-based dependence analysis that tracks the control-flow among
Intent-sending methods in intra- and inter-application communication. This
Intent-specific control-flow analysis is necessary for capturing data dependence
relations between triggers and operations across multiple apps and their com-
ponents.

Android Intent can declare a component name, an action and optionally in-
cludes data or extra data. For example, an Intent can be used to start a new ac-
tivity by invoking the startActivity(Intent i) or startActivityForResult
(Intent i, ...) methods. An Intent should be sent to a target component by
matching the Intent’s fields with the declaration of the target component in the
manifest. Android Intents can be used for explicit or implicit communication.
An explicit Intent specifies that it should be delivered to a particular component
specified by the Intent, whereas an implicit Intent requests the delivery to any
component that supports a desired operation.

For explicit Intent, where the target component name is specified, we first
identify the source component and the target component that are linked through
an Intent object. This step pinpoints the Intent creation and sending methods
(e.g., startActivity(Intent i) and sendBroadcast(Intent i)) to capture
the control-flow dependences between the source and target components. In
particular, we analyze the Intent object constructor to extract the name of the
target component if it is provided. If it is not provided, we search the pa-
rameters in the setClass(), setComponent () or setAction() methods on the
Intent object, which specify the target’s name to obtain the target component.
Given this information, the dependence graph is augmented by adding a di-
rected edge from the Intent-sending method of the source component to the
target component. This analysis is performed for all explicit Intents created in
a given application.

11



For an implicit Intent, the target component can be any component that
declares its ability to handle a specified action. The target component is deter-
mined by the Android system based on the manifest file. We handle the implicit
Intent by analyzing the AndroidManifest.xml file to extract a list of compo-
nents with their actions to identify the target component. Implicit method
invocation, such as those in the GUI, must be accounted for in the dependence
graph. Our approach is to connect the dependent calls to the relevant API
calls related to threads and listeners with their callee in the graph. For exam-
ple, Button.setOnClickListener () is linked with an implicit call to its event
handler implementation onClick(). We identified a list of all event handlers
from Android developer documentation for our analysis. These methods effec-
tively augment the general-purpose data dependence graph with the necessary
Android event-specific data-flow information.

Obfuscation, Java reflection, and dynamic code loading cannot be analyzed
statically. Dynamic analysis approaches (e.g., Newsome and Song (2005); Yin
et al. (2007)) are needed to extract related runtime behavioral features.

8.8. Reachability Analysis

The above operations produce a flow- and context-sensitive data-flow depen-
dence graph with intra- and inter-procedural dependence analysis, and intra-and
inter-application Intent-based dependence analysis. We then perform a reach-
ability analysis for the app in order to remove unreachable code ”dead code”.
Unreachable code is a portion of the program which contains classes/methods
that are not executed. To that end, we construct an inter- and intra-procedural
control-flow graph which shows all the possible execution paths. Given this
control-flow graph and the list of user triggers and sensitive API calls, we per-
form reachability analysis to identify reachable user triggers and sensitive API
calls from the entry points of the app. Specifically, we trace forward from the
given entry point looking for the identified user triggers and sensitive API calls.
For example, we perform reachability analysis to check whether a certain user
trigger, e.g. click button, is reachable from the main activity. An activity is a
visible portion of an application which handles user interaction.

There might be some user triggers inside other activities, but these activities
never get executed or called from the main/parent activity. Hence, there is
no reachable path from the entry point and these user triggers, and they can
be safely ignored to increase the precision of our analysis. Similarly, some
sensitive API calls may not be reachable from the entry points and never get
executed. For example, a sensitive API getLastKnownLocation() in a tool app
is unreachable from the apps entry points, and therefore will not be executed.
Thus, we ignore and call it unreachable sensitive API call.

On the other hand, we call user trigger or sensitive API call reachable if there
is a reachable path from the given entry point to this user trigger or sensitive
API call. For example, assume that there is a sensitive API sendTextMessage ()
identified in a service component in app SendSMS. A service is an invisible por-
tion of an application which performs background task. This service will be
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called from the main activity upon user clicks on a button. In this case, the sensi-
tive API identified inside the service component will be executed. Thus, there is
a reachable path from the main activity entry point to this sendTextMessage (),
and hence we call it reachable sensitive API call.

As explained above, some user triggers and sensitive API calls may not be
reachable and hence can be ignored in our analysis. Our subsequent dependence
analysis will only be performed on reachable components. The reachability
analysis increases the analysis precision by excluding unreachable code.

3.4. Finding User-Trigger Dependence Paths

Once the dependence graph is constructed, the next step is to identify paths
between user trigger and sensitive API call pairs. We scan the graph for the
occurrences or call sites of sensitive operations. In Algorithm 1, checkPath
Existence() performs this task by performing backward depth-first traversal.
For each call site s; of an operation ¢, we perform the backward tracing from
s; on the dependence graph searching for any user triggers on the dependence
paths. For each ¢, we record the wvalid number k. of call sites, and the total
number [, of call sites. < k.,l. > is output as the TriggerMetric of the call c,
according to Definition 1.

Our implementation of the static analysis framework utilizes libraries in
Soot, a static analysis toolkit for Java soo. Our framework analyzes Java byte-
code or source code.

Our DDG construction improves the def-use analyses provided by Soot 2.
Our prototype propagates def-use relations across the boundaries of methods.
Our current prototype dose not analyze native libraries. Yet, our approach can
be generalized to analyze native code.

4. Classification Method

The classification decisions are based on the assurance score V' and DPVC
vector W of an app. An app is classified as either benign or malicious. These
values are computed from the extracted TriggerMetric tuples (< k;,l; >) of
the app, according to Definitions 2 and 3. Because of the simplicity of our
feature, our classification is based on rules. In addition to classification decisions,
our analysis also reports the names of operations with invalid call sites in the
program.

Specifically, given the TriggerMetric values obtained from the program anal-
ysis, our classification has three steps: i) computing V' and W, i) preliminary
classification based on V with respect to a pre-defined threshold T, and iii)
further classification based on the weighted similarity analysis between vector
W and those of known malware samples. In the next section, we present our
two classification rules.

2We augmented Soot libraries to support the inter-procedural call dependence analysis.
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4.1. Our Classification Rules

Classification with assurance score. The threshold-based classification Rule 1
aims to detect apps that have low assurance scores, indicating the existence of
a large portion of invalid call sites without proper user triggers.

Rule 1. Given the assurance score V. of an Android app and an assurance
threshold T € (0,100%)], if V < T, then the app is classified as malware. Oth-
erwise, it is classified as benign.

Clearly, the choice of T affects the accuracy of the classification. In our
experiments in Section 5, we found that a threshold of 75% gives a proper
balance between the false positives (FP) and false negatives (FN). Probable
malware needs to be further inspected.

For each app, we also applied the similarity-based classification rule.

Weighted similarity analysis on DPVC vector. This classification compares
the DPVC vector of an app with the DPVC vectors of known malware samples.
The purpose is to detect the apps who have similar distributions with malware
in terms of the valid call sites. To that end, we first computed the DPVC vector
W for each malware i € [1,m] in a known malware sample set of size m. Then,
we computed the average DPVC vector, which is denoted by M; that is, for
each item M in vector M, M; is computed as in Equation 2.

s

m

M; (2)
Vector M represents the average distribution of the percentage of valid call
sites per operation among the known malware.

Rule 2. Given the DPVC wvector W of an app, the average malware DPVC
vector M, a similarity function f, and a threshold T, if f(W, M) > T, then
the app is classified as malware. Otherwise, it is classified as benign.

Any similarity function may be used on DPVC vectors. In our experiments,
we used a weighted cosine similarity function Tan et al. (2006). The func-
tion computes the cosine similarity between vectors W and M, while applying
weights to the ranges with smaller percentage values, namely 0% and (0, 10%).
The weights are computed based on an exponential function 2% and then are
normalized.

The reason for choosing the exponential weight function for this similarity
measure is that we observed that the malware apps have a distinct distribution
pattern from the legitimate apps towards the low percentage region, as shown
in Figure 5. The weights amplify this distinction in the classification.

Definition 4. A program is classified as benign if it is classified as benign by
both Rule 1 and Rule 2. Otherwise, it is classified as malicious.
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Figure 5: Averaged DPVC vectors representing a fine-grained distribution of per-operation
valid call sites for 1,433 malware apps (top) and 2,684 free popular apps (bottom).

Our evaluation indicates the effectiveness of the above classification rules
on the thousands of apps studied. We also painstakingly performed necessary
manual inspections on some apps to validate our results and identified the causes
of inaccuracies.

In the next section, we present category of features derived from our Trig-
gerMetric value which can be used for classification as well.

4.2. Variations of Classification Rules

Our classification rules are based on aggregated statistics on valid call sites
of a program. One can define other classification rules using the TriggerMetric
values {< k,I >} of a program. These rules may reflect different degrees of
user-trigger dependence that is required in a trustworthy application.

To demonstrate the generality of the TriggerMetric feature, in this section we
describe two examples of such classification rules, namely All-Valid-Call-Sites
Rule and Any-Valid-Call Site Rule. Both rules defined below are based on the
number of valid call sites k; with respect to the total number of call sites [; for
an operation ¢ in the program.

Rule 3. All-Valid-Call-Sites Rule. A program is classified as benign, if and
only if all the call sites of all the sensitive operations are valid, i.e., having
user-trigger dependence. If k; = l; ¥ sensitive operation i, then the program is
benign. Otherwise, the program is classified as malicious.
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This above rule is equivalent to setting assurance threshold T' to 100% in
our classification Rule 1. In our experiments, there are 80.5% (2162) of apps
that have 100% assurance scores. We conjecture that such a rule leads to low
or zero missed detection, but many false positives.

A more relaxed classification rule can be defined below, which only requires
at least one valid call site per sensitive operation.

Rule 4. Any-Valid-Call-Site Rule. A program is classified as benign, if for
each sensitive operation there is at least one valid call site. If k; > 1V sensitive
operation i, then the program is classified as benign. Otherwise, the program is
classified as malicious.

For the example in Figure 4, this program is classified as malicious by Rule 3
and benign by Rule 4. In-depth comparison of the impact of these various
classification rules and thresholds on Android security will be our future work.

In our experimental evaluation, the classification decisions are based on
Rule 1 and Rule 2.

5. Experimental Evaluation

The objective of our evaluation is to answer the following questions:

1. Do the distributions of the assurances scores of malware and benign apps
significantly differ?

2. What is the false negative (i.e., missed detection) rate when classifying
known malware samples?

3. Can our method discover new malware apps that have not been previously
reported?

4. What are the reasons for false positives?

5.1. Ezxperiment Setup

We performed an evaluation with 1,433 Android malware apps collected
by Zhou and Jiang (2012) and VirusShare 3. The known Android malware apps
perform malicious functionalities, such as sending unauthorized SMS messages
(e.g., FakePlayer), subscribing to premium-rate messaging services automat-
ically (e.g., RogueSPPush), listening to SMS-based commands to record and
upload the victim’s current location (e.g., GPSSMSSpy), stealing users’ creden-
tials (e.g., FakeNetfliz), and granting unauthorized root privilege to some apps
(e.g., Asroot and DroidDeluxe) *.

We also evaluated 2,684 free popular real-world Android apps from Google
Play market, covering various application categories. These free apps include
those with different levels of popularity as determined by the user rating scale.

Shttp://virusshare.com/
4The malware naming convention follows Zhou and Jiang (2012).
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In particular, we used 1,039 high popularity apps, 713 intermediate popularity
apps, and 932 low popularity apps. We assumed that the trustworthiness of
these free apps is unknown and they may be malware or may contain malicious
components. We converted Android app code (apk) from the .dex format to
.class files using the Dare tool Octeau et al. (2012) and extracted features from
the Java bytecode.

Averaged DPVC wvector of known malware. We computed the DPVC vector
for each of the 1,433 malware samples, and then computed their average DPVC
vector according to Equation 2. The average malware DPVC vector approxi-
mates the distribution of valid call sites in malicious apps. It was used for the
similarity test of unknown apps in Rule 2.

Thresholds for classification rules. For our two classification rules (Sec-
tion 4), we choose the assurance threshold T to be 75% for Rule 1 and the
similarity threshold 7" to be 0.8 for Rule 2. Empirical results showed that these
values provide a high detection rate without producing excessive false alerts.

OFree Popular Apps  EMalicious Apps
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80%
70%

60%

50%
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40%

Avgl. V of malicious apps
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Figure 6: Distinct distributions of assurance scores (V') for known malicious apps and free
popular apps.

5.2. Known Malicious Apps

Assurance Scores of Known Malware Most of the malware apps have low
assurance scores, indicating that a significant number of sensitive API calls are
made without proper user triggers. Invalid call sites that we observed include
those for writing and sending information through the network, sending unau-
thorized SMS messages, executing system commands, and accessing user’s pri-
vate data. E.g., Asroot and BaseBridge use Runtime.exec() to execute system
commands without valid user triggers.
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We found that 479 malware apps out of 1,433 apps have 0% assurance scores.
The rest of the 954 apps have positive assurance scores. Among them, many
malware apps are repackaged from benign apps °, e.g., ADRD, DroidDream,
and Geinimi. Malware writers bundle malicious code with existing benign apps.
Repackaging explains our observation that a significant number of malware apps
(954 out of 1,433) have non-zero assurance scores. Positive assurance scores
indicate that a portion of the sensitive operations in these malware apps exhibit
the required dependences on user triggers.

FakeNeflix is the only malware app that has a 100% assurance score.
FakeNetflix is a phishing app, which provides a fake user interface to trick
the user to enter her or his Netflix credential. This type of phishing malware
circumvents virtually all behavior-based detection approaches, including ours.
App certification and user education are more effective defenses than program
analysis for this type of social engineering malware.

The detailed distribution of the assurance scores for the known malicious
apps can be found in Figure 6.

Classification Results on Known Malware

Rule 1 (V) Rule 2 (DPVC)
Malicious | Benign | Malicious | Benign (FN)
92.5% 7.5% 5.4% 2.1%
out of 7.5% | out of 7.5%

Table 1: Summary of classification results on 1,433 known malware apps. Rule 2 is applied
to the apps that are classified as benign by Rule 1. The false negative (FN) rate refers to the
portion of malware apps classified as benign by both rules and is 2.1%.

The classification results on known malware apps are given in Table 1. Using
assurance scores, Rule 1 labels most (92.5%) of the samples as malicious, as
they have lower-than-75% V values. Rule 1 labels 108 apps (7.5%) as probably
benign. Using DPVC vectors, Rule 2 labels malicious for 5.4% (77) apps out
of the 108 probably benign cases, as these apps have low percentages for valid
call sites per operation. Thus, we correctly detect 97.9% of the 1,433
malware samples. The false negative rate is 2.1%, i.e., 31 malware apps are
misclassified as benign.

The main reason for misclassification is malware repackaged from existing
benign code, resulting in malware with profiles similar to benign apps. For
example, one of the 31 undetected malware apps is DroidKungFuSapp, which
contains malicious code bundled with com.aijiaoyou.android.sipphone (an
app for learning Chinese). As a result, this malware app has a high assurance
score V of 85.7% and a low similarity value (0.015) with known malware.

There are two possible countermeasures to combat the misclassification of

5The problem of detecting repackage apps (e.g., Crussell et al. (2012)) has a more spe-
cific goal from our general app classification. It typically requires graph-based pair-wise app
similarity analysis.
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repackaged malware apps. The first countermeasure is to adjust the rules thresh-
olds used for the classification. For example, we set a threshold for rule 1 (as-
surance score V') to 75% in our evaluation. One can raise this threshold to be
90% or more. In this case, the repackaged malware such as DroidKungFuSapp
with assurance score V of 85.7% will be detected.

A more advanced countermeasure is to separate and identify the original
benign portion of the app and the injected malicious code. In any repackaged
app, the malicious components are highly communicated/connected together
and loosely connected with other benign components. Hence, one possible way
to identify this is to analyze the connectivity of the call graph of a repackaged
app to identify the loosely connected or disconnected graph components. Then,
one can compute features separately for each graph components and observe the
imbalance. Table 2 shows the results of our assurance scores V for the benign
and malicious components separately for some of the repackaged malware apps.
The V scores for the benign components are much higher than the malicious
components which show the validity of our proposed feature.

Table 2: Assurance scores for the benign and malicious components in some repackaged
malware apps.

Repackaged Malware Name Assurance Score Assurance Score
of Benign Compo- of Malicious Com-

nent ponent
com.noisysounds 90% 26%
com.miniarmy.engine 100% 35%
com.chenyx.tiltmazs 78% 20%
com.craigsrace.headtoheadrcing  86% 28%

5.3. Free Popular Apps

Because the ground truth on trustworthiness of the free popular apps are
not known, our analysis on them is more complex. Some of the classification
decisions are validated through significant manual inspection of the code. We
present our results on the i) assurance score computation, i) classifications
using two rules, and i) new malware discovery.

5.8.1. Assurance Scores of Free Apps

Among the 2,684 free popular apps, 80.5% of them have 100% assurance
scores, indicating that all the call sites of all the sensitive operations have valid
user-trigger dependence. The detailed distribution of the assurance scores are
shown in Figure 6. For the 80.5% of the apps that have 100% assurance scores,
we utilized a signature-based malware scanning tool VirusTotal for additional
validation. VirusTotal has 48 signature-based scanners (e.g., McAfee, NOD32,
BitDefender). We found that only one scanner out of 48 scanners in VirusTotal
triggers an adware alert for 13 free popular apps which have 100% assurance
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scores (true positives). The rest of the free popular apps with 100% assurance
scores are benign (true negatives), none of them trigger any alert by VirusTotal.

Through manual inspection, we find that the use of advertisement and ana-
lytics libraries is one main reason for sensitive operations to be called without
proper user triggers. We selected several apps with less-than-100% V scores and
computed their assurance scores with and without the ad/analytics libraries.
The V scores are boosted significantly without the ad/analytics libraries. The
results are shown in Table 3.

Table 3: Assurance scores of subset of selected benign apps including or excluding the
ads/analytics libraries.

App Name Including Ads Libs Excluding Ads Libs
com.canadadroid.fantasy 75.0% 100.0%
com.canadadroid.penguinskiing 79.2% 100.0%
com.CalcFinalProgress 85.2% 96.3%
AzureNightwalker.ContactList 89.7% 97.4%

We also found a few malicious apps with high enough assurance scores (e.g.,
V is 89%) to pass our classification threshold (i.e., false negative), e.g., a spyware
wallpaper app com.ysler.wps.d3d available on Google Play market.

5.8.2. Classification Results of Free Popular Apps

Our classification results are summarized in Table 4. Most of these free
popular apps from Google Play market are classified as benign by both rules.
Rule 1 labels 7.2% (193) of the 2,684 apps as malicious. We then applied Rule
2 to both categories of apps.

For apps classified as malicious by Rule 1. We applied Rule 2 to these
7.2% of the apps. Rule 2 labels 6.5% of the total (175 of 193) as malicious. The
other 0.7% (18) are labeled benign.

For apps classified as benign by Rule 1. We applied Rule 2 to these
92.8% of the apps. Rule 2 labels 1.7% (47) of them as malicious, and classifies
the rest 91.1% as benign.

There are 240 apps that are labeled as malicious by both or either one of the
rules. Their popularity distribution is as follows, with higher concentrations of

Rule 1 (V)
Malicious Benign
7.2% 92.8%
Rule 2 (DPVC) Rule 2 (DPVC)
Malicious | Benign | Malicious | Benign
6.5% 0.7% 1.7% 91.1%

Table 4: Summary of classification results after applying both rules on 2,684 free popular
apps.
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suspicious apps in medium and low popularity categories.
e High popularity category: 70 apps (29.2%)
e Medium popularity category: 87 apps (36.3%)
e Low popularity category: 83 apps (34.5%)

To confirm the correctness of our results, we then performed various code
inspection on them, the detail of which are described next.

5.8.3. New Malicious Apps Found

To confirm that the apps classified as malicious are truly malicious, manual
code inspection was performed. We also utilized the VirusTotal for additional
validation.

Our method discovered many new malicious Android apps that cannot be
detected by the VirusTotal tool 6. These new malware apps did not trigger
any alerts in VirusTotal. A subset of these new malicious apps is shown in
Table 6 with examples of their sensitive function calls that lack of valid user-
trigger dependence. All of them are confirmed by our manual analysis to have
malicious functionalities. In Table 6, each column is a category of malicious
action, e.g., unjustified dynamic code loading and unnecessary accessing of user
information. Names of call sites without valid user-trigger dependence are given.
All the apps shown in this table fail both of our classification rules, yet do not
trigger any alerts in VirusTotal.

We highlight a few of the new malware that we discovered in the free popular
apps. Our method detects a malicious app Time Machine, which is repackaged
from an ebook app. The malware invokes many sensitive APIs (in Jslibs
library) to perform unjustified operations, such as recording sound, retrieving
phone state, and exfiltrating geolocation information. We find that an organizer
app com.via3apps.usobesit618 is bundled with a piece of malware collecting
private information, such as device ID, email address, latitude and longitude,
phone number, and username, and it uploads the details to a remote server. An-
other malware app is a game-guide app com.bfrs.krokr, which is bundled with
adware AndroidApperhand (aka Android.Counterclank). AndroidApperhand
is a piece of aggressive adware. It attempts to modify the browser’s home page,
copy bookmarks on the device, shortcuts, push notifications, and steal build
information (brand, device, manufacturer, model). This adware also attempts
to connect to a remote host.

For the apps that are labeled as malicious by only one rule (2.4% out of
2,684 apps), we have confirmed that most of the apps (2.2% of 2.4%) contain
aggressive advertisement libraries, such as Mobclix, Tapjoy, and Waps. These
libraries invoke sensitive operations without any user triggers. Unlike regular
ad libraries, these aggressive ad libraries contain an overwhelming amount of

S0ut of the 240 apps, 137 apps triggers at least one alert in VirusTotal.
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invalid call sites. Most of them have a large number (> 50%) of sensitive
operations with zero valid call sites, which is consistent with known malware.
Other researchers have also confirmed the potential security issues raised by
these aggressive ad libraries Grace et al. (2012a).

5.3.4. False Positive Rate (FPR)

FPR is computed as Fpi%, where TN stands for true negative (benign
apps). 240 apps are classified as malicious by our method. VirusTotal scanning
confirms 137 of them are malicious. For the rest of 103 apps, we randomly
selected 21 apps out of these 103 apps and perform a thorough manually code
inspection. We found that 11 of the 21 apps have definitive malicious or aggres-
sive code behaviors that threaten the system assurance and data confidentiality
in Android (described in Section 5.3.3 and Table 6). These behaviors were found
in either the main components or adware. In the other 10 apps we did not find
any threats, thus concluded that they are benign (false positives). The total
false positives are estimated at 103 * % = 49. Since the trustworthiness of the
free popular apps is unknown, we used VirusTotal to check all the free popular
apps classified as benign by our method (true negatives). We found that only
one scanner out of 48 scanners in VirusTotal triggers an adware alert for 27
apps (true positives). The true negatives (TN) are 2684 — 240 + 49 — 27 = 2466,
yielding a 2.0% FPR.

5.4. Performance Evaluation

The experiments were conducted on a computer which has 3.0GHz Intel
Core 2 Duo CPU E8400 processor and 3GB of RAM. We measure the time
for parsing the AndroidManifest.xml file, Soot execution for constructing the
dependence graph, the reachability analysis, and finding the dependence paths
by traversing the graph. The average processing time for an app is about 158.01
seconds. This processing time does not include the time required to convert the
dex format to jar. Table 5 shows the average time required by each analysis
phase.

Table 5: Average feature-extraction time for an app.

Procedure Average Time (sec)
Reachability Analysis 14.17
Finding Dependence Paths 54.30
AndroidManifest.xml Parsing 0.01

Graph Construction using 89.53

Soot

Total Time 158.01
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5.5. Summary

These experimental results suggest that our rule-based classification with a
single complex feature is quite effective. We summarize our major experimental
findings.

1. There are an overwhelming number of malware apps with zero or low
assurance scores, indicating that a large portion of sensitive call sites in
these programs are invalid.

The DPVC vectors (representing a fine-grained distribution of per-operation
valid call sites) of malware and benign apps have significantly different dis-
tributions (shown in Figure 5). Malware has a high concentration of zero
or low per-operation valid call sites.

2. We obtained a low false negative (i.e., missed detection) rate of 2.1% when
classifying 1,433 known malware samples based on their assurance scores
and DPVC vectors, suggesting the effectiveness of our detection.

3. Our method identified 240 free popular apps (8.9%) as suspicious from
Google Play market 7. These malware excessively access device resources
and personal information without any user knowledge. Our program anal-
ysis method effectively pinpoints these problematic call sites.

Our method detects many malware that cannot be detected by VirusTotal
scanning. Some of them are shown in Table 6. We confirmed them by
manual code inspection. Our false positive rate ( is estimated at
2.0%.

Our method identified more suspicious apps from the medium and low
popularity categories than the high popularity category.

4. We observed several types of triggerless operations that are benign. Sensi-
tive operations during 4) app launching activities (e.g., default_app_set.
main.verl), ii) background service components (e.g., com.monotype.
android.font.dev.comic), or 4ii) benign ad/analytical libraries (e.g.,
rappsd.vl) are typically automatically completed without user triggers.
These factors result in lower assurance scores and skewed DPVC vectors,
which may cause false positives. The classification accuracy is also affected
by the accuracy of Dare in translating Dalvik bytecode to Java bytecode.

L)
FP+TN

6. Discussion

In this section, we discuss the security guarantees provided by our app clas-
sification work, and sources of inaccuracy in our program analysis. We also
describe possible extensions to the feature definitions.

"Google later took some malware apps off the Play market, e.g.,
Us-Obesity-And-You-Teenagers.
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6.1. Security Analysis

Our app classification can be used to detect malware that invokes sensitive
operations. Sensitive operations typically involve accessing system resources and
sensitive data. Inferring their user-intention dependences enables the detection
of potential data confidentiality and authorization issues. Examples of malicious
patterns that can be detected by our analysis include:

e Resource access: executing sensitive operations without proper user trig-
gers, such as sending unauthorized SMS messages, subscribing to premium-
rate services automatically, or granting unauthorized root privilege to
apps.

e Data access: accessing sensitive data items without proper user triggers,
such as recording and uploading the victim’s current location. Our static
analysis does not track sensitive data variables. Instead, the function calls
that may be used to access sensitive data are labeled (as operations) and
analyzed.

In our model, the accuracy of the analysis is closely related to the accuracy
of the data dependence analysis. Intra-procedural analysis captures fine-grained
def-use relations within a function. The intra-procedural def-use relations can
prevent a superfluous user input attack, thusly. One possible attack scenario is
where the malware may require superfluous user inputs (before making function
calls to conduct unauthorized activities) attempting to satisfy the dependence,
but the user inputs are not consumed by the calls. For example, the user enters
a phone number and a message to send SMS. The phone number entered by the
user can be ignored and replaced with other number inside sendTextMessage ()
function. This type of data flow can be detected by tracking the dependence
between the user inputs entered and the sensitive API calls, thus the superfluous
user inputs can be identified.

Social engineering app is an application that provides fake user interface to
look legitimate in order to circumvent the user and perform malicious activities
(e.g., stealing money). Social engineering apps may demonstrate proper trigger-
operation dependences, because of the seemingly conforming dependence paths
between user triggers and sensitive operations. Therefore, due to the intrinsic
nature of our user-intention analysis, it is not suitable for detecting social en-
gineering apps. Possible solutions for this could be using app certification and
user education.

The legitimate apps which require few user interactions may raise false alarm.
For example, a calendar app can send an automatic reminder email message of
a calendar event that previously scheduled by the user. Hence, the sensitive
APT that sends the email message may raise an alarm according to our security
model since it is not explicitly triggered by the user. For example, the user has
previously entered this event into the calendar. This action can be used as a
trigger that justifies the operation of sending reminder emails. Our approach can
be extended to address this problem by expanding and generalizing the definition
of user triggers. The analysis for this calendar problem will be more complicated
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than our current solution. The reason is that the information entered by the
user is stored in a data structure or file to be read back when it is needed. Hence,
there is no direct dependence between sending reminder email operation and the
original user triggers used to store the information. One needs to expand and
include this type of indirect dependence relation.

For the rule-based method, it is easy for the malware writers to game with
the analysis than the machine learning-based classification. This is because the
machine learning techniques utilize a large number of features compared to the
rule-based method. So, it is harder for the attacker to compromise since she/he
has to deal with many features in order to circumvent the security solution.
On the other hand, the rule-based method might be easy for the attacker to
compromise since she/he has to deal with a one/fewer number of features.

Precisely modeling a program’s semantics and intention is in general chal-
lenging and open problem. In the seminal work on computer virus Cohen (1987),
Cohen described the seminal impossibility result on malware analysis. The de-
fense is still an open problem and similar arm-race issue exists in virtually all
security solutions.

6.2. Sources of Inaccuracy in Feature Extraction

Overestimation of trigger-operation dependence may cause false negatives in
the analysis report (i.e., failing to detect potentially malicious operations in the
app). Certain dependence paths may only exist under specific data or control
conditions. These branch conditions may not be statically predictable, resulting
in overestimation. Some data dependence overestimation may be mitigated by
identifying the specific conditions for certain dependence paths to be valid (e.g.,
by symbolic execution).

Conversely, underestimation of triggers may cause false positives. For in-
stance, legitimate API calls can be triggered by runtime events such as clock-
driven events from the calendar (e.g., the calendar app sends a reminder email
message of a calendar event), or triggered by incoming network events. These
runtime events may not be explicitly triggered by the user and thus lack the
proper dependence according to our security model. One mitigation to the
problem is to generalize and expand our definitions of triggers to include other
legitimate triggering events. However, because triggers may be generated at
runtime, static analysis alone may not be sufficient for feature extraction. Hy-
brid features extracted from both static and dynamic analyses are needed for
complete dependence properties in a program. Its realization remains an inter-
esting open problem.

Static program analysis has difficulty in performing the analysis on programs
that employs obfuscation or encryption techniques. Obfuscation is mainly used
to make the programs code difficult to understand.

Some Android apps use obfuscation to protect intellectual property Enck
et al. (2011). ProGuard ® is a recommended obfuscation tool by Google to pro-

8http://proguard.sourceforge.net/
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tect against readability and does not obfuscate control flow. Hence, its impact
is limited on static program analysis.

As indicated by Enck et al. (2011), it is easy to recognize some forms of
the obfuscated code in Android apps. In particular, class, method, variable,
and Java filename names are converted to single letters (e.g., a.java). However,
several ads and analytics libraries are obfuscated to protect their intellectual
property Enck et al. (2011). To obtain a rough estimate of the number of apps
whose main code is obfuscated not the ads or analytics libraries, we used the
same approach proposed in Enck et al. (2011) to search for a single letter Java
filename (e.g., a.java) within a file path of the package name. This heuristic
is used to obtain insight for finding obfuscation code in apps, but it is not a
solid characterization. We found only 40 malware apps (2.8%) out of the 1433
apps have this code obfuscation. Moreover, we found 250 free popular apps
(9.3%) out of the 2684 apps have this code obfuscation in part of their main
code. Hence, we can infer from this statistics that the majority of the apps do
not heavily employ code obfuscation. We applied our analysis on the reversed
engineering Java bytecode using Dare tool to translate Dalivk bytecode to Java
bytecode. The accuracy of our analysis is constrained by the accuracy of the
reverse engineering tools.

There are several obfuscation techniques:

e Renaming technique: it renames classes, variables, and methods using
meaningless names. This type of technique can not affect our approach
since it just renames classes, variables, and methods without changing the
content or the control flow structure.

e String encryption technique: it encrypts the string data.

e Control flow obfuscation technique: it reorders the code and inserts addi-
tional code statements while preserving the code semantic.

The latter two techniques can affect our approach since they change the
data and the structure of the program. On possible solution is to use dynamic
analysis Newsome and Song (2005); Yin et al. (2007) to provide insights about
the programs runtime execution. As a future work, we plan to utilize the dy-
namic analysis with our user trigger dependence approach to get insights on
which sensitive APIs are triggered by user inputs/actions. On way to do this
is to label the user inputs/actions and to interpose the sensitive APIs in .apk
file and insert monitoring code to get the sensitive API call logs during the app
execution.

7. Related Work

We categorize related Android app analysis work into 4) classification with
static features and ii) classification with dynamic or hybrid features. Both
approaches are necessary for evaluating app security, providing complementary

26



behavioral profiles . We compare some of the existing mobile app classification
solutions in Table 7.

Classification with static features. In order to infer the trustworthiness
of mobile applications, multiple approaches have been proposed to statically
extract properties of a program from its code and/or its requested permissions
(e.g., Peng et al. (2012); Sanz et al. (2012)). One of the earliest such work
is SCanDroid Fuchs et al. (2009). SCanDroid Fuchs et al. (2009) proposed to
extract security specifications from the app’s manifest and check whether the
data-flows through the app are consistent with the stated specifications. '°

The solution by Peng et al. (2012) calculated risk scores from the permis-
sions requested by Android apps and found the hierarchical mixture of naive
Bayes to be the best classifier for the risk score based app classification. The
work by Sanz et al. (2012) also extracted permission-usage based features, and
evaluated several classifiers including random forests, naive Bayes, and Bayesian
network. The false positive rate in Sanz et al. (2012) is higher than 11%.

DroidAPIMiner Aafer et al. (2013) extracted features related to API calls,
and evaluated several machine learning classifiers including k-nearest neighbor
(KNN), decision tree, and support vector machines. It achieves a 97.8% detec-
tion rate of the malware samples and a false positive rate of 2.2% with KNN.
Drebin Arp et al. (2014) analyzed AndroidManifest.xml and disassembled code
to extract features on requested permissions and API calls, and used support
vector machines (SVM) as a classifier. Drebin achieves 94% detection rate of the
malware samples at a false positive rate of 1%. Both work used multiple sets of
features as opposed to our work. A recent paper Wolfe et al. (2014) on Android
malware classification utilizes the assurance score feature and dozens of other
manifest-based features. The solution by Wolfe et al. (2014) achieves similar
accuracy as ours. It utilizes a significant number of features than our work.
It employs machine learning techniques, as opposed to our simple rule-based
classification.

In comparison to the above permission-based classification, features ex-
tracted from code analysis are more fine-grained and specific. We highlight
several such solutions next. The security goal in AndroidLeaks Gibler et al.
(2012), SCANDAL Kim et al. (2012), and PiOS Egele et al. (2011) for i0OS is
focused on detecting data leak vulnerabilities, specifically on information flow
for confidentiality analysis. The methods label sensitive data/sources and po-
tentially risky sinks (typically network API calls) and report when there are
data-leaking dependence paths between them. PiOS reports a 13% false nega-
tive rate.

Although using dependence-path based analysis, our definitions for the path
have different semantics. As a result, our analysis with a complete coverage of
sensitive operations provides comprehensive app profiling, which offers more pro-
tection than data confidentiality. For example, our analysis also detects system-

9Not all related papers report both FP and FN rates.
10No experimental results were reported in SCanDroid.
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assurance-related operations such as unauthorized camera access or recording,
which is out of the scope the data leak solutions.

Multiple features were utilized to make classification decisions in RiskRanker
Grace et al. (2012b). The classification is based on several types of suspicious
behavior signatures extracted through control-flow and intra-method data-flow
analyses. An example of such suspicious behaviors include accessing sensitive
data in a dependence path that also contains decryption (usually for deobfus-
cation) and execution methods. RiskRanker reports a 9% false negative rate.
In comparison, our method enforces benign properties of trustworthy programs
(as opposed to detecting malicious properties). Our results also show better
classification accuracy compared to the existing approaches.

DroidSIFT Zhang et al. (2014) is a recent Android malware classification
system that is based on constructing dependence graphs to model the depen-
dences between API calls. Its feature vector is extracted from the graphs. The
work built graph databases for known benign and malicious Android apps, and
performed graph similarity queries (based on graph edit distance) for unknown
apps. Its approach correctly classifies 93% of known malware samples (with
naive Bayes classifier). Their anomaly detector based on the benign graph
database achieves a false negative rate of 2% and a false positive rate of 5.15%.
The semantics of dependence properties in our work and DroidSIFT are differ-
ent. Our work models the data dependency between user-input functions and
sensitive APIs. Consequently, the classification mechanisms are different. Our
solution — based on rules — does not rely on graph similarity computation, which
might be expensive for large graphs.

Classification with dynamic or hybrid features. Solutions in this cate-
gory detect malware apps by their runtime execution patterns (i.e., dynamic fea-
tures), sometimes together with statically extracted features. Andromaly Shab-
tai et al. (2012) and Amos et al. (2013) extract dynamic features including
memory activity and CPU load to classify Android apps. They apply several
classifiers including decision trees, naive Bayes, and Bayesian networks. The
best classifier in Andromaly Shabtai et al. (2012) achieves a 10.4% false posi-
tive rate. In Amos et al. (2013) the false positive rate is over 15%. The work
by Liu et al. (2009) detected malicious behaviors on mobile devices by monitor-
ing abnormal power consumption due to malware activities, and reports a false
positive rate that ranges from 4.3% to 10%.

Crowdroid Burguera et al. (2011) performs k-means clustering algorithms on
dynamic features collected from Android apps. The features are the frequencies
of occurrences for system calls (e.g., open(), kill()) executed by an app. The
proposed solution successfully identifies all of the author-created malware, while
it reports a 20% false positive rate on the real-world repackaged malware.

The features in DroidRanger Zhou et al. (2012) are hybrid. It statically
extracts behavioral signatures of known malware samples. Examples of static
features include sequences of APIs being called, package names, and class hier-
archies. It also has a dynamic execution monitor that inspects the suspicious
runtime behaviors of the app, such as loading dynamic code. The method re-
ports a false negative rate of 4.2%.

28



These dynamic analysis provides useful information on runtime program
behaviors and complements our static analysis work. Both approaches are nec-
essary for app classification.

Non-classification work. Several validation and verification solutions
have been proposed for mobile platforms to enhance the assurance of execution.
These tools gather contextual information associated with sensitive operation
invocations. This information is compared with models built through hybrid
program analysis. For example, AppIntent Yang et al. (2013) defines privacy
leakage as user-unintended data transmission. It provides a security analyst the
context information associated with the transmission. The human analyst then
decides whether the transmission is legitimate or not. Pegasus Chen et al. (2013)
proposes a Permission Event Graph abstraction in order to detect sensitive op-
eration invocations that are inconsistent with the Ul events. It automatically
verifies the app’s behaviors with respect to pre-defined app-specific policies.
CHEX Lu et al. (2012) identifies potentially vulnerable component interfaces
that are exposed to the public without proper access restrictions in Android
apps. The analysis detects apps that are vulnerable, but not necessarily mali-
cious. The authors utilized data-flow based reachability analysis. CHEX reports
a false positive rate of 19%. ComDroid Chin et al. (2011) characterizes secu-
rity vulnerabilities caused by Android inter-app communication. User-driven
access control gadget (ACG) was proposed in Roesner et al. (2012) to capture
user authorization actions (keyboard shortcut or mouse movement) for assured
resource access at runtime. Unlike ours, these solutions are not for malware
classification, thus have different security goals and technical approaches from
ours.

8. Conclusions and Future Work

We demonstrated the high classification accuracy achieved by using a single
well-prepared feature on Java programs. What differs our feature from those
used in existing work is that our classification enforces carefully-chosen benign
properties in programs. These benign properties are observed in trustworthy
programs, but not in malware. Our enforcement of these benign properties
through mobile app classification allows defenders to stay ahead of the game in
the eternal armrace between attack and defense Cohen (1987).

For future work, we plan to generalize the dependence definitions to include
non-user triggers. We also plan to utilize advanced program analysis techniques
to further improve the classification accuracy. For the deployment perspective,
we plan to provide and present informative and intuitive interpretation of the
multiple dimensional analysis results from various tools to users.

9. References

Soot: a Java optimization framework. http://www.sable.mcgill.ca/soot/.

29



Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-level
features for robust malware detection in Android. In Proc. of 9th International

Security and Privacy in Communication Networks (SecureComm), pages 86—
103, 2013.

Brandon Amos, Hamilton A. Turner, and Jules White. Applying machine learn-
ing classifiers to dynamic Android malware detection at scale. In Proc. of 9th
the International Wireless Communications and Mobile Computing Confer-
ence, IWCMC, pages 1666—-1671. IEEE, 2013.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. Drebin: Efficient and explainable detection of Android malware in your
pocket. In Proc. of 17th Network and Distributed System Security Symposium
(NDSS), 2014.

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for Android. In Proc. of the 1st ACM work-
shop on Security and privacy in smartphones and mobile devices (SPSM),
pages 15-26. ACM, 2011.

Kevin Zhijie Chen, Noah M. Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNa-
mara, Tom Magrino, Edward XueJun Wu, Martin Rinard, and Dawn Song.
Contextual policy enforcement in Android applications with permission event
graphs. In 20th Annual Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2013.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Ana-
lyzing inter-application communication in Android. In Proc. of the 9th Int’l

Conference on Mobile Systems, Applications, and Services, pages 239-252.
ACM, 2011.

F. Cohen. Computer viruses theory and experiments. Computers and Security,
6:22 — 35, 1987.

Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: Detect-
ing cloned applications on Android markets. In Proc. of the 17th European
Symposium on Research in Computer Security (ESORICS), volume 7459 of
Lecture Notes in Computer Science, pages 37-54. Springer, 2012.

Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Privilege escalation attacks on Android. In Proc. of the 13th International
Conference on Information Security (ISC), pages 346-360. Springer-Verlag,
2010.

Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS:
Detecting Privacy Leaks in i0OS Applications. In Proce. of the Network and
Distributed System Security Symposium (NDSS). The Internet Society, 2011.

30



Karim O. Elish, Danfeng Yao, and Barbara G. Ryder. User-centric dependence
analysis for identifying malicious mobile apps. In Proc. of the IEEE Mo-
bile Security Technologies (MoST) workshop, in conjunction with the IEEE
Symposium on Security and Privacy, 2012.

William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol Sheth. TaintDroid: An information-flow track-
ing system for realtime privacy monitoring on smartphones. In Proc. of
the USENIX Symposium on Operating Systems Design and Implementation,
pages 393-407. USENIX Association, 2010.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A
study of Android application security. In Proc. of the 20th USENIX conference
on Security. USENIX Association, 2011.

forti-guard. Fortinet FortiGuard Labs Reports. August 2013. https://www.
fortinet.com.

Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Auto-
mated security certification of Android applications, 2009. Technical report,
University of Maryland.

Clint Gibler, Jon Crussell, Jeremy FErickson, and Hao Chen. AndroidLeaks:
Automatically detecting potential privacy leaks in Android applications on a
large scale. In Proc. of the 5th International Conference on Trust & Trustwor-
thy Computing (TRUST), volume 7344 of Lecture Notes in Computer Science,
pages 291-307. Springer, 2012.

Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Un-
safe exposure analysis of mobile in-app advertisements. In Proc. of the 5th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WISEC), pages 101-112. ACM, 2012a.

Michael C. Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
RiskRanker: scalable and accurate zero-day Android malware detection. In
Proc. of the 10th International Conference on Mobile Systems, Applications,
and Services (MobiSys), pages 281-294. ACM, 2012b.

Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing us-
ing dependence graphs. ACM Transactions on Programming Languages and
Systems, 12:26-60, 1990.

Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. SCANDAL:
Static analyzer for detecting privacy leaks in android applications. In Proc.
of the IEEE Mobile Security Technologies (MoST) workshop, in conjunction
with the IEEE Symposium on Security and Privacy, 2012.

Lei Liu, Guanhua Yan, Xinwen Zhang, and Songqing Chen. VirusMeter: Pre-
venting your cellphone from spies. In Proc. of the 12th International Sym-

posium on Recent Advances in Intrusion Detection, pages 244-264. Springer,
2009.

31



Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: stati-
cally vetting Android apps for component hijacking vulnerabilities. In Proc.
of the ACM Conference on Computer and Commaunications Security (CCS),
pages 229-240. ACM, 2012.

James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits on commodity
software. In Proc. of the Network and Distributed System Security Sympo-
sium. The Internet Society, 2005.

Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android ap-
plications to Java bytecode. In Proc. of the 20th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE). ACM, 2012.

Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju,
Cristina Nita-Rotaru, and Ian Molloy. Using probabilistic generative mod-
els for ranking risks of Android apps. In Proc. of the ACM conference on
Computer and Communications Security (CCS), pages 241-252. ACM, 2012.

Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, He-
len J. Wang, and Crispin Cowan. User-driven access control: Rethinking
permission granting in modern operating systems. In Proc. of the IEEE Sym-
posium on Security and Privacy, pages 224-238, 2012.

B. Sangz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P.G. Bringas, and G. Al-
varez. Puma: Permission usage to detect malware in Android. In Proc. of
International Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Special Ses-
stons, 2012.

Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss.
Andromaly: a behavioral malware detection framework for Android devices.
Journal of Intelligent Information Systems, 38(1):161-190, 2012.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Addison-Wesley, 2006.

Britton Wolfe, Karim Elish, and Danfeng Yao. Comprehensive behavior profil-
ing for proactive Android malware detection. In Proc. of 17th International
Information Security Conference (ISC), 2014.

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Applntent: An-
alyzing sensitive data transmission in Android for privacy leakage detection.
In Proc. of the ACM Conference on Computer and Communications Security
(CCS). ACM, 2013.

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and
analysis. In Proc. of the ACM Conference on Computer and Communications
Security (CCS), pages 116-127. ACM, 2007.

32



Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware Android
malware classification using weighted contextual API dependency graphs. In
Proceedings of the 21st ACM Conference on Computer and Communications
Security (CCS’14), November 2014.

Yajin Zhou and Xuxian Jiang. Dissecting Android malware: Characterization
and evolution. In Proc. of the IEEE Symposium on Security and Privacy,
pages 95-109, 2012.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android markets.
In Proc. of the 19th Network and Distributed System Security Symposium
(NDSS), 2012.

33



'€10%/90/21 Aq yorewt Keid o[300x) woij peasowal usaq sey ddy

() £oeanooy 108
(Jopnaryeryos
- - - - ()opuyBuores - -
()&oeanooy 108
UOI3eO0TUMOU I }SRT108
T MAseT
()opngryeie8 ()roqum N ToUITIOS
()o8essoNrxoI,puss ()sse[DHpeo] - ()sseappydje8 ()opnjiSuoria8 ()syunoooyies ()preorasgiros
()uoryeooyumousyjser 1o8
()opniryeried
- - - - ()opnyiSuoryes - ()preotaaies
()&oeaInooy 108 ()prieqriosqngies
()uoryeoorjumousise 1ol ()roquun NTerIoguIg)08
()opngryerre8 ()roqum N ToUITIe8
- - ()syreunjoody 108 - ()opnyiSuoryes - ()preoraaies
()roqun NTerIoguIIg198
()epnaryer re8 ()roqum N Tour108
- - - - ()opnyiSuoryes - ()preoraaies
()&oeInooy 108
()uoryeoorjumousyjser o8
()opniryeryies
- - - ()ssoappydy3e8 ()opnyiSuoryes - ()precras 18
C:oﬁmooqcm,wos&aquaww
opnjrjer 3es8
() £oeanooy 108 ()p119qriosqngies
()uoryeooTumousyjser 1ol ()roqumNTRIIogUISIO8
()opngryer1e8 ()roqun N ToUITIOS
- - ()syrewsjoo 108 - opnjisuorye8 - 901AD(]398
B AoodIlv pnjtsuo] PIeotASd
()opniryeries
- - ()ssyrewrsjoo 108 - apnj8uoryel - 9O1AD(J398
T soodiv pnjtsuo] PIo2tAS

991,91 1I{ 4 4 4 FUIZRUIY "TIOD

IoUWeds PIoIpUL 0C0I9q UI0D

ggeuorjeaorsddegera mos

demguey Auued wod

[pPoqoy [o suio

| pusemoted-py - wod

I9JUNFYST ] AUURD 0D

,qudw:odwdwﬁdw:o&.ﬁoo

swreN ddy

‘poylour Ino Aq PUNOj dIeM[RUL MU JO 9SNNS B JO SOIYIAIIDE SNOWI[RIN :9 d[qe],

34



(1) yuepuadspur-urewop 10 (g() dywods-urewrop :£10891€0 9INYRIT 4 4

*(IN) seangeay oidiynur 10 (g) 9Injes] o[SUIS :S9INJRDJ JO IDQUINN 4

109(01d swOUSd srRM[RI

%I'T proipuy ‘oreygsnirp oremyet s[reo 1dV poSeriarad s[red [V Ppozuoyjneun
= NJd %2 = dd ‘Ae1g o18005) ¢ep‘1T ‘uStuaq y89°‘z | 10J eouspuadop paseq-108311 Ny sa S o19R31g JO uoIjyedyIIuap] smQO
100(01d swousd aremyewr
proapuy ‘sSoiq £jranoes
%9 puUe SWNIoj arem[ewt oIeM[eW ()9G‘G
= Nd %T = dd ‘SjodIRW SnoLIeA ‘uStueq ¢ey et NAS el N ISR uorjeoyissed arem[e]N |($10g) ‘Te 10 diy uiqaiq
991 YOI ‘109load
%T'T = omwouss arempeut oremyet (€102) TR 20
Nd %e'¢ = dd | Proipuy ‘Ae[d 9[S005 |L86‘¢ ‘USIuaq 00091 NAS ‘1A ‘NN 1a N o1yess UOryeoyIsse[d olem[e]y  |19jey  BUINIJVPIoId
aremyemt
gLg ‘(sdde y£g'9€T)
uoryepifea (sdde
100fo1d smwouad oremewr 1€¢‘TL) Surysay s[opowt
%y = dd proipuy ‘Aejq o[8oor) |2y uoljerauas [opowr aATyeIaULS O13sI[IqReqOoId JUaIayIp 1a W o11e)g JUOWISSOSS® ST (2102) "I° 90 Susg
syey IR soInjeusis surayjed 1o1aRYD(/0pPOD (9z102)
%6 = NJA proipuy snorrea sdde QTE‘QTT Io1AaRyRq oremfew ofdiynur oMy Sa W o19e)g [eULIOU®R JO UOI1D9)9(] [T€ 10 90vlr) IO U SIH
usuaq O ‘oremewt Ld ‘YT ‘sueow-y (z102) "TE 90
%0T = dA Aeld 918005 U0ILIM-J[OS F ‘suea809s1Y ‘sjou sekeq ‘seded oArRU 1a W orwreuk (g UOIJROYISSR[O dIRM[RIN [lelqeys Arewoapuy
oremrea A9 LA ‘NN ‘INAS ‘s10u selegq
%IT = dJd resorsniip ‘Aefq oiSoon| @3¢ ‘uStuaq T18‘T ‘sofeq oAreu ‘uorssoirfor orys1So[ 1a W o11e1g UOI}ROYISSBD dIRM[RIN (z10T) 'Te 190 zZueg
SIdV
%EeT = NA ssog8ig ‘soung, s orddy sdde 20%‘T ANS1I AQ Posn B)RP 9AI}ISULSS :O[NY sa S o19R3g Ajrperjuspyuo)) (1T0T) TR 92 219037 SOId
(erempewr
€¢ ‘usiueq yg)
AKelq 18005 ‘[ejoIsniip| Suryse ‘(eremrewt
‘100fo1d awrousld 0gge‘T ‘uStuaq 1A ‘dY ‘uorsseidax o13s130]
%ST = dJd aremyewl proIpuy 80%) Sururery ‘ATIN ‘s1ou safeq ‘sofeq oareu 1a W orwreuk( UOI}BOYISSLD dIRM[RIN (€10%) "B 10 sowry
oremeT
[ed1 g pue orem[ew (170T) TR %0
%0z = dd [0 SNIIA U91)LIM-J[3S € SurI9IsSNO suBOW-3 1a W orwreuk uorjedYISse[d oreme]y |eranSing proipmoiy)
sjosIew SIdV (z102) "TB 90
%Ge = dd proipuy snoriea sdde 0gg‘yg AS[S11 Aq posn ejep 9AT}ISUDS 9Ny Sa S o19e)g AyeTguLOpPyYUO)) ID[qIO) syearTproIpuy
Aoeanooy wxAd0893€)) | L Seanjeoq odAfT,
uorjeoyisse[) |woag pajros[o) sddy | oeog uorjenjeary | wiyzrio3[y/Ao1[0oqd uoljyedyisser) aanjyesqj # aanjyesj wry uorniog

“J1om uworyeosyisse[d dde a[iqowr paje[al yym uositredwo)) :), 9[qe],

35



