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Abstract

The increasing use of email for phishing and unso-
licited marketing has reduced the trustworthiness of
email as a communication medium. Sender authenti-
cation is a known defense against these attacks. Exist-
ing proposals for sender authentication either require
infrastructural support or break compatibility with ex-
isting email infrastructure. We propose, implement,
and evaluate social-group key authentication, an incre-
mentally deployable and backward compatible sender
authentication mechanism for email. Our solution re-
quires honest majority instead of trust infrastructure or
human input for correctness. In accordance with the
end-to-end principle, authentication is implemented at
the mail client by executing our previously proposed
Byzantine fault tolerant public key authentication pro-
tocol [12] as an overlay on top of the mail trans-
port protocol. We evaluated the authentication over-
head by instrumenting our Thunderbird authentication
plugin with synthetic data and found a user visible la-
tency increase of about 200ms. Real life usability of
the authentication mechanism is investigated with two
anonymized email traces. Our results show that about
40% of the peers can be authenticated over the 92 day
trace period without adding any new messages to the
email network. Adding a small fraction of extra email
messages permits more than 90% of the peers to be
authenticated within a week.

1 Introduction

Electronic mail is one of the most popular applications on
the Internet. Unlike traditional mail that can be signed by
hand, electronic mail does not have a built-in authentica-
tion mechanism. In particular, the absence of sender au-
thentication makes it possible to spoof sender identity. Itis
also possible to modify message contents en-route because
messages do not carry digital signatures, which could pro-
vide message authentication. The lack of sender authenti-

cation and message authentication limits the effectiveness
and trustworthiness of email. It is non-trivial to determine
the true identity of the sender because messages could be
spoofed, i.e. appear to be from a different sender than the
real sender. The low cost of sending electronic mail cou-
pled with ease of spoofing has led to a flood of spam on the
Internet. Having sender authentication would not only con-
tain spoofing, but also enable tackling the spam problem by
using authenticated sender identities to classify messages
as trusted or otherwise. Similarly, message authentication
would increase trustworthiness of electronic mail making it
more effective for personal and business use. These moti-
vations make sender authentication and message authenti-
cation important enhancements to email.

While the original email specification [5, 11] does not ad-
dress authentication, the S/MIME enhancements [13, 14]
have added support for message authentication. Message
authentication in S/MIME depends on sender authentica-
tion, which is provided by an external public key infras-
tructure (PKI). This works well in an organizational setting,
where a central trusted party can certify public keys asso-
ciated with all the mail addresses. However, the central-
ized trust model becomes unsuitable for communications
across organizational boundaries or for private communi-
cation through free email systems. Since the email user
base is decentralized with peers belonging to different log-
ical trust domains, the authentication infrastructure should
be decentralized too. This requirement is not addressed by
the S/MIME standard. A popular security add-on for elec-
tronic mail is Pretty Good Privacy or PGP [19]. It allows
users to authenticate public keys of other users in a peer-to-
peer manner. Its reliance on human judgment of trustwor-
thiness makes it suitable for sophisticated email users [17].
A general purpose email authentication solution must sup-
port the following requirements in order to fulfill the needs
of decentralized and unsophisticated email users:

1. Operate without depending on centralized third parties
for authentication decisions.

2. Provide autonomous operation with minimal human
intervention.



Figure 1: The big picture: public key authentication.A authenticates the public key ofB.

1.1 Our solution

Our social-group key authentication proposal for email is
described and evaluated in this paper. The proposed solu-
tion is an instantiation of our Byzantine fault tolerant public
key authentication protocol [12], which supports soft au-
thentication of public keys without centralized infrastruc-
ture. The public key authentication protocol runs as an
overlay on the email protocol [8], thereby supporting in-
cremental deployment and backward compatibility. Digital
signatures [9] generated from the authenticated public keys
provide sender and message authenticity to email.

Our public key authentication protocol provides eventual
authentication. This means that users may receive digitally
signed messages from peers whose public keys are yet to
be authenticated. Since the underlying public key
authentication protocol is autonomous and decentralized,
social-group key authentication inherits these characteris-
tics. Authentication is supported in an end-to-end manner
without additional infrastructure or human input. Our solu-
tion is therefore compatible with the usability requirements
described above. It also allows incremental deployment
and preserves backward compatibility. In summary, this
paper makes the following contributions:

• We implement social-group key authentication for email.
Our solution is automatic, Byzantine fault tolerant, even-
tually correct, incrementally deployable, backward com-
patible with the existing email infrastructure, and does
not use trusted third parties.

• Performance of the proposed solution is investigated
through micro-benchmarks, simulation on an industrial
and an academic email trace, and live experimentation
on an instrumented mail authentication prototype.

2 Preliminary

This section provides an outline of our previously proposed
Byzantine fault tolerant public key authentication protocol
(BPKA) described in [12]. It allows peers to mutually au-
thenticate self-generated public keys. As shown in Fig-
ure 1, Alice authenticates Bob’s public key with the help
of her trusted peers through a challenge response proto-
col. Peers whose public keys are already authenticated are
called trusted peers. Trusted peers can authenticate public
keys and detect malicious behavior under an honest major-
ity assumption.

The BPKA protocol consists of authentication and group
management tasks. The operations CHALLENGE RE-
SPONSE, DISTRIBUTED AUTHENTICATION, and BYZAN -
TINE AGREEMENT support autonomous authentication of
public keys in the presence of malicious peers. The CHAL -
LENGE RESPONSEoperation is used by individual peers to
gain evidence of public key authenticity. This evidence is
shared among trusted peers through the DISTRIBUTED AU-
THENTICATION operation. Lack of consensus on authen-
ticity implies the presence of malicious or faulty peers. The
lack of consensus is resolved through the optional BYZAN -
TINE AGREEMENToperation, which permits peers to iden-
tify and ignore malicious and faulty peers.

Group management operations maintain honest majority
among the trusted peers. The GROUP M IGRATION op-
eration maintains a trusted group of peers by periodically
recycling older trusted peers. This protects honest major-
ity in the trusted group by avoiding the accumulation of
covertly malicious peers. The BOOTSTRAPPINGoperation
initializes the authentication system by providing the initial
trusted group known as thebootstrapping group. In this



paper, we use the BPKA protocol as a black box and refer
the reader to the original paper for more details about the
BPKA protocol [12].

3 Social-group key authentication protocol

The secure association of public keys to email addresses is
referred to aspublic key authenticationin this paper. This
section explains how the previously proposed BPKA pro-
tocol [12] is applied to the email environment.

3.1 Email Setup and Security Model

The BPKA protocol assumes that the participating peers
are identified by their network addresses, which are email
addresses in the context of this paper. Based on this
premise, we do not distinguish the email addressA from
the user who uses that address. We assume that every user
U has a public key (KU ) and a private key (K−1

U ). Every
email message contains the public key of the sender and is
signed by the sender using his or her private key.

The BPKA protocol requires that the asynchronous net-
work connecting the peers provide delivery failure notifi-
cations for non-existent destinations. The network should
support eventual delivery on retransmissions, and not be-
come permanently partitioned. Assuming that temporary
failures in the email network are eventually repaired, the
email network satisfies these requirements [8].

Public keys are authenticated with help of a group of peers
called the trusted group:

DEFINITION 1 (Trusted Group) The trusted groupis
used for authenticating public keys of new peers. On au-
thentication of its public key, the new peer becomes part of
the trusted group. The public key of every peer belonging
to the trusted group is known and trusted.

The trusted group is initialized from the address book of the
user. Note that belonging to another peer’s trusted group
does not affect the authentication protocol. Because the
authentication protocol requires message transfer between
trusted peers, additional extension fields are added to email
headers.

DEFINITION 2 (Email Header Extension) The fol-
lowing email header extension fields are used by
social-group key authentication protocol for public
key authentication1:

• X-Bft-Auth-PublicKey : public key of the sender.
• X-Bft-Auth-Data : unauthenticated public key of other
peers, nonces, cipher text, or trust decisions.

• X-Bft-Auth-MesgInfo : the protocol operation that
sends out the message and the specific stage within that

1Bft in the email headers stands for Byzantine fault tolerance.

operation (for operations that have multiple stages).
Protocol operations can be one of the following:
Email Peer , EmailResponse , or InferTrust.

• X-Bft-Auth-Signature : digital signature signed with
the private key of the sender.

Using SMTP extension header fields for carrying
social-group key authentication data provides back-
ward compatibility. The email messages sent by the
authentication enabled mail clients would contain
social-group key authentication protocol messages, which
are processed by the email clients supporting the pro-
tocol. The additional protocol messages are ignored by
other email clients because email systems should ignore
unknown extension headers [11].

3.2 Adversarial Model

We assume the following strong adversarial model. Adver-
saries mounting passive attacks are allowed to overhear all
the communication between peers. The active attacks are
restricted compared to the classical “network is the adver-
sary” model as follows: The active adversaries have unlim-
ited spoofing power, i.e., they can inject arbitrary messages
into the network. However, they have limited power to pre-
vent message delivery. In particular, for the BPKA protocol
to operate at a peerP, it should be impossible to prevent
(eventual) message delivery for more than a fractionφ of
P’s peers [12]. We note that since email servers are widely
distributed, a practical value ofφ is zero for general email
communication over the Internet.

Peers in the trusted group can be honest, malicious, or
faulty. The protocol does not distinguish between the latter
two cases, but provides public key authentication service to
the honest peers. The protocol correctly authenticates the
public keys of honest peers if the trusted group has honest
majority.

DEFINITION 3 (Honest Majority) A trusted group has
honest majorityif fewer than t of the n trusted peers are
malicious or faulty, where t= 1

3n. A peer is malicious if
it does not follow the protocol correctly, and faulty if its
authentication vote is incorrect.

For example, a faulty peer may suffer man-in-the-middle
attacks causing it to vote incorrectly while a malicious peer
may intentionally give wrong authentication votes [12].

3.3 Our Protocol

The purpose of our protocol is to let Alice authenticate
Bob’s public key with help from the peers in her trusted
group. Our social-group key authentication protocol
has the following operations: EmailInit, Email Peer,
Email Response, and InferTrust. The protocol operations
are described below along with the exchanged messages.
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col [12]. A authenticates the public key ofB by gathering
authentication votes from its trusted peersC, D, E, andF .

For brevity, only the contents of X-Bft-Auth-Data and X-
Bft-Auth-MesgInfo email extension headers are described.
The remaining extension headers are populated as follows:
Public key of the sender is stored in X-Bft-Auth-PublicKey
extension header, and the X-Bft-Auth-Signature extension
header stores the digital signature created with the sender’s
private key.

• Email Init: Alice receives an email message from Bob
whose public keyKBob is not authenticated.

Bob → Alice

• Email Peer: This operation is run by Alice. Alice emails
the peers in her trusted groupA1, . . . ,An for authenticat-
ing KBob, the unauthenticated public key of Bob. The
email message has type EmailPeer in the X-Bft-Auth-
MesgInfo header, and keyKBob in the X-Bft-Auth-Data
header. For alli ∈ [1,n], we use below formula to rep-
resent the email message sent by Alice to peerAi in her
trusted group.

Alice → Ai KBob

• Email Response: This operation is run by eachAi with
the participation of Bob. As shown in Figure 2, the
peerAi runs the CHALLENGE RESPONSEoperation of
BPKA protocol [12] and decides if the public keyKBob

of Bob is authentic or not. The challenge consists of
a random numberrAi chosen byAi and encrypted with
KBob, the supposed public key of Bob. In response, Bob
is expected to recover the random numberrAi chosen
by Ai , and demonstrate its ownership of the public key
KBob. The detailed steps of this operation are given be-
low. Each message has the type EmailResponse stored
in the X-Bft-Auth-MesgInfo header.

Ai → Bob KBob(rAi )
Bob → Ai rAi

Ai → Alice TAi (Bob)

Each peerAi emails back itstrust vote TAi (Bob) to Alice.
The trust vote consists of the signed challenge message

sent byAi , the signed response sent by Bob, and a true or
false vote on authenticity.

• Infer Trust: This operation is mainly run by Alice and
may also require the participation of Alice’s peers and
Bob. Alice’s inputs are the trust votes received from her
peersAi . If the trust votes are in agreement on the au-
thenticity of KBob, then Alice decides according to the
unanimous decision of her peers. This inference is based
on the DISTRIBUTED AUTHENTICATION operation of
BPKA protocol shown in Figure 3.

If Alice receives disagreeing trust votes from her peers,
she initiates the BYZANTINE AGREEMENToperation of
BPKA protocol, which allows Alice to determine who
among Bob or her peers is malicious or faulty. Note
that Bob needs to participate in the BYZANTINE AGREE-
MENT step because either Bob or any of Alice’s peers
may be malicious or faulty [12]. Alice sends the vector
of received trust votes to Bob and her peersAi . On receipt
of this message, Alice’s peers and Bob exchange the trust
vote vectors among themselves. Using the symbol “|”
to denote multiple sources or destinations, the messages
exchanged in this protocol operation are shown below.
Each of the messages contains InferTrust in the X-Bft-
Auth-MesgInfo header.

Alice → Ai |Bob TAi (Bob)
Ai |Bob → A j TAk(Bob)

Alice decides whether or not to trust Bob’s key by ma-
jority on the trust votes. This part of the authentication
protocol also permits Alice and her peers to identify and
exclude malicious or faulty peers from trusted groups.

3.4 Security of our protocol

Our social-group key authentication protocol is secure
against the adversarial model defined in Section 3.2, as-
suming the trusted group has honest majority (See Defini-
tion 3). Our security is directly based on the security of



the existing BPKA protocol [12]. The proof of security is
omitted here.

4 Implementation of email authentication

We implemented peer-to-peer sender authentication as a
plugin for Thunderbird email client from the Mozilla ap-
plication suite. The plugin is available for public down-
load athttp://discolab.rutgers.edu/byzantine/ . This
section outlines the design issues, application choices, and
practical considerations encountered during its design and
implementation. An overview of the plugin architecture is
also provided.

The Mozilla suite of applications [3] allows developers
to extend application functionality by developing plug-
ins. XPCOM objects are the basic unit of plugin devel-
opment. These objects allow run time linking and ex-
pose their interface through a compiled interface defini-
tion file. A compiled XPCOM object can be accessed as
a first class Javascript object from the user interface con-
trolling scripts. The user interface itself is defined through
the XUL user interface language with Javascript making
XPCOM calls on receiving user interface events. The
entire package of compiled XPCOM objects, user inter-
face elements, and controlling scripts is referred to as a
plugin. We followed the standard procedure [2] to em-
bed BPKA library [12] in Thunderbird in order to provide
social-group key authentication for email.

The email authentication plugin architecture is shown in
Figure 4. Authentication Adapteris an XPCOM object
which exposes the authentication interface. It is statically
linked to the Byzantine fault tolerant public key authen-
tication (BPKA) library [12]. This interface provides au-
thentication protocol messages to be attached to outgo-
ing emails, and consumes the protocol messages from in-
coming emails. The interface also contains calls to query
and authenticate the public keys associated with email ad-
dresses. The authentication adapter is used for imple-
menting social-group key authentication. Its functional-
ity is integrated into the Thunderbird email client through
theScripted Extension Accessmodule. The authentication
plugin is easy to install. It provides automatic email au-
thentication to unsophisticated users.

5 Overlay considerations

We use SMTP extension headers to create an overlay for
the social-group key authentication protocol. This main-
tains compatibility with existing email infrastructure. Run-
ning the protocol as an overlay on top of email introduces
performance limitations and design constraints. This sec-
tion investigates these issues in order to choose implemen-
tation parameters that are practical in the email environ-
ment.

Scripted Extension Access

Shared Object

Byzantine
Fault Tolerant
Authentication

Library

Authentication
Adapter
XPCOM

nsISupports

Authentication
Data

Events

Thunderbird Mail
Client

User Interface

Authentication
Interface

Figure 4: Authentication plugin architecture for the Thun-
derbird email client.

5.1 Trusted group size limits

The overhead of BPKA protocol was bench-marked
through a simulation that investigates the cost of public key
authentication [12]. The cost of the protocol depends on
various controllable parameters like bootstrapping group
size, trusted group size, probationary group size, and the
rate of authentication of new peers. These parameters must
be selected in order to match the computational and mes-
saging power available in typical email systems with the
requirements of the protocol.

The authentication protocol can operate as an overlay
above the mail transport by using the extension fields de-
fined in SMTP. This is in line with many anti-spam imple-
mentations. However, SMTP mail transfer agents impose
a limit on maximum header size. This is done to avoid de-
nial of service attacks. For example,sendmail, a popular
UNIX mail transfer agent, supports the maximum header
size of 32 KB. This limits the maximum authentication
payload that can be attached to a single message. Since
the authentication protocol requires increasing amounts of
messaging overhead with increasing trust group size, the
maximum group size that can be supported in the overlay
is limited. Using a public key size of 1Kb, and ZLIB library
for compression, we tested the final header load for differ-
ent authentication message payloads. A high compres-
sion ratio can be achieved on the authentication messages
because they are are serialized in XML format. Figure 5
shows the size overhead of authentication messages result-
ing from the university mail trace used in this paper. We
choose a payload of at most 300 compressed authentication
messages in order to impose less than 10KB overhead on
the mail header.

Messaging cost of authentication depends on the trusted
group size and the rate of discovery of new peers. The
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budget of 300 authentication messages per email affects
the maximum size of trusted group that can be maintained.
Getting hold of mailbox statistics is challenging because of
privacy issues. Therefore, we gathered statistics of unique
mail addresses and number of messages from the mail-
boxes of a few colleagues. The results indicate that about
20% of the messages are sent to, or received from new
peers that need to be authenticated. Applying this ratio to
the limit of 300 authentication messages per email, we can
afford 1500 authentication messages per un-authenticated
peer. Our previous simulation results in [12] indicate a
maximum trusted group size limit of 75 peers for this mes-
saging cost. This upper limit on trusted group size is de-
signed into the system.

5.2 Bootstrapping groups

To determine a meaningful heuristic for generating boot-
strapping groups (see Section 2), we analyzed the email

communication patterns available from the anonymized
University email trace (described in detail in Section 6).
Figure 6 shows the cumulative distribution of number of
user accounts with respect to email messages sent or re-
ceived over a 92 day period. We find that a large number
of user accounts are idle with minimal sending and receiv-
ing activity. Using the distribution, we cut off accounts
that do not have at least 3 outgoing messages and at least
9 incoming messages over the period of the study. This re-
duces the number of user accounts in the study from 27,623
to 715. This active subset of user accounts is analyzed
against two possible heuristics for generating bootstrapping
trust groups: TheOutgoing heuristicselects bootstrapping
peers from destination addresses of outgoing emails. The
Two-way heuristicselects bootstrapping peers from both
the destination addresses of outgoing emails and the source
addresses of incoming emails.

The selection heuristics are applied to the mail trace by
considering the first 10, 30, and 90 days of the trace. Us-
ing the initial subset of the trace is desirable because future
communication patterns will not be available in real life.
The size of the bootstrapping group for each mailbox is
calculated using the given heuristic and time window from
the mail trace. The cumulative number of mailboxes having
more than a given number of bootstrapping peers is plotted
in Figure 7. It can be observed that one way communica-
tion is quite common in email as shown by the gap between
the two heuristics. In order to have a frequently communi-
cating subset of users, we apply the 30-day two-way heuris-
tic on the 92 day mail trace. This results in a set of 53 peers
that have at least 4 peers in their bootstrapping group. This
subset of active users is chosen as the experimental base.



Figure 8: Additional email processing latency for authen-
ticating public keys of different sizes.

Figure 9: Additional email processing latency for authen-
tication with different trusted group sizes.

5.3 Eager and Lazy modes

The authentication mechanism can be run in lazy or ea-
ger modes. In lazy mode, the authentication plugin does
not proactively send out any email messages specifically
for the key authentication purpose. The protocol messages
are therefore transmitted entirely through organically ex-
changed emails in a piggybacking fashion. In the eager
mode, additional plugin generated email messages may be
sent out to peers. These messages would be automati-
cally handled and absorbed at the receiving end plugin, and
therefore would not change the user experience. We note
the downside of eager mode that the added protocol mes-
sages may be consumed by spam filters. This problem can
possibly be addressed by human means, by asking the mail
administrators to disable particular spam filters. However,
losing eager mode authentication messages only causes de-
lay because the lazy mode protocol will eventually achieve
authentication.

6 Experimental evaluation

The objective of experimentation is to characterize client
costs, and to establish the suitability of peer-to-peer sender
authentication in a real life scenario. The experimen-
tation is done in two stages. The first evaluation is a
micro-benchmark consisting of sending and receiving mes-
sages from an instrumented authentication plugin. The
second evaluation consists of localized execution of two
anonymized email traces, one from a university and another
from the industry. The details of the traces are given in Ta-
ble 1. The university trace is collected from asendmail log
behind the spam filter, while the industry trace is collected
from the Internet mail gateway ahead of the spam filter.
Statistics are collected for data overhead imposed on email
messages, cache size at the peers, and the performance of
authentication. Experiments are also done for comparing
the performance of eager and lazy mode authentication.

Trace Number of messages Time duration
University 1197043 92 days
Industry 2549767 56 days

Table 1: Email traces used for evaluation.

6.1 Micro benchmarks

A set of micro benchmarks was conducted on a 2.4GHz
Intel Pentium 4 desktop running LINUX Fedora Core 5.
The objective of micro benchmarks is to determine the la-
tency introduced by the addition of authentication plugin
in the email processing path. The added latency of send-
ing and receiving emails was measured for different public
key sizes as shown in Figure 8. The sender cost was about
200ms for all the different public key sizes. Sender latency
is dominated by message serialization costs and therefore
does not depend on public key size. On the other hand,
the receiver costs are dominated by the cryptographic op-
erations of digital signature verification and responding to
challenges. As shown in Figure 8, the receiver costs in-
crease from 85ms at 512 bit keys to about 500ms for 2Kb
keys. While both of the costs are within usability limits,
one can observe that receiver processing can be done asyn-
chronously in a separate thread. Therefore, one can expect
a net addition of about 200ms latency to email operations
due to the authentication plugin.

The effect of trusted group size on authentication plugin
overhead was also measured as shown in Figure 9. The
overhead on the sender increases with increasing trusted
group size because of the increasing overhead of serializing
a larger number of messages for trusted peers. The over-
head increased from 160ms at trusted group size of 8 to
220ms for a trusted group of 18 peers. The receiver over-
head does not depend strongly on trusted group size and
takes about 65ms. The overhead of compression and mak-
ing function calls across the authentication interface were
measured and found to be less than 10ms in all the cases.
These overheads are not sensitive to authentication proto-
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Figure 10: Variation of authentication performance with the size and selection criterion of the bootstrapping group.

col operational parameters, as expected. Sending overhead
depends on trusted group size, while the receiving overhead
depends on key size. Since the overhead introduced by the
plugin is less than 500ms in all the cases, it is extremely
reasonable from a usability standpoint.

6.2 University workload

As described in Section 5.2, the mail trace is trimmed
to email interactions of 53 peers that have bootstrapping
groups of size 4 or more. A maximum size of 10 is cho-
sen for the bootstrapping group in order to limit the pro-
cessing time of the trace. The trimmed trace has 873,752
email messages as compared to the original 1.19 million.
This mail trace is used to drive the authentication system
on a single computer. The resulting message overhead,
cache size, and authentication progress are collected from
the logs. We experiment with different values of the fol-
lowing controllable parameters of the authentication sys-
tem: trusted group size, expiration time for detecting non-
liveness of peers, and the maximum number of protocol
messages that can be attached to an email message.

6.2.1 Bootstrapping group selection

The authentication protocol performance is sensitive to
bootstrapping group selection. In order to ensure progress,
the initial candidates were filtered through a two way com-
munication rule as discussed earlier in Section 5.2. Ex-
periments were conducted for understanding the suitable
bootstrapping group size in the email environment. Boot-
strapping groups of sizes 8, 16, 32, and 64 were selected as
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shown in Figure 10. A number of selection methods were
developed. The serial and random methods shown in Fig-
ure 10 select bootstrapping peers by first seen, and by uni-
form random selection on the candidates respectively. The
product criterion prefers peers with a higher product of sent
and receives messages. The balance criterion prefers boot-
strapping group candidates that have balanced bidirectional
communication, i.e. the absolute difference of sent and re-
ceived messages is minimized. Sent and Receive criteria
use the number of sent and received messages respectively.

The performance of authentication is measured by the num-
ber of peers that can be authenticated, and then, averaging
over all the mailboxes. We find that the balanced selec-
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Figure 13: Number of authentication protocol messages
cached at email clients.

tion rule has the best completion performance. This is be-
cause the underlying protocol requires bidirectional com-
munication for progress. The performance also increases
with smaller group sizes because fewer peers can delay au-
thentication. Based on these observations, we select the
trusted group size to be 10 peers, and use balanced selec-
tion criterion for populating bootstrapping groups.

6.2.2 Message expiry

The authentication protocol operates as an overlay on the
email infrastructure. As a lazy protocol it is susceptible to
excessive log growth at the peers. We use an explicit mes-
sage expiry time and carry it with all the protocol messages.
This ensures that each protocol interaction has a finite life
time, and thus the log size is bounded2. We experimented
with a number of practical values for message expiry as
shown in Figure 11. The effect of message expiry on au-
thentication performance was found to be marginal. There-
fore, a moderate message expiry interval of 15 days was
used in the experiments.

6.2.3 Message overhead

Authentication protocol messages are piggybacked on
email through SMTP extension fields. Because SMTP im-
plementations limit the mail header size, the number of pro-
tocol messages that can be attached to a single email mes-
sage is limited. In order to understand the overhead intro-
duced by the authentication overlay, we experiment with
message payloads of 50 and 100 authentication protocol
messages per email message.

The overhead on email messages due to piggybacking of
compressed protocol messages is shown in Figure 12. Re-

2It was also observed that executing the trace became difficult
without having message expiry. Accumulation of stale messages
would severely impact the performance.

call the payload constraint of 300 messages and the header
size constraint of 10KB applied in Section 5.1. The ob-
served overhead respects the constraint, as shown by the
flat maximum message overhead observed for payloads of
50 and 100 messages. The median overhead and minimum
overhead are shown for the payload value of 100. The over-
head is positively biased because of a few idle peers. We
observe that the experimental message payload values of
50 and 100 messages are reasonable for use with the 32KB
header size limit of SMTP.

6.2.4 Cache usage

Public key infection protocol relies on the lazy propaga-
tion of protocol messages. The messages that are not yet
delivered need to be cached at participating peers. Using
the message payloads of 50 and 100 protocol messages per
email, we study the number of cached protocol messages
as the authentication protocol progresses. The results are
shown in Figure 13.

The number of cached protocol messages shows an in-
crease as the protocol progresses. The distribution does not
show a significant positive or negative bias as shown by the
median being placed in the middle of minimum and maxi-
mum values. The initial trend shows an increase in number
of cached messages as the protocol authenticates the boot-
strapping peers. The median number of cached messages
stabilizes as the rate of production and expiry of messages
balances out. As shown in the figure, this happens approx-
imately on the 50th day of the trace.

We also note that the maximum permitted payload af-
fects the number of cached messages. As shown in Fig-
ure 13, the maximum number of cached messages de-
creases marginally with decreasing payload. The number
of messages is also closely related to the actual size of the
cache as shown in Figure 14.
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Figure 14: Storage overhead caused by the cached authen-
tication protocol messages.
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Figure 15: Authentication progress for different authenti-
cation message payloads.

Mail Checking Interval Extra Email Ratio Time for 80% authentication
Weekly 0.502 14 days
Daily 0.702 2 days

Hourly 7.038 2 hours

Table 2: Overhead and authentication latency for eager modeauthentication.

6.2.5 Lazy mode authentication performance

The authentication protocol results in the authenticationof
public keys of peers. The progress of authentication is
shown in Figure 15. It can be noted that there is a wide
disparity between the progress of authentication between
the best peer and the average performance of authentica-
tion. This gap can be attributed to the fact that most of the
email users do not send a lot of messages. The implemen-
tation of authentication as an overlay on SMTP limits the
rate of progress of authentication. Using a trusted group
size limit of 10 peers, payload capacity of 100 messages,
and a 15 day message expiry interval, the average peer can
authenticate about 35% of its peers of interest in the 92 day
run.

It is noteworthy that increasing payloads allow faster com-
pletion of the protocol. This is clear from the slower rate of
authentication obtained with a payload of 50 messages as
compared to 100 messages. This behavior is expected since
the progress of the protocol is constrained by the payload
limit, which restricts the immediate delivery of all possible
messages.

The authentication protocol requires challenge response re-
sults from all the trusted peers. However, even one chal-
lenge response result from a trusted peer provides some
confidence in the authenticity of the public key being au-
thenticated. This “optimistic authentication” is also stud-
ied as shown in Figure 15. The average completion of
optimistic authentication is at 55% at the end of 92 days,
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Figure 16: Progress of eager mode authentication with dif-
ferent email checking frequencies.

i.e. averaging over all the peers, more than half of the
peers have been authenticated. This progress is satisfac-
tory considering that the protocol is backward compatible
with the mail infrastructure, has lazy operation, and is fully
autonomous.

6.2.6 Eager mode authentication performance

Eager mode authentication performance is evaluated for
various eager sending intervals. This assumes that human
users typically power up the email client to check for new
received emails even if they do not send out any email.
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Figure 17: Activity profile of industry user accounts over
the 56 day email trace period. The trace has 1.44 million
email addresses and 2.5 million emails.

This periodic powering up of the email client is used for
sending out the social-group key authentication messages
to peers. This speeds up the authentication performance
because users who only read emails can also be used for
authentication.

We experimented with various periodic intervals for acti-
vating eager mode. As shown in Figure 16, the rate of au-
thentication seen by all the peers increases as the periodic
interval between eager exchanges is reduced. The eager
protocol results in a substantial speedup in authentication
performance as compared to lazy baseline authentication.
The eager protocol can authenticate more than 90% of the
peers within a week if users just check their emails once
a day. This is a huge speedup over the slow rate of au-
thentication seen in the lazy case. The overhead introduced
by eager mode is measured in terms of ratio of additional
email messages sent as compared to the organic email mes-
sages captured in the mail trace. The median of ratio over-
head introduced by the eager mode is very marginal as
shown in Table 2. The time to reach 80% comple-
tion is about twice the eager send interval as also shown in
Table 2. Thus, the eager mode latency can be used to trade
off authentication delay for increased messaging overhead.

6.3 Industry workload

The second real trace is collected from the Internet mail
gateway of a US corporation. This trace is collected ahead
of the spam filter and poses a unique challenge for the au-
thentication mechanism. As shown in Figure 17, while
70% of the addresses received more than 100 messages,
less than 50% sent out more than 2 replies over the 56 day
period. This is consistent with the large amount of incom-
ing spam and can be contrasted with Figure 6, which shows
the distribution on the spam filtered university trace.

The authentication protocol authenticates less than 2% of
peers in the industry scenario. This can be contrasted with
Figure 15, where the authentication protocol can authen-
ticate a much larger percentage of peers. Analysis of the
industry workload shows that senders outnumber the re-
ceivers by about 68 to 1. Therefore, most of the senders
are not receivers. Since the authentication protocol is re-
quired to authenticate the public key of a sender, the few
receivers can authenticate only some of the many senders.
In order to interpret this result, we considered the instances
where a receiver responds to the sender. The industry mail
trace had 5 such instances. In two instances, the sender is
authenticated by the receiver. We defineeffectiveness of au-
thenticationas the fraction of times a receiver can success-
fully authenticate the sender. We find that the effectiveness
of authentication on the industry trace is 40%. In compar-
ison, the university workload has 2301 such instances, and
the effectiveness of authentication is 36%. Therefore, the
performance of authentication on the industry trace is com-
parable to that on the university trace.

7 Related work

The S/MIME extensions to electronic mail can provide
sender authentication and message authentication through
the centralized public key infrastructure approach. While
this approach is suitable in an organization with a well de-
fined trust hierarchy, it is not suitable for communications
that cross organization and trust boundaries. Our solution
allows sender authentication across trust boundaries mak-
ing it suitable for general electronic mail use. A related
approach for public key authentication is the public-space
key infrastructure proposed in [10]. This method is applica-
ble to public information like DNS records or BGP routes.
Their idea of using multiple peers for observing malicious
behavior is similar to our approach.

A number of sender domain authentication proposals have
been put forward to tackle the spam problem. These
include Sender Policy Framework [18], Sender ID [1],
Domain Keys Internet Mail (DKIM) [4], and accredited
DKIM (ADKIM) [7]. All of these proposals associate cryp-
tographic material and mail sending policy with the DNS
records of domains. This information is used by receivers
to detect forged sender addresses. For example, a domain
xyz.com could nominate a particular server to send all the
emails for senders in the domain. The receiving mail trans-
fer agent would check if this policy is being respected, and
refuse to accept emails coming from senders in another
domain, saysomebody@abc.com. These proposed solu-
tions are at the domain level, and are complementary to
our user level solution. Our solution aims to achieve in-
dividual key authentication, which is at a finer granularity.
Using the end-to-end argument [15], only the application
that uses sender authentication is best equipped to correctly
implement it. For example, users may want to distinguish



senders on the same domain and be willing to receive email
from friend@abc.com but not fromstranger@abc.com.
This kind of fine grained control may be complementary to
domain level authentication. An additional benefit of our
approach is that the computational cost of cryptographic
processing is moved away from the mail gateway to the
large number of user desktops.

The widespread use of spam control solutions with false
positive errors has reduced the reliability of electronic mail.
Garriss et. al. propose the use of social information in-
herent in the communication patterns to eliminate the false
positives of spam filters [6]. However, this work makes
stronger assumptions by prohibiting man-in-the-middle at-
tacks and placing complete trust in the attestation servers
that manage attestations of social relationship. Walfish et.
al. propose another approach to solve the spam problem
without introducing false positives [16]. This approach
enforces a sending quota in a lightweight fashion but de-
pends on global trust for quota allocators. Unlike these
approaches, our sender authentication solution does not re-
quire global trust for any entity, resists man-in-the-middle
attacks, and provides a useful sender authentication sub-
strate that can be used to prevent false positives of spam
filters. There are a number of commercial anti-spam solu-
tions that use a challenge response mechanism to authenti-
cate sender addresses. It can be noted that these solutions
affect the usability of email by delaying the delivery of im-
portant messages. Our work differs from these solutions
in two ways. First, while authentication could be delayed,
message delivery is not affected. Second, while the chal-
lenge response step of these solutions is vulnerable to the
man-in-the-middle attack, our solution resists such attacks.

8 Conclusion and future work

We implement and evaluate social-group key authentica-
tion, an automatic, Byzantine fault tolerant authentica-
tion system for email. Our authentication system oper-
ates without trusted third parties, is incrementally deploy-
able and backward compatible with the existing email in-
frastructure. It is implemented entirely at the mail client
in accordance with the end-to-end principle. This en-
ables the creation of user controlled fine grained trust
policies that can cross organizational and administrative
boundaries. We have implemented the authentication
mechanism on the Thunderbird email client. It is avail-
able as a downloadable Mozilla Thunderbird plugin at
http://discolab.rutgers.edu/byzantine/ .

Our authentication mechanism has been evaluated through
micro-benchmarks, and with two real life email traces. The
evaluation results show that the overheads are acceptable,
and the sender authentication mechanism is effective in
real life scenarios. We shall be collecting anonymized data
from real deployment in order to evaluate the usability of

our solution. Future work will focus on handling denial
of service and collaborative spam control. We plan to de-
velop an economic incentive scheme to handle denial of
service attacks. We plan to create content based spam fil-
ters that use collective knowledge from trustworthy peers
to improve spam classifiers.

Software : http://discolab.rutgers.edu/byzantine/
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