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Abstract—
Securing the networks of large organizations is technically challenging due to the complex configurations and constraints.
Managing these networks require rigorous and comprehensive analysis tools. A network administrator needs to identify
vulnerable configurations, as well as tools for hardening the networks. Such networks usually have dynamic and fluidic structures,
thus one may have incomplete information about the connectivity and availability of hosts. We describe a probabilistic graph
model and several algorithms for analyzing and improving the security of large networks. We demonstrate their use in solving
several types of useful network security management problems. Among them is the optimal placement problem, where the
network administrator needs to compute on which machine(s) to install new security products in order to maximize the security
benefit for the organizational network. In comparison to related solutions on attack graphs, our probabilistic model provides
mechanisms for expressing uncertainties in network configurations, which is not reported elsewhere. Our computation utilizes
advanced sequential linear optimization techniques and is scalable to large networks. We have performed comprehensive
experimental validation with real-world network configuration data of a sizable organization.
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1 INTRODUCTION

Large organizations need rigorous security tools for
analyzing potential vulnerabilities in their networks.
However, managing large-scale networks with com-
plex configurations is technically challenging. For ex-
ample, organizational networks are usually dynamic
with frequent configuration changes. These changes
may include changes in the availability and connec-
tivity of hosts and other devices, and services added
to or removed from the network.

Network administrators also need to respond to
newly discovered vulnerabilities by applying patches
and modifications to the network configuration and
security policies, or utilizing defensive security re-
sources to minimize the risk from external attacks. For
instance, to prevent a remote attack targeting a host it
is useful to analyze the candidate defensive strategies
in choosing installation and runtime parameters for
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one or several intrusion prevention system.
To facilitate a scalable security analysis of organi-

zational networks, attack graphs (e.g., [1], [2]) were
proposed. Attack graphs show possible attack paths
with respect to a particular network setting, which
provide the necessary elements for modeling and
improving the security of the network.

Existing work utilizes attack graphs (for example,
[1], [2], [3]) for analyzing the security risks by quan-
tifying attack graphs using a variety of techniques
such as Bayesian belief propagation [4], [5], [6], [7],
basic laws of probability [8], [9], and vertex ranking
algorithms [10], [11]. These models lack a system-
atic and scalable computation of optimized network
configurations. Current attack graph quantification
models assume a network with known and fixed
configurations in terms of the connectivity, availability
and policies of the network services and components
disregarding the dynamic nature of modern networks.
Moreover, except a few attempts [12], [13], [14], [6],
previous work has solely focused on computing a nu-
merical representation of the risk without addressing
the more challenging problem of risk management
and reduction.

In this paper, we present a rigorous probabilistic
model that measures the security risk as the proba-
bility of success in an attack. Our probabilistic model
referred to as the success measurement model has three
main features: (i) rigorous and scalable model with
a clear probabilistic semantic, (ii) computation of risk
probabilities with the goal of finding the maximum
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attack capabilities, and (iii) considering dynamic net-
work features and the availability of mobile devices
in the network.

As an application of our success measurement
model, we formalize the problem of utilizing network
security resources as an optimization problem with
the goal of computing an optimal placement of security
products across a network. Our new contribution
is to define this optimization problem and provide
an efficient algorithm based on a state of the art
technique called sequential linear programming. Our
algorithm is proved to converge and it is scalable
to large networks with thousands of components an
attack paths. Our contributions in this paper include:
• A scalable probabilistic model that uses a Bernoulli

model to measure the risk in terms of the proba-
bility of success to achieve an attack goal.

• Efficient security optimization model that is gener-
ated based on a quantified attack graphs and
computes an optimal placement of security prod-
ucts according to organizational and technical
constraints.

• Modeling dynamic network features for a realistic
and accurate analysis of the risk associated with
modern networks.

The results of our experiments confirm three key
properties of our model. First, the vulnerability values
computed from our model are accurate. Our man-
ual inspection of the results confirm that the ECSA
values obtained in the experiments correlate to the
vulnerabilities of components in the network. Second,
our security improvement method efficiently finds
the optimal placement of security products subject to
constraints. Third, we quantify the additional vulner-
abilities introduced by mobile devices of a dynamic
network. Our results indicate that an infected mobile
device within the trusted region creates a preferred
attack direction towards the attack target, which in-
creases the chance of success at the target host.

2 RELATED WORK

Probabilistic metrics. Using the probability theory to
compute a quantitative security has been recently re-
ported [4], [5], [9]. A work by Wang et al. [9] considers
a probabilistic model for computing a security risk
metric using attack graphs. The work in [9] discusses
an interpretation of the metric and a heuristic to
compute the metric. Our success measurement model
generalizes this work by capturing the uncertainty in
attacker’s choices (discussed as a random selector in
Section 4).

Bayesian analysis of attack graphs [6], [5], [7] differs
with our success measurement model in that our
model does not require the knowledge of conditional
probabilities. In [5], a dynamic Bayesian network
model was proposed that is capable of incorporating
temporal factors. Xie et al. [7] introduced a Bayesian

model that adds a node to the Bayesian network
indicating whether or not an attack has happened.
Although this extension improves the models in [5],
it does not capture the various possibilities of attack
paths taken by an attacker before reaching an inter-
mediate attack goal.

None of the previous work considers the effect of
device availability on open networks. Furthermore,
optimized network configurations and improvement
in our work has not been previously studied. Bayesian
methods are powerful in computing unobserved facts,
such as predicting possible threats. It remains un-
clear how Bayesian methods can be used to support
variability in attacker’s decisions, device availabilities,
and the effect of mobile devices.

Attack graph ranking. PageRank is an algorithm pro-
posed by Page et al. [21], which is used to rank
important web pages. The idea of page rank is based
on a random web surfer that follows the links on
web pages and compute a priority rank. Due to the
similarity between link graphs and attack graphs, a
variety of successful research has proposed the use
of a modified version of PageRank to rank attack
graphs. A ranking algorithm based on PageRank [21],
AssetRank [11] was proposed to rank any dependency
attack graph using a random walk model. AssetRank
is a generalization of PageRank extending it to handle
both conjunctive and disjunctive nodes. AssetRank is
supported by an underlying probabilistic interpreta-
tion based on a random walk. Mehta et al. propose
a ranking method using state enumeration attack
graphs [10]. The idea of PageRank is applied to state
enumeration attack graphs with a modified interpre-
tation of the ranking. Attack graphs based on model
checking have been proposed in [16] formalizing an
intrusion attack in a finite state model. Authors in
[16] do not propose a complete attack graph ranking
method. Instead, a method to compute minimal crit-
ical attack assets based on user-specified metrics has
been introduced.

Other approaches to security assessments include
a goal-motivated attacker model based on a Markov
decision process [22], a weakest-adversary approach
to ranking attack graphs [23], a generic framework for
an attack resistance metric [24], and an enterprise IT
risk metric using CVSS scores [25].

The aforementioned techniques do not consider
the effect of device availability in their vulnerability
ranking algorithms. In addition, recommendation of
security hardening options is not addressed. While we
provide a systematic way to find optimal recommen-
dation options, other researches have not provided
such a mechanism.

Security hardening. The authors in [6], [13] for-
mulated the optimal security hardening problem as
a multi-objective optimization problem. In [14] Noel
and Jajodia presented a greedy algorithm to solve the
problem of the best placement of IDS sensors in a
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network using attack graphs. It is to find a minimal
number of sensors that can cover all critical attack
paths. Also, [26] describes a method on finding the
initial conditions that need to be removed to improve
the network security. Our approach differs in that we
use mathematical programming to formulate a new
problem to compute the best placement of a set of se-
curity improvement options on a subset of rule nodes
of an attack graph. In contrast to a genetic algorithm
used in [13], we use a state of the art technique, named
sequential linear programming, which is scalable and
efficient [17], [18], [27], [28].

The work in [12] defines a cost function to measure
the effect of various network reconfigurations. The
proposed method follows a forward search approach
to assess the result of network hardening options.

Huang et al. proposed a method for distilling criti-
cal attack graph surface iteratively through minimum-
cost SAT solving [29]. The presented method is useful
in finding the most critical attack path, which can
be considered later for hardening the security of the
network. Such a result can be used to guide our
improvement recommendation method to consider
hosts found on a critical path.

In [8] the authors provided a method to quantify
the attack graph and simulate attackers’ choices to
compute an improved reconfiguration. While being
a valuable approach, the proposed method does not
take into account the the availability of machines and
uncertainty in attackers’ decisions.

The authors in [8], [14], [26], [29] propose methods
for hardening the security of networks. However, the
recommendation of security improvement options is
not studied there.

ADEPS [30] uses IDS alerts from some nodes on
an attack graph to calculate the likelihood that an
attack can occur on other nodes. It then computes the
response to the likely attacks based on a repository
of responses. Our computation differs from ADEPS
in that ours has a rigorous mathematical foundation,
which allows us to solve more complex security op-
timization problems.

Our work differs from the existing work presented
above. First, we provide a general mechanism for
capturing network component availability (i.e., the
variability in a device’s network reachability), which
also leads to quantifying and analyzing possible
threats from mobile devices such as laptops, tablet
computers, and cellphones. Second, our probability
calculation scheme is general enough to allow per-
forming various levels of success probability analysis
by introducing variable attack steps as part of success
probability computation. Third, we complete the anal-
ysis of network security threats by providing a sound
and computationally efficient security improvement
recommendation technique that is capable of finding
optimal network configurations as well as optimal
placement of security solutions in the network.

3 OVERVIEW

Our attack-graph work is motivated by the optimal
placement problem. Intuitively, it is the problem of how
to minimize the security risk for the ultimate attack
goal through the optimal placement of security prod-
ucts. Specifically, the optimal placement problem is to
compute the most effective placement of T number
of security products with Kτ placement options for
each improvement option τ . The optimal placement
may be subject to certain placement constraints, such
as limiting the deployment of security products to a
subset of machines in the network.

To solve the optimal placement problem, one needs
to quantitatively compare all the possible configu-
rations or placement options. A bruteforce search
approach for solving this combinatorial problem has
a worst-case factorial complexity in the number of
placements, which is clearly impractical. With attack
graphs, we can efficiently measure the effectiveness of
a security product based on the percentage reduction
in the chance of a successful attack on a particular
target in the network.

In general, there are several technical problems for
hardening the security of a network: i) modeling, i.e.,
how to express and model the placement options in
attack graph, ii) quantification, i.e., a realistic represen-
tation of the security risk in a network with dynamic
properties, and iii) computing, i.e., how to efficiently
compare these different configurations.

For computing vulnerabilities in the network, we
design a probabilistic success measurement model. The
model quantifies the vulnerabilities of networked
components and resources, by computing the ex-
pected chances of successful attacks (ECSA) on attack
graph nodes.

We define the ECSA of a node u as the expected
chance that a attacker successfully exploits the node u
of the attack graph, given certain initial belief. There
may be multiple attack paths (representing multiple
attack choices) to reach u. Thus, the ECSA for u must
represent an estimation of the success as a combined
value of success for previous nodes.

What differs our work from existing attack graph
modeling is two folds.

1. Our model allows one to represent uncertain
network properties and incorporates them in the
vulnerability definitions.

2. Our computation methods reveal the vulnerabil-
ities in the network and quantitatively correlate
them with dynamic network properties.

In our success measurement model, the basic com-
putation requires two types of inputs, and outputs
the expected chances of successful attacks against
network components and resources (Figure 2). One
type of the input is an attack graph generated by a
attack graph generator tool. The other input is a set
of initial belief values associated with the ground facts
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1: execCode(targetHost,root) 

 Ultimate Goal

2: Remote exploitation 

 Rule 

3: netAccess(h1,http,port) 

 Goal

4: Direct Net. Access 

 Rule

6: attackerLocated(internet) 

 Fact

11: Direct Net. access 

 Rule

8: vulExists(h1,vulid) 

 Fact

14: vulExists(h2,vulid) 

 Fact

9: Remote exploitation 

 Rule

13: netService(h2,...) 

 Fact

5: hacl(internet,host,http,port) 

 Fact

10: netAccess(h2,http,port) 

 Goal

7: netService(h1,...) 

 Fact

12: hacl(internet,h2,http,port) 

 Fact

i1: secProduct(ips,h1)

 Fact

i2: secProduct(ips,h2)

 Fact

Fig. 1. An attack graph with multiple candidate place-
ments (either host1 or host2) of an intrusion prevention
system. The problem is to minimize the probability of
a successful in achieving the ultimate attack goal by
choosing one placement between i1 and i2.

which correspond to fact nodes of the attack graph.
Facts related to network configurations and vulner-
ability data are associated with success probabilities
and constitute our initial belief. Our model requires
a minimal set of initial belief values (Section 6) that
can be assigned according to an estimation obtained
from experts’ knowledge and standard vulnerability
scoring systems such as the common vulnerability
assessment system (CVSS) [15].

Our success measurement model forms the basis
for solving the problem of computing an optimal
placement. Figure 1 shows two improvement Nodes
i1 and i2 (defined in Section 5) added to the attack
graph. Fact Node i1 corresponds to the placement
of an intrusion prevention system (IPS) at Node 2,
and fact Node i2 corresponds to the placement of an
IPS at Node 9. Each of the placements can make the
target less vulnerable. The optimal placement is to
find the placement of one or more improvements (i.e.,
security products) that best lowers the vulnerability
of the target. We provide the model, formulation and
computation for efficiently solving the problem for
large attack graphs.

Features and Capabilities. Our approach demonstrates
a unique mechanism for optimizing the security con-
figuration in a large network. A list of features fol-
lows.
• Scalable modeling. Attack stages and paths are ex-

pressed in a mathematical programming model.
The benefit of this approach is that a well-known
mathematical programming model can be solved
using existing state of the art algorithms. Further,
various complex deployment and configuration
constraints can be expressed using existing tech-
niques. Examples of such constraints include but
is not limited to (i) choosing a subset of available
security products, (ii) constraints on installation
of products on specific hosts, (iii) constraints on
co-installation of a subset of products (such as if

Expected chance of a 
successful attack

Attacks from mobile 
devices

Success measurement model

Security 
improvement 

model

Optimal placement of 
security products

Attack graph

Initial belief

Fig. 2. Given an attack graph and a minimal set of
initial belief values associated with fact nodes, success
measurement model computes the expected chance
of a successful attack with a consideration of dynamic
availability of mobile devices. The computed expected
values are used in the improvement model to find an
optimal placement of security products.

product t1 is installed on host h1, then t2 may
not be installed on h1), and (iv) performance
constraints by assigning performance parameters
to the model.

• Computing maximal attack capabilities. A feature of
our approach is the computation of risk measure-
ments in a maximization problem. This approach
allows to compute the highest points of risk in
the network.

• Attack uncertainty. We present a modeling mecha-
nism to analyze the uncertainty in attack choices
that are available when attackers could take al-
ternative paths. We numerically analyze this un-
certainty as part of our probabilistic analysis of
security risk.

4 SUCCESS MEASUREMENT MODEL

In this section we present our success measurement
model to compute the expected chance of a success-
ful attack on a network with respect to the attack’s
ultimate goal. We first present the definitions of the
expected chance of a successful attack (ECSA) fol-
lowed by the description of two efficient algorithms
to compute ECSA values.

4.1 Definitions of ECSA Values

The key component of our success measurement
model is the probabilistic definition of the expected
chance of a successful attack against any node in the
attack graph.

We present an alternative approach to the Bayesian
analysis discussed in [6], [7]. Our success measure-
ment model computes probabilities as a function of
initial belief probabilities without the need for spec-
ifying conditional probabilities required by Bayes’
theorem. The set of initial belief values required by
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our model is small and can be obtained from stan-
dard vulnerability assessment systems (discussed in
Section 6).

Our model measures the success of an attacker
based on the attack dependencies determined by a
logical attack graph.

Definition 1: A logical attack graph G = (V,E) is a
digraph where V = Nf ∪ Ng ∪ Nr and Nf , Ng , Nr
are disjoint sets of nodes containing fact nodes, goal
nodes, and rule nodes, respectively. E is the set of
arcs, and G ∈ Ng is the attacker’s goal.

We define the sample space for a node and a
corresponding random variable representing attack
outcomes. The outcome of an attack attempt on a node
can either by a success or a failure. Let Ω(u) be the
sample space for a node u ∈ V for an attack graph G.
We define the random variable Xu for the node u as a
Bernoulli random variable with Xu(ω) = 1 denoting
success in an attack and Xu(ω) = 0 failure, where ω
is an outcome.

Definition 2: For any node u ∈ V of an attack graph,
the expected chance of a successful attack (ECSA) at
a node u is given as E[Xu] = P (Xu = 1), that is, the
probability of success for the random variable Xu.

Let φ(u) = {v | (v, u) ∈ E} be the set of predecessors
(dependencies) of a node u. In the following, we
define ECSA for the derived nodes based on the
corresponding logical semantics (that is, conjunction
for a rule node and disjunction for a goal node).

ECSA value of a rule node. Let u ∈ Nr be a rule
node and φ(u) = {v1, v2, . . . , vt}. The random variable
Xu — corresponding to the success or failure of the
attacker at node u — is defined as the product of the
random variables for all predecessor nodes v ∈ φ(u),
for which the expected value is

E[Xu] =
∏

v∈φ(u)

E[Xv], (1)

assuming independence of the predecessor random
variables (further discussed in Section 4.3).

ECSA value of a goal node. An attack graph has
several goal nodes. A goal node either depends on a
single exploitation rule (represented by a rule node)
or multiple exploitation rules such as u1 in Figure 3.

A goal node with multiple rule node dependencies
is a logical disjunction. In reality, this disjunction
indicates that there are multiple attack choices for an
attacker towards a specific attack goal. For instance,
consider a server with a local privilege escalation vul-
nerability (which is exploitable remotely in a multi-
step attack) and runs a network service with multiple
remote vulnerabilities. An attacker must exploit one
(or more) of these vulnerabilities to gain privileges on
the target server. In the lack of observable evidence,
one needs to compute the ECSA of a goal node with
a function that correctly captures the probabilities of
such attack choices.

Remote 
exploitation rule 

(1)

Local 
exploitation rule

code execution on H

Remote 
exploitation rule 

(2)

u1

u2

u3

E[Xu2
] = 0.7

E[Xu3
] = 0.66

E[Xu4
] = 0.8

E[Y1] = 0.3

E[Y2] = 0.5

E[Xu1
] = 0.721

...

...

...

u4

Fig. 3. A goal node for an attack on host H with three
attack choices: a local exploitation and two methods of
remote exploitation. The variables Y1 and Y2 measure
the probability of attack choices. We assume E[Y1] and
E[Y2] are not available, and thus, we computationally
determine their values based on Equation 2.

Our approach is to computationally determine at-
tack choice probabilities according to various attack
patterns (Section 4.2). Per our knowledge, no previous
work has modeled this reality.

In the the attack graph of Figure 3, Node u1 has
three predecessors (rule Nodes u2, u3, and u4). To
compute E[Xu1

], we introduce auxiliary Bernoulli
random variables Yi (referred to as the random selec-
tors) to capture the random selection of an attack path.
The values of Yi are multiplied with the computed
ECSA for the predecessor nodes to reflect the attack
choices. In Section 4.2, we show how the values of Yi
variables are computed.

Let φ(u) = {v1, v2, . . . , vt} be the set of dependen-
cies of u. Then we define the random variable Xu for
a goal node u ∈ Ng for which the expected value is
determined as

E[Xu] =

t−1∑
k=1

[
E[Yk]E[Xvk ]

k−1∏
i=1

(1− E[Yi])

]

+ E[Xvt ]

t−1∏
i=1

(1− E[Yi]). (2)

Observe that the Definition (2) selects Xu = Xvi by
the event Yi = 1, Yj = 0 for j < i < t (for example,
Figure 3). Note that the Bernoulli variables Yi in
general depend on the node u, but this dependence
is not reflected with the notation Y

(u)
i for simplicity.

While we generally assume that the random vari-
ables are independent, we do not assume they are
mutually exclusive. That means multiple concurrent
attacks (more than one Yi) can lead to a goal node
from various attack paths.

Our success measurement model is versatile and
powerful because of its capability to express and
analyze options and uncertain choices. It can be easily
modified to analyze many network scenarios, which
we demonstrate in Section 5. For example, for solving
the optimal placement problem, one may augment the
model with a special type of fact node representing
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the installation of a security product. We discuss this
extension in detail in Section 5.

4.2 Computing ECSA Values
Attack choices are uncertain, and various attack sce-
narios are possible. Existing work such as [16], [9],
[11], have provided ways to compute a static view
of the security risk corresponding to specific attack
scenarios. In this section we describe the method for
computing ECSA values of an attack graph with a
goal of finding the highest possible chances of success
for an attack.

4.2.1 The most vulnerable components
The computation method described in this section
allows one to find the ECSA values such that the
ECSA of the attack target is maximized. The result of
this computation is in particular important for optimal
placement of security hardening products described
in Section 5.1.

To find the most vulnerable components, we formu-
late a maximization problem with a nonlinear objec-
tive function subject to linear and nonlinear equality
constraints. The decision variables are the nodes of an
attack graph. The equations for computing ECSA, (1)
and (2), form the constraints of the maximization
problem.

Let xi be a decision variable for a node i ∈ Nr ∪Ng
corresponding to E[Xi], and x = (x1, x2, . . . , xM )T be
the vector of unknown ECSA values for all nodes.
Let yi be a decision variable for a random selector Yi
corresponding to E[Yi], and y = (y1, y2, . . . , yP )T be
the vector of unknown expected values of the random
selectors. For a rule node u ∈ Nr with predecessors
φ(u), the constraint function is

fu(x, y) =



xu − xj
∏

k∈φ(u)
k∈Nf

P (Xk = 1), j ∈ φ(u) ∩Ng,

xu −
∏

k∈φ(u)
k∈Nf

P (Xk = 1), φ(u) ∩Ng = ∅.

(3)
Note that Equation 3 has two cases. The first case is
for rule nodes with one goal node as a predecessor
and the second case is for rule nodes with no goal
nodes as predecessors. For a goal node u ∈ Ng with
predecessors φ(u) = {v1, v2, . . . , vt}, the constraint
function is

fu(x, y) = xu −
t−1∑
k=1

[
ymu+kxvk

k−1∏
i=1

(1− ymu+i)

]
(4)

− xvt
t−1∏
i=1

(1− ymu+i).

All the selector variables for all the goal nodes are
numbered consecutively, so that the yi for node u are

ym+1, ym+2, . . . , ym+t−1 for some m = mu depending
on u.

Let f(x, y) = (f1, f2, . . . , fM )T be a vector-valued
function. The nonlinear program for finding the most
vulnerable components is

maximize fG(x, y) (5)
subject to f(x, y) = 0,
0 ≤ xi ≤ 1 , i = 1, . . . ,M,

0 ≤ yi ≤ 1 , i = 1, . . . , P .

In (5), the vector-valued function f(x, y) holds all
the constraint functions (that is, (3) and (4)) for all
rule and goal nodes in the attack graph. Note that
the constraints in f(x, y) are the ECSA equations (1)
and (2) equalized to zero.

To solve (5), we use a technique called sequential
linear programming (SLP) [17]. SLP has been widely
applied in engineering, and efficient algorithms for
solving nonlinear programs using SLP are known.
SLP is a standard technique for finding a close approx-
imate solution for nonlinear optimization problems.
SLP is computationally efficient and converges to an
optimal solution [18].

4.3 Attack Dependencies

A major problem in probabilistic risk assessments
is to accurately capture attack steps dependencies
and correlations. Attack dependencies in the form of
attack preconditions are intrinsically captured by our
model. That is because we base our analysis on attack
graphs that are formed based on the dependency
relations among the nodes. Therefore, the probabilities
of success are fundamentally propagated using the
dependency relations determined in an attack graph.
Another form of attack dependencies is attack step
dependencies. In this section, we define attack step
dependency and show that with our current analysis
assuming independence is reasonable.

Definition 3: An attack step represented by a goal
or rule node u in an attack graph is dependent on an-
other attack step v, if achieving v affects the decision
of the attacker in achieving u.

The dependency as defined in Definition 3, occurs
when a dependent node u is a direct or indirect
successor of v. The only way u can be dependent on
v is if v is known to have Xv = 1. Knowing Xv = 1
means an attack has succeeded, and the attacker is
now using that knowledge to stage a second attack.
In our current model, we assume independence of all
attack steps since the scope of this paper is limited
to analyzing a single series of attacks. The attack step
dependencies could occur when multiple consequent
attacks are analyzed. Thus, we leave the study of
attack step dependencies for a future work.
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5 APPLICATIONS

Using the rigorous probabilistic model introduced in
Section 4.1, we define and solve an optimal placement
problem and extend our analysis to include the effect
of mobile devices. These two applications of our
model are summarized as follows.
• Optimal placement. Given a set of security harden-

ing products (e.g., a host based firewall), we com-
pute an optimal distribution of these resources
subject to placement constraints.

• Machine availability and the effect of mobile devices.
Our work is the first to show how to represent
and assess devices with variable availability (fre-
quently joining and leaving the network), which
is one of the characteristics of mobile devices with
variable connectivity.

Our success measurement model and its computa-
tional techniques naturally yield the solutions to these
problems, which are described below. In Section 7,
experiments to evaluate the applications of our model
are presented.

5.1 Optimal Placement of Security Products

With limited resources for hardening an organiza-
tional network, it is important to install a single or
a combination of security hardening products so that
the expected chance of a successful attack on the
network is minimized. To find the best placement of
a set of security products in a network, we extend the
attack graph to define a security product as a special
fact node referred to as an improvement node, which
is a fact node that represents a security hardening
product, service, practice, or policy.

The objective of solving the problem of optimal
placement of security products is to compute and com-
pare the effects of various placements of one or more
improvement nodes while subject to certain constraints,
and choose the placement that minimizes the attack goal’s
ECSA value.

The following describes computing the best place to
deploy a single security product (that can be gener-
alized to multiple security products) in the network.
We formulate this optimal placement problem as a
minimax problem — finding the best placement of the
improvement option that minimizes x̂G , where x̂G is
the maximum of E[XG ] with respect to Xu and Y

(u)
i .

We consider a single improvement option for rule
nodes given deployment constraints. We define the
set of admissible rule nodes Nra ⊆ Nr as a subset of
all rule nodes. Let P (Xτ = 1) be the initial belief of
some improvement option τ . The problem is to find
a configuration that minimizes x̂G . That is, we aim to
find a rule node u ∈ Nra such that if τ ∈ φ(u), the
value of x̂G is minimized.

Let A =
∣∣Nra∣∣ and j1 < j2 < . . . < jA be the nodes

in Nra. Define 0-1 variables tji for i = 1, . . . ,A and let

T = (tj1 , . . . , tjA). A single improvement corresponds
to the constraint

tj1 + tj2 + · · ·+ tjA = 1,

and the generalization to multiple improvements is
obvious.

We modify the definition of fu(x, y) for a rule node
given in Equation (3) to include the effect of the
improvement option τ . For a rule node u ∈ Nra, define

fu(T, x, y) = (6)

xu − (P (Xτ = 1))tuxj
∏

k∈φ(u)
k∈Nf

P (Xk = 1), j ∈ φ(u) ∩Ng,

xu − (P (Xτ = 1))tu
∏

k∈φ(u)
k∈Nf

P (Xk = 1), φ(u) ∩Ng = ∅.

This modified definition adds the improvement
node at exactly one rule node in Nra. Note that
the definition of fu for a goal node is identical to
Equation 4. The minimax problem to find the best
placement of security products is

minimize
T∈{0,1}A

x̂G (7)

subject to tj1 + · · ·+ tjA = 1,

where x̂G is the solution to

maximize
x,y

fG(T, x, y) (8)

subject to f(T, x, y) = 0,
0 ≤ xi ≤ 1, i = 1, ...,M ,
0 ≤ yi ≤ 1, i = 1, ..., P .

The minimax problem (7) maximizes the ECSA
value of the attack’s goal (E[XG ]) to find the highest
chance of success in attacking a specific network
component (such as a server). The result of the inner
maximization problem (8) is then used in the outer
minimization problem (7) to find the best placement
of the security product such that the maximized ECSA
is minimized.

The inner maximization problem is solved using
SLP as before. The outer minimization problem is a
limited combinatorial problem for one improvement.
For multiple improvements, the outer problem can
be solved by an LP relaxation (change ti ∈ {0, 1}
to 0 ≤ ti ≤ 1) with branch and bound. For k
improvements, the complexity is

(A
k

)
.

5.2 Threat from Mobile Devices
To capture the increase of security threats due to the
inclusion of mobile devices (such as laptops, smart-
phones, and tablet computers) in the network, our
approach is to extend an original attack graph for a
network to include attack paths from mobile devices.
Specifically, we define special rules to represent the
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uncertain availability of mobile devices in an attack
graph, as well as the corresponding ECSA formulation
and computation. The ability to model the availability
of machines in attack graphs is general and useful
beyond the specific mobile devices studied.

Attack graph extension. We extend the rules of the
MulVAL attack graph generator [19] to include ex-
ploitation rules that capture the availability of mobile
devices. An identified mobile device may not always
appear in the network. Mobile devices rarely include a
server software. The majority of Internet-based mobile
applications are clients to the outside world, requiring
interaction with malicious input to execute a success-
ful exploit. For instance, most of the vulnerabilities
that we studied for the Android platform involved
an interaction with a malicious code (i.e. a malicious
website) and exploiting a local vulnerability. Thus, we
define basic exploitation rules for mobile devices in
Figure 4.

execCode(H,Perm) :-
compromised(H),
vulExists(H,Vulid,

localExploit,privEscalation).

compromised(H) :-
deviceOnline(H,Platform),
vulExists(H,Vulid,remoteClient,

codeExecution),
maliciousInteraction(H,_,App).

Fig. 4. The two predicates describe attack stages
(i.e., remote and local exploits). The predicate de-
viceOnline(H,Platform) captures the availability of the
device H.

We capture the availability of a device with the
node deviceOnline(H,Platform). In the success
measurement model, these nodes are dynamic nodes
with no fixed initial belief. The availability of a device
may be measured as the percentage of the time that
the device is connected within the target network (e.g.,
through a wireless connection) in a certain period.
This data may be collected or estimated for the target
network.

Our rules are general enough to be applicable to
any logical attack graph generator. In addition to the
extended rules, an input of mobile devices data is
given to the attack graph generator. The data includes
access information to other devices, presence of vul-
nerabilities, and information about the platform. Once
the attack graph is generated, we compute the ECSA
values for the network, which is described next.

ECSA for mobile devices. For mobile device fact
nodes, the availability of the device cannot be de-
terministically specified. Thus, fact nodes similar to
deviceOnline(H,Platform) cannot have a pre-
computed value for all instances of ECSA computa-
tion. A fixed value of E[Xu] (for a fact node u) does
not accurately reflect the device’s availability. In order
to solve this issue, we define a stochastic fact node as a

fact node that represents a dynamic ground fact that
is not associated with a fixed initial belief.

We define a random variable for a stochastic fact
node (such as deviceOnline(H,Platform)).
Based on our success measurement model,
the variable Xu, for a stochastic fact node u,
is a Bernoulli random variable. For the node
deviceOnline(H,Platform), P [Xu = 1] is the
probability of the event that the device is online.

Using our success measurement model we accu-
rately capture the effect of mobile devices as part of
the network. Our evaluations in Section 7, quantifies
the vulnerabilities introduced by mobile devices in
an organizational network. We believe this analysis
is valuable in order to make better decisions on the
policies that determine mobile interactions with the
network.

6 DETERMINATION OF INITIAL BELIEF

In this section we describe the techniques and concrete
examples for choosing initial belief values for fact
nodes and improvement nodes.

Initial belief for fact nodes. An initial belief value is
a given probability of success, P (Xui

= 1), at a fact
node ui ∈ Nf . Our success measurement model relies
on a relatively small set of initial beliefs that provide
an estimation of expected chance of success for specific
attacks on network services. In an attack graph, these
network service vulnerabilities are formalized as fact
nodes. The methods for obtaining initial belief values
may vary. We illustrate some specific approaches next.

For documented software vulnerabilities, the value
of standard vulnerability scores (such as CVSS) is
be used as an estimation of the expected chance of
success of exploiting the vulnerability. The steps for
assigning the initial belief values follows.

Analyzing the network configuration. A server A runs
MySQL listening on port 3306, allowing remote con-
nections. To protect A, iptables rules are set to allow
tcp/udp connections either locally or to specific IP
addresses inside a NAT subnet. These IP addresses
belong to workstations from which the database ad-
ministrators and developers connect to the server A,
and a web server that runs the web applications.

Analyzing attacks and vulnerabilities. An attacker can
exploit a remote privilege escalation vulnerability
from a workstation W1 to a developer workstation
W2. Since A accepts MySQL connections from W2, the
attacker uses one of multiple remote denial of service
vulnerabilities (such as CVE-2012-3147, with a CVSS
base score of 6.4/10) to launch a denial of service on
the MySQL server in A.

Assigning initial belief values. With multiple docu-
mented vulnerabilities with similar effects on u2, we
compute the value P (Xu2

= 1) = max(s1, s2, · · · , sK),
where sj is a value in [0, 1] based on the CVSS
base score for a vulnerability j (for example, the
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networkService(A, MySQL, 3306, W2)

vulnerability(A, remoteDoS, 6.4)

attackerIn(W2)

denialOfService

E[u3] = 1

...

E[u4] = 0.7

E[u2] = 0.64

E[u1] = 0.448

Fig. 5. u1 is a denial of service on A, u2 is a vulner-
ability, u3 is a network service info, and u4 indicates
attacker reached W2 that can access A.

score divided by 10), with K number of documented
vulnerabilities. The computation of P (Xu2 = 1) can
be done in alternative ways, such as P (Xu2 = 1) =
µ(s1, s2, · · · , sK), where µ is the mean of the score
values.

We create another fact node as a dependency of the
rule node u1, denoted u3, to indicate that incoming
traffic on port 3306 is allowed from host W2. We
choose the probability value P (Xu3

= 1) = 1, indi-
cating that the connection to the port 3306 is reliable
and the attacker is knowledgeable about the port 3306
when attacking a MySQL database server. Otherwise,
depending on the network configurations, we can set
P (Xu3

= 1) < 1, with a reasonable value. The example
rule node u1 is shown in Figure 5.

Initial belief for improvement nodes. Initial belief
values for improvement nodes correspond to the re-
liability of the security solution represented by the
nodes. There are several assessment factors for com-
puting the initial belief values. We categorize these
factors into two main groups: (i) effectiveness and (ii)
deployment. Effectiveness is measured by detection
accuracy and the rate of false positive/negative deci-
sions. The deployment factor includes measurements
for memory consumption, CPU utilization, library
dependencies, maintenance, and financial cost.

To compute an estimated initial belief value for
a security product, we use a weighted function of
effectiveness and deployment parameters. Let Z(ui)

k

a Bernoulli variable for an assessment factor ui, and
let L be the total number of assessment factors. We
define the expected value for Xui as

E[Xui
] =

∑
k E[Z

(ui)
k ]

L
. (9)

For an effectiveness factor k, the value of E[Z
(ui)
k ]

indicates the accuracy of improvement option ui. For
a deployment factor l, a higher value of E[Z

(ui)
l ]

indicates lower deployment overhead.
In the example scenario of Section 6, we create

an improvement node for additional iptables rules to
improve security. For instance, we modify the firewall
rules on server A to allow connection to the database
server on an unusual port p other than the default
3306, and also change MySQL socket configuration

to listen on port p. Then we create an improvement
node u5 for an iptables rule dropping ICMP requests
and limiting TCP ACK packets to already established
connections to prevent the attacker from easily finding
the port number p through a port scanner such as
nmap. We expect that the firewall rule of the node
u5 has an average effectiveness (some attacks may
bypass this rule) with virtually no deployment over-
heads. Thus, we compute the initial belief value for
u5 as P (Xu5 = 1) = 0.5 ∗E[Z

(u5)
1 ] + 0.5 ∗E[Z

(u5)
2 ] with

a value of E[Z
(u5)
1 ] ≥ 0.5 for the effectiveness factor

and E[Z
(u5)
2 ] = 1 for the deployment factor.

7 EXPERIMENTS

In this section we present several experiments to
verify the mathematical models introduced in Sec-
tions 4.2 and 5.1. We compute ECSA values for a
network configuration obtained from a functioning
real world network. The goal of our experiments is
to demonstrate that the computation of our mathe-
matical programming model is feasible. The results
of our experiments are complementary to the estab-
lished theoretical foundations of the sequential linear
programming (discussed in Section 4.2.1).

We implemented the two computational methods
and the security improvement model in Java (approxi-
mately 3500 lines of code). We use GLPK [20] for solv-
ing linear programs. Our implementation parses an
attack graph input file (obtained from MulVAL [19])
and an initial belief file, computes the ECSA values ac-
cording to various parameters, and performs security
improvement analysis based on a set of improvement
options and constraints.

In the following we describe our results for com-
puting ECSA values, assess improvement options on
our example network, and discuss the effect of mobile
devices in the network. Our computation is efficient
and scalable and runs in polynomial time.

The network data used for our experiments is col-
lected from a functioning real world dynamic network
of an organization (depicted in Figure 6) that serves
a large number of users. The network has low usage
restrictions and allows untrusted mobile devices to
enter the network without mandatory security scan-
ning1. In this network, a connected user can easily ob-
tain information about the network topology, perform
port scanning and operating system finger printing.

In the remainder of this section, we describe our
experimental goals, analyze the results of the compu-
tation of ECSA for the network of Figure 6, and sub-
sequently evaluate the security improvement options
available for the example network.

1. Some of the data is sanitized yet preserves the general structure
and vulnerability information.
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7.1 Experimental setup
Our experiments are based on network configuration
and vulnerability data from a real dynamic organi-
zational network that is open to a large number of
users and contains several servers and workstations.
To simplify the discussion, our experiments include a
subset of machines in the network.

We used network security scanning tools (such as
nmap), online vulnerability repositories, and infor-
mation provided by system administrators to create
a network topology (depicted in Figure 6) and the
attack graphs that represent the real network. We per-
formed wireless network scanning to confirm the con-
nectivity of wireless devices in the network. To assign
initial belief values for the fact nodes, we followed
the steps discussed in Section 6. Our program scans
vulnerability score values and configuration settings
to compute the initial belief values for computing the
ECSA values.

In the following sections we describe four sets of
experiments for which we generate two attack graphs
(Table 1) with slight variations. We generate attack
graph A (483 nodes) with no mobile devices in the
network (i.e., availability of mobile devices is 0%) and
attack graph B (549 nodes) that includes attack scenar-
ios from untrusted mobile devices. Our experiments
are computing ECSA for the attack graphs, computing
an optimal placement for an intrusion prevention
system, assessing the effect of mobile devices, and
computing a network reconfiguration to minimize
ECSA.

Backup
Server

Public DMZ

Application
Server Linux 1

Application 
Server Win 4

Public DMZ

Cloud Server
Linux 2

Application 
Server Win 3

Printer1

Internet

MySQL 
Database Server

Private DMZ (Trusted)

Attacker

Wireless access point

Firewall

Firewall

Mail ServerWeb Server 
1

Web Server 
2

Smartphone Laptop

Workstation

Attacker

Public DMZ

Fig. 6. Each machine on the three public DMZ sub-
networks runs at least a network service with an open
port. Data servers are on a NAT subnetwork and
can only be accessed through the workstation. The
attacker either attacks remotely or uses a phone to
crack the wireless password and attack the servers.

For our experiments, we did not have access to data
from attack incidents such as system logs to perform
a validation of our results.

For the network architecture of Figure 6, we gener-
ate three attack graphs (Table 1) with slight variations.
We generate attack graph A (483 nodes) with no

mobile devices in the network (i.e., availability of
mobile devices is 0%) and attack graph B (549 nodes)
with possible attack scenarios from untrusted mobile
devices.

Recall that a mobile device is defined to be a con-
nected machine to the network that has a high degree
of mobility and often joins other untrusted networks,
thus making it exposed to a higher magnitude of
infections that may in turn affect the security of the
corporate network.

Attack Graph Hosts Nodes Edges Placement Options
A: No mobile 13 483 663 206
B: With mobile 13 549 757 235

TABLE 1
Attack graph A is generated with no mobile devices in
the network and attack graph B is generated with two
mobile devices. Placement options refers to the nodes

that can be considered for the addition of an
improvement node.

As described in Section 4.2.1, manual analysis of
attack graphs A, B, and C requires several iterations
of computation according to the sequential linear
programming. Moreover, by manually inspecting the
network, through configurations, network topology,
and software vulnerabilities, it is difficult to find
reasonable conclusions about chances of successful
attacks or the effect of particular devices on the net-
work.

The goal of this experiment is to evaluate the results
of computing the ECSA values for attack graph A.
In this experiment, we compute the ECSA values
based on the maximization approach to find the most
vulnerable network components as described in Sec-
tion 4.2.1. Such a computation can directly influence
the decisions made by a system administrator. That
is, knowing which network components may cause
higher threats to the network enables system admin-
istrators to consider hardening the network security
by addressing the issues presented in the most vul-
nerable components.

7.2 Chances of a Successful Attack

Using the maximization method (Section 4.2.1), we
performed an experiment on attack graph A (with no
mobile devices) for which the database server is the
attack’s target. A sample of our results is depicted in
Figure 7. The x-axis shows the targets of exploitation
goal nodes achievable by the attacker. Notice that the
maximization method computes the maximum ECSA
values for the nodes of the attack graph. The maxi-
mized ECSA values show which network components
(e.g., servers) are the most vulnerable.

The results of this experiment suggest that both
application servers 3 and 4 (denoted server3 and
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server4 in Figure 7) have high ECSA values for their
goal node, indicating high chances of successful at-
tacks. This is because application servers 3 and 4
have highly scored software vulnerabilities, a high
number of open ports, and thus they are relatively
more exposed to the outside world. However, the
chances of successful attacks on the target database
server is the lowest, which is due to a better network
configuration to protect it. This result is expected as
the database server is less exposed to the outside and
runs fewer vulnerable network services.

Figure 7 also shows the results for the ECSA com-
puted based on attack graph B, which are discussed
in Section 7.4.

Comparison

Page 1

 web1 
 web2 

 server4 
 mail 

 server2 
 server1 

 server3 
printer

workstation
database

 laptop 
 backup 

 phone

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Computation of ECSA using maximization approach

Mobile device available No mobile devices

Targets of Exploitation Nodes

E
[X

]

Fig. 7. ECSA values attack graph A (no mobile de-
vices) and B (with mobile devices). In the experiment
with mobile devices, the availability of a mobile device
is captured with a random variable and is not assumed
to be fixed.

7.3 Optimal Placement of Security Products
We tested our security improvement method intro-
duced in Section 5.1 with a single improvement ap-
plied to a comprehensive set of rules in attack graph
B. We used the results from the previous section to
find the best placement of an improvement option
for the network of Figure 6. Our improvement option
is the installation of an intrusion prevention system
(IPS) on a single device to minimize the risk on the
target host (the database server). Our choice of IPS has
some deployment overhead because of memory and
CPU usage. After testing its effectiveness, we believe
that this IPS has a low false negative rate. Using
Equation 9, the initial belief for each improvement fact
node for the IPS is E[Xτ ] = 0.3.

This assumption can be modified with no effect on
the original model. This experiment is performed on
attack graphs A and B.

According to our method (described in Section 5.1),
we add all the exploitation rules, to the set of appli-
cable placement nodes Nra (i.e., 206 nodes for attack
graph A and 235 nodes for attack graph B2). Then we
modify the original attack graphs to include improve-
ment fact nodes as predecessors to each u ∈ Nra.

2. Note that one can choose fewer rule nodes for solving the
optimal placement problem, depending on possible placement con-
straints.

A quick reasoning may recommend that the target
server (i.e., database server) itself must be where we
install the IPS. However, this recommendation may
not be optimal. We computed the improvement for
the attack graph with no mobile devices and with the
mobile devices present in the network. Table 2 shows
the improvement results, for each attack graph config-
uration, ordered based on the percentage decrease in
E[XG ]. Third column shows the best placement of the
IPS. E′[XG ] and E[XG ] denote the expected chances
of a successful attack for G (i.e., the database server)
in the improved attack graph and the original attack
graph, respectively.

Rank Attack Graph Machine E′[XG ] E[XG ] % ↓

1
A: No mobile App Server 3 0.0520 0.1739 70.09
B: With mobile Database 0.0521 0.2651 70.04

2
A: No mobile Database 0.0552 0.1739 79.18
B: With mobile Workstation 0.0791 0.2651 70.16

TABLE 2
Optimal selection for IPS installation for attack graphs
A and B. The attack target is code execution on the
database server. The results are compared against
the original ECSA values without the improvement
option. E′[XG ] is the ECSA value of the improved

model.

The results of the Table 2 demonstrate significant
decrease in E[XG ] when considering the improvement
option for attack graphs A and B. Our results indicate
that installing the IPS on application server 3 has the
best effect in minimizing the ECSA of the attack’s
goal. The reason is that the target server can be
attacked from a number of ports indicated by goal
nodes. Based on the computed values of the random
selectors Yi, a particular port p1 receives a high chance
of attacking the database server.

In the results, attacking the database server from p1
has a lower ECSA compared to attacking application
server 3. In the attack graph, attacking application
3 is a predecessor of attacking the database server
on port p1. Thus, the improvement option multiplied
with ECSA of attacking application server 3 reduces
the value of E[XG ] more, and installing the IPS on
application server 3 yields a slightly lower value of
E[XG ].

Notice that the second ranked improvement recom-
mendation suggest the workstation as the best place
to install the IPS. This is consistent with the conclu-
sions from the ECSA values since the workstation is
one of the most vulnerable devices determined in the
previous experiment.

7.4 Effect of Mobile Devices

The network architecture presented in Figure 6 is
also vulnerable to threats from mobile devices. For
example, in the network of Figure 6, the system
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administrators have allowed mobile devices to join
the wireless access point that is set up for internal
purposes in the private DMZ region. Also, the laptop
(connected to the wireless access point) is directly
accessible from the workstation and the printer. Such
configurations increase the attack surface. We assessed
the security of the network by computing the ECSA
on attack graph B that includes the attack vectors
from mobile devices.

The ECSA in our experiments is computed accord-
ing to the method for computing the most vulnerable
components (Section 4.2.1). Therefore, the results of
the experiment on attack graph B (Figure 7) show
lower values for exploiting the application servers,
but higher values for exploiting the smartphone and
the laptop (with high scored known software vul-
nerabilities), the workstation, and the printer. This is
because the mobile devices in the network of Figure 6
have highly scored vulnerabilities that make them
more attractive to attackers.

From the results of the experiment with mobile
devices, we can conclude that the presence of highly
vulnerable mobile devices in the network increases
the chance of attack on the target machine. Using
attack graph B, the most vulnerable components are
the workstation, the printer (which has vulnerable
server software), and the mobile devices (i.e., the
laptop and the smartphone). In this experiment, the
chance of success on exploiting the database server is
increased by 52.44%.

7.5 Improving Network Configuration
Our optimal recommendation method is capable to
compute an improved network configuration with no
extra security products (such as an IPS) added to the
network. In particular, we find a port p (amongst all
open ports on all machines) such that if it is disabled,
the value of E[XG ] is minimized. That is, for any other
port p′, if p′ is disabled in the network (for which we
obtain E′[XG ]), then E′[XG ] ≥ E[XG ].

We used our method to examine the option on
every possible open port that appears in the at-
tack graph. The results of our experiments on attack
graphs A (no mobile) and B (with mobile) are sum-
marized in Table 3.

Rank Attack Graph Machine, Port E′[XG ] E[XG ] % ↓

1
A: No mobile Database, 2200 0.0 0.1739 100
B: With mobile Database, 2200 0.0 0.2651 100

2
A: No mobile App Server 3, 22 0.0 0.1739 100
B: With mobile Backup, 2200 0.12 0.2651 53.8

TABLE 3
Optimal selection for closing a single port with the

best effect on the security of the network.

To verify the accuracy of our method, we consid-
ered open ports on the target database server that

if disabled would eliminate the chance of attack. Al-
though it is a common practice to eliminate straight-
forward attacks on well known ports, some of the
servers in the target network did have open ports with
minimum firewall rules.

The results in Table 3 show that the best recom-
mendation is to disable the port 2200 and that would
achieve a zero expected chance of successful attack.
The second ranked recommendations are to close
ports on the application server 3 and the backup
server. Notice that both recommendations achieved a
lower value of E[XG ], thus improving the security of
the network.

8 CONCLUSIONS AND FUTURE WORK

In this work we formalized, implemented, and eval-
uated a new probabilistic model for measuring the
security threats in large enterprise networks. The nov-
elty of our work is our ability to quantitatively ana-
lyze the chances of successful attacks in the presence
of uncertainties about the configuration of a dynamic
network and routes of potential attacks. To demon-
strate the importance of our technique, we showed the
use of our success measurement in solving two open
problems in network security: i) How to optimally
deploy security products and services across the net-
work? ii) How to formally analyze the vulnerability
of dynamic networks with mobile devices?

For the future work, we plan to utilize and extend
our success measurement model and optimal security
placement algorithm to solve more complex network
security optimization problems.
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