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Abstract—Securing cyber-physical systems (CPS) against malicious attacks is of paramount importance because these attacks may
cause irreparable damages to physical systems. Recent studies have revealed that control programs running on CPS devices suffer
from both control-oriented attacks (e.g., code-injection or code-reuse attacks) and data-oriented attacks (e.g., non-control data
attacks). Unfortunately, existing detection mechanisms are insufficient to detect runtime data-oriented exploits, due to the lack of
runtime execution semantics checking. In this work, we propose Orpheus, a new security methodology for defending against
data-oriented attacks by enforcing cyber-physical execution semantics. We first present a general method for reasoning cyber-physical
execution semantics of a control program (i.e., causal dependencies between the physical context and program control flows), including
the event identification and dependence analysis. As an instantiation of Orpheus, we then present a new program behavior model, i.e.,
the event-aware finite-state automaton (eFSA). eFSA takes advantage of the event-driven nature of control programs and incorporates
event checking in anomaly detection. It detects data-oriented exploits if a specific physical eventis missing along with the corresponding
event dependent state transition. We evaluate our prototype’s performance by conducting case studies under data-oriented attacks.
Results show that eFSA can successfully detect different runtime attacks. Our prototype on Raspberry Pi incurs a low overhead, taking
0.0001s for each state transition integrity checking, and 0.063s∼0.211s for the cyber-physical contextual consistency checking.
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1 INTRODUCTION

C YBER-physical systems (CPS) consist of a tightly coupled
integration of computational elements and physical compo-

nents. The computational elements rely on sensors to monitor
the physical environment and make control decisions to affect
physical processes with feedback loops [3]. These systems are
widely used to operate critical infrastructure assets, such as electric
power grid, oil and natural gas distribution, industry automation,
medical devices, automobile systems, and air traffic control [4].
In the industrial control domain, CPSs are instantiated as the
Industrial Control Systems (ICS), Distributed Control Systems
(DCS), or Supervisory Control and Data Acquisition (SCADA)
systems [5]. Though CPS and IoT (Internet of Things) are defined
with different emphasis and have no standard definitions agreed
upon by the research community, they have significant overlaps.
In general, CPS emphasizes the tightly coupled integration of
computational components and physical world. While IoT has an
emphasis on the connection of things with networks. If an IoT
system interacts with the physical world via sensors/actuators, we
can also classify it as a CPS [6].

The tight coupling with physical space of CPS brings new
security and safety challenges. Control programs running on CPS
devices monitor physical environments by taking sensory data as
input and send control signals that affect physical environments or
processes [7]. They are critical to the proper operations of CPS,
as anomalous program behaviors can have serious consequence,
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or even cause devastating damages to physical systems [8]. For
example, the Stuxnet [9] attack allows hackers to compromise the
control system of a nuclear power plant and manipulate real-world
equipment such as centrifuge rotor speeds, which can be very
dangerous. According to ICS-CERT’s report [10], there have been
continuously increasing number of cyber attacks targeting critical
infrastructure. Therefore, securing CPS against malicious attacks
becomes of paramount importance in the prevention of potential
damages to physical systems.

Recent studies [8], [11], [12], [13], [14], [15] have shown that
control programs suffer from a variety of runtime software ex-
ploits. These attacks can be broadly classified into two categories:

• Control-oriented attacks exploit memory corruption vulnerabil-
ities to divert a program’s control flows, e.g., malicious code
injection [16] or code reuse attacks [12]. Control-oriented at-
tacks in conventional cyber systems (i.e., without cyber-physical
interactions) have been well studied [17]. It is possible that
existing detection approaches [18], [19], [20], [21], [22] are
extended to defend against control-oriented attacks in embedded
systems software.

• Data-oriented attacks manipulate program’s internal data vari-
ables without violating its control-flow integrity (CFI), e.g.,
non-control data attacks [23], control-flow bending [22], data-
oriented programming [24]. Data-oriented attacks are much
more stealthy than attacks against control flows. Because ex-
isting CFI-based solutions are rendered defenseless under data-
oriented attacks, such threats are particularly alarming. We
mainly focus on runtime software exploits, and thus sensor data
spoofing attacks [25], [26] in the physical domain are out of the
scope in this work.

Since many control decisions are made based on particular
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values of data variables in control programs [8], data-oriented
attacks could potentially cause serious harm to physical systems in
a stealthy way. We further categorize data-oriented attacks against
control programs into two types. i) Attacks on control branch,
which corrupt critical decision making variables at runtime to
execute a valid-yet-unexpected control-flow path (e.g., allowing
liquid to flow into a tank despite it is full [27] or preventing
a blast furnace from being shut down properly as in the recent
German steel mill attack [28]). ii) Attacks on control intensity,
which corrupt sensor data variables to manipulate the amount of
control operations, e.g., affecting the number of loop iterations to
dispense too much drug [8]).

In many instances, CPS can be modeled as event-driven
control systems [29], [30]. We refer to events as occurrences of
interest that come through the cyber-physical observation process
or emitted by other entities (e.g., the remote controller), and trigger
the execution of corresponding control actions. Defending against
CPS data-oriented attacks is challenging due to the following rea-
sons. First, data-oriented exploits can achieve attack goals without
incurring illegal control flows, thus providing opportunities for
attackers to evade all control flow integrity based detections [24].
Second, CPS programs normally rely on external sensor events to
make control decisions. This physical event-driven nature makes it
difficult to predict runtime program behaviors in CPS. Hence, an
anomaly detection system needs to check the runtime integrity
of program behaviors from both cyber and physical domains.
Unfortunately, there exist very few defenses [8], [31] and they are
ineffective to prevent both attack types due to the lack of runtime
execution semantics checking.

Goals and Contributions. In this paper, we focus on a new
type of runtime attacks that result in inconsistencies between the
physical context and program execution, where executed control
flow paths do not correspond to the observed events. These attacks
do not necessarily violate any control flow integrity, so existing
techniques based on control flow checking are not effective. We
point out the need for an event-aware control-program anomaly
detection, which reasons about program behaviors with respect to
cyber-physical interactions, e.g., whether or not to open a valve
is based on the current ground truth water level of a tank [27].
None of existing program anomaly detection solutions [17] has
the event-aware detection ability. They cannot detect attacks that
cause inconsistencies between program control flow paths and the
physical environments.

We address the problem of securing control programs against
data-oriented attacks, through enforcing the execution semantics
of control programs in the cyber-physical domain. Specifically,
our program anomaly detection enforces the consistency among
control decisions, values of data variables in control programs,
and the physical environments. Our main technical contributions
are summarized as follows.
• We describe a new security methodology, named Orpheus,

that leverages the event-driven nature in characterizing control
program behaviors. We present a general method for reason-
ing cyber-physical execution semantics of a control program,
including the event identification and dependence analysis.
We present a new event-aware finite-state automaton (eFSA)
model to detect anomalous control program behaviors partic-
ularly caused by data-oriented attacks. By enforcing runtime
cyber-physical execution semantics, eFSA detects subtle data-
oriented exploits when physical event are inconsistent with
the corresponding event-dependent state transitions. While our

exposition of Orpheus is on an FSA model at the system call
level, the design paradigm of Orpheus can be used to augment
many existing program behavior models, such as the n-gram
model [32] or HMM model [33].

• We implement a proof-of-concept prototype on Raspberry Pi
platforms, which have emerged as popular devices for building
CPS applications [8], [34], [35]. Our prototype features: i) A
gray-box FSA model that examines the return addresses on
the stack when system calls are made, and thus significantly
increases the bar for constructing evasive mimicry attacks. ii)
An LLVM-based event dependence analysis tool to extract event
properties from programs and correlate the physical context
with runtime program behaviors, which we refer to as cyber-
physical execution semantics. iii) A near-real-time anomaly
detector using named pipes, with both local and distributed
event verifiers to assess the physical context.

• We conduct a thorough evaluation of eFSA’s performance
through real-world CPS applications. Results show that our
approach can successfully detect different runtime data-oriented
attacks reproduced in our experiments. Our prototype of the
runtime anomaly detector takes ∼0.0001s to check each state
transition in eFSA model, ∼0.063s for the local event verifica-
tion, and ∼0.211s for the distributed event verification.

The focus of this paper is on providing new security capabili-
ties by enforcing cyber-physical execution semantics in defending
against data-oriented attacks in CPS. Our design is a general
approach for event-driven embedded control systems. In Sec. 8, we
discuss in-depth practical deployment issues, including program
anomaly detection as a service, implementation on bare-metal
devices and programmable logic controllers (PLCs), and possible
low overhead tracing with real-time requirements.

2 MODEL AND DESIGN OVERVIEW

In this section, we introduce the CPS background, and describe
the attack model of this work. We use examples to illustrate our
new detection capabilities, and then present the design overview
of Orpheus framework.

2.1 CPS Background

Sensors

Physical Process

Actuators

Events

Control Programs on Field Devices

CPS Control Center

Electrical distribution, manufacturing, 
industrial control, automobile systems, …

Embedded Linux, 
PLC firmware, …

Breakers, switches,
pumps, motors, valves, …

Local Control

Fig. 1: An abstract view of the event-driven CPS architecture.
CPS is exposed with a large attack surface and attacks can be
launched across all components in the system. Existing CPS
anomaly detection approaches mainly monitor behaviors of the
physical process. On the contrary, we focus on anomaly detection
for CPS programs running on field devices or the central control
center.

Fig. 1 shows an abstract view of the CPS system architecture,
which is also in line with the architecture of modern Industrial
Control Systems (ICS). In industrial control domain, the control
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program is often referred to as control logic, and the firmware on
PLC (i.e., field device) acts as a kind of operating system [36].
In general, it is composed of the following components: 1) a
physical process (e.g., industrial plant or smart home); 2) sensors
that measure the physical environment; 3) actuators that trig-
ger physical changes in response to control commands sent by
the control program; 4) control programs running on embedded
devices that supervise and control physical processes by taking
sensory data as input and making local control decisions; 5) a
remote control server (which is optional), letting users remotely
monitor and control the physical process. CPS communicates
with the physical process through sensors and actuators, where
physical environments are sensed and events (e.g., coming from
the environment or emitted by other entities) are detected, and
then actuation tasks are executed through a set of actuators.

Embedded devices (a.k.a. field devices) in CPS are situated in
the field, where their operating systems are typically embedded
Linux/Windows variants [37] or PLC firmware [36]. Traditionally,
embedded control systems were not considered prominent attack
targets due to their isolation from potential attack sources. How-
ever, the historical isolation has begun to break down as more and
more embedded devices are connected to business networks and
the Internet in the trend of IoT, making CPS control programs
increasingly vulnerable [37].

2.2 Attack Model and Assumptions

In this paper, we make the following security assumptions:
• Capabilities of the adversary. We assume that the adversary

has successfully authenticated CPS field devices (or the control
server) under her control to the local network, and is able
to launch runtime software exploits which may be unknown
or known but unpatched at the time of intrusion. We are not
concerned how attackers gained entry into the devices and
launch different attacks, but focus on uncovering abnormal
program execution behaviors after that [21]. This is a typical
assumption in existing anomaly detection works.

• CPS platform. We assume the initial state (i.e., the training
stage) of the application is trustworthy, which is a general
requirement of most behavior-based intrusion detection sys-
tems [31]. We also assume the runtime monitoring module is
trusted and cannot be disabled or modified. This assumption
is reasonable because it can be achieved by isolating the
monitoring module from the untrusted target program with
hardware security support such as Intel’s TrustLite or ARM’s
TrustZone [8]. At the time of detection, the user space is
partially or fully compromised, but the operating system space
has not been fully penetrated yet, and thus it is still trusted [11].

• Our focus. We focus our investigation on runtime software
exploits, and thus sensor data spoofing attacks in the physical
domain [26] are out of the scope. We assume sensor mea-
surements are trustable. We limit our attention to data-oriented
attacks that involve changes of system call usage. Other data-
related attacks that do not impact observable program behavior
patterns (e.g., modification of non-decision making variables)
are beyond the scope of this work. System call can be used
as an ideal signal for detecting potential intrusions, since a
compromised program can generally cause damage to the victim
system only by exploiting system calls [38]. Despite system call
based monitoring is widely used for detecting compromised pro-
grams, we aim at developing a CPS-specific anomaly detection

system by augmenting an existing program behavior model with
physical context awareness.

2.3 New Detection Capabilities
Our new detection capability is detecting data-oriented attacks
in CPS control programs, including hijacked for/while-loops or
conditional branches. These stealthy attacks alter the underly-
ing control program’s behaviors without tampering control-flow
graphs (CFGs). We illustrate our new detection capabilities using
a smart syringe pump as an example 1. The control program reads
humidity sensor values as well as takes remote user commands,
and translates the input values/commands into control signals to
its actuator. Partial code is shown in Fig. 2. Our approach reasons
about control programs’ behaviors w.r.t physical environments,
and is able to detect the following attacks:
• Attacking control branch. An attack affecting the code in

Fig. 2(a) may trigger push-syringe or pull-syringe
regardless of physical events or remote requests. It corrupts
control variables that result in event function Push_Event or
Pull_Event returning True (in lines 3 or 5). Such an attack
leads to unintended but valid control flows.

• Attacking control intensity. An attack affecting the code in
Fig. 2(b) may corrupt a local state variable (e.g., steps in line
10) that controls the amount of liquid to dispense by the pump.
An attack may cause the syringe to overpump than what is
necessary for the physical environment. Range-based anomaly
detection would not work, as the overwritten variable may still
be within the permitted range (but incompatible with the current
physical context). Such an attack (i.e., manipulating the control
loop iterations) does not violate the program’s CFG either.

while(…){

eventRead();
if(Push_Event())

push-syringe();
else if(Pull_Event())

pull-syringe();
…

}

1

3

2

4

6

5

7

push-syringe(){

steps = … ;
for(i=0; i<steps; i++)
{ 

write(i2c,…); 
…

}

}       

9

11

10

12

14

13

15

8 16

(a) (b)

Fig. 2: Two examples of data-oriented software exploits in a real-
world CPS application. An attacker could purposely (a) trigger
control actions by manipulating the return value of Push_Event
or Pull_Event, and (b) manipulate the number of loop itera-
tions in push-syringe without violating the control program’s
CFG.

Existing solutions cannot detect these attacks, as the detection
does not incorporate events and cannot reason about program
behaviors w.r.t. physical environments. C-FLAT [8], which is
based on the attestation of control flows and a finite number of
permitted execution patterns, cannot fully detect these attacks.
Similarly, recent frequency- and co-occurrence-based anomaly
detection approaches (e.g., global trace analysis [39] and system
call frequency distribution (SCFD) [31]) cannot detect such either
type of attacks, as their analyses do not model runtime cyber-
physical context dependencies.

2.4 Definition of Events
Without loss of generality, we define two types of events in control
programs: binary events and non-binary events.

1. https://hackaday.io/project/1838-open-syringe-pump
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Fig. 3: Workflow of Orpheus event-aware anomaly detection framework, which augments an existing program behavior model with
cyber-physical contextual integrity.

• Binary events return either True or False, which are defined
in terms of pre-specified status changes of physical environ-
ments and provide notifications to the control program (e.g.,
Push_Event or Pull_Event in Fig. 2). Such events are
commonly pre-defined and used in CPS/IoT’s trigger-action
programming ("if, then") model [30], [40].

• Non-binary events correspond to the sensor-driven control ac-
tions within a for/while loop, e.g., sensor values affect the
amount of control operations of push-syringe in Fig. 2.
It is challenging to identify non-binary events since they are not
explicitly declared in control programs.

2.5 Orpheus Design Overview

Fig. 3 shows the workflow of Orpheus event-aware anomaly detec-
tion framework, which is composed of two stages: training (where
program behavior models are built based on normal program
traces) and testing (where a new trace is compared against the
model built in the training phase). In particular, to capture the
cyber-physical context dependency of control programs, the train-
ing stage in Orpheus encompasses both static program analysis
and dynamic profiling.

There are four main steps in the training phase. In step
¬, Orpheus identifies both binary events and non-binary events
involved in the control program. In step , it performs the program
dependency analysis to generate event-annotated CFG, which
identifies the instructions/statements associated with binary events,
and control intensity loops associated with non-binary events. In
step ®, Orpheus conducts the program behavior modelling, such
as the HMM-based model [33], n-gram model [32], or control-
flow integrity [18], which we refer to as a basic program behavior
model in Orpheus. The next step ¯ is important. It augments the
basic model with event constraints and obtains the event-aware
program behavior model.

Steps ° and ± are the testing phase. In step °, Orpheus
monitors the CPS control program’s execution and collects run-
time traces. The basic program behavior model normally aims
at detecting control-oriented attacks. Our main contribution lies
in the event awareness enhancement on top of a basic model.
Whenever an event-dependent control-flow path is encountered
in step °, the event verifier checks the consistency between
runtime behavior and program execution semantics, i.e., whether a
specific physical event associated with this event-dependent state
transition is observed in the physical domain. In the testing phase,

an anomaly is marked if there exists a state transition deviated
from the automaton, or a mismatch between the physical context
and program control-flow path.

3 REASONING ABOUT CYBER-PHYSICAL EXECU-
TION SEMANTICS

In this section, we present a general method for reasoning about
cyber-physical execution semantics of a control program through
static analysis, including the event identification and dependence
analysis.

3.1 Event Identification

In order to discover the triggering relationship between external
events and internal program control flows, we first identify what
events are involved in a control program. For pre-defined binary
events, it is not difficult to identify these events (e.g., given event
functions declared in an event library or header file, we scan
the source code or executable binary). The main challenge is
to identify i) non-binary events and ii) non-pre-defined binary
events. Our LLVM-based [41] event identification algorithm can
automatically extract these events and only requires knowledge of
sensor-reading APIs and actuation APIs on the embedded system.
They are pre-specified sources and sinks2 in our static analysis.

According to the definition of a non-binary event in Sec. 2.1,
it contains a loop statement (e.g., for/while loop) in which sensor
values affect the amount of control operations. Our key idea is to
search for a loop statement that is data-dependent on any sensor-
reading API, and at least an actuation API is control-dependent
on this loop statement. The search is performed through back-
ward data dependence analysis and forward control dependence
analysis. Algorithm 1 describes our static analysis for identifying
non-binary events. We first obtain the LLVM Intermediate Rep-
resentation (IR) of a control program P using the Clang com-
piler [41], and construct the program dependence graph (PDG),
including both data and control dependencies (Line 4). The control
dependence graph is at the basic block level3, while the data
dependency graph is at the granularity of instructions. Then, we
obtain all conditional branch instructions with loops, by searching

2. Source and sink are terms in a dataflow analysis. The source is where data
comes from, and the sink is where it ends in a program [42].

3. In program analysis, a basic block is a linear sequence of instructions
containing no branches except at the very end.
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the conditional "br" instruction, which takes a single "i1" value
and two "label" values (Line 5). For each conditional branch with a
loop, we conduct the backward inter-procedural dataflow analysis
to find any prior data dependence on sensor-reading APIs (Line
7). Then, we conduct forward inter-procedural control-dependence
analysis on the true branch of the conditional instruction to find
actuation APIs, e.g., APIs in WiringPi library or functions writing
GPIO pins [43] (Line 9). If a loop statement is data-dependent
on external sensor data, and triggers a certain control action, we
identify a non-binary event (Line 11). In each iteration, we record
the identified non-binary event and control intensity loop (Line
12), which is the output of the event identification process.

Algorithm 1: Identifying non-binary events

1 Input: Program P ; Sensor-reading API set APIsens;
Actuation API set APIactu

2 Output: Non-binary-event set Enb

3 Enb ← ∅;
4 Gpdg = ConstructPDG(P) /*construct the program

dependence graph*/;
5 LoopBrSet = getLoopBrSet(P) /*get all the conditional

branch instructions with loops*/;
6 for BrInst=getNextInst(LoopBrSet) do
7 Sbdd = BackwardDataDependence(Gpdg , BrInst);
8 /*Backward data dependent statements on BrInst*/;
9 Sfcd = ForwardContDependence(Gpdg , BrInst);

10 /*Forward control dependent statements on BrInst*/;
11 if (Sbdd ∩APIsens 6= ∅ and Sfcd ∩APIactu 6= ∅) then
12 Enb= Enb∪ Event(BrInst,Sbdd,Sfcd);
13 end

A more specific example of our event identification is illus-
trated in Fig. 4 using a C-based control program as an example.
The figure shows a non-binary event represented by LLVM IR
after the data dependence and control dependence analysis (¶).
We then locate a conditional branch instruction with a loop (·).
Suppose this conditional branch is data dependent on a sensor-
reading API (¸). On its true branch, if we find any actuation API
(¹), we consider the loop as a non-binary event. Finally, we record
the search results for the next event dependence analysis (º).

<label>:5 
call void (...)* @actuator_signal() 
...

...
%3 = load i32* @steps, align 4
%4 = icmp sle i32 %2, %3 
br i1 %4, label %5, label %9 

T F

<label>:9 
ret void

Any sensor 
reading API 

Data dependence

Any actuation 
API 

Loop
Control dependence

❶

❷

❸

❹

❺

❷

❸

❹

Locating conditional 
branch instruction 

Backward data 
dependence analysis

Forward control 
dependence analysis

Recording non-binary 
event and control 
intensity loop 

Constructing PDG 

Fig. 4: An example of identifying non-binary events

We also design a similar procedure for identifying non-pre-
defined binary events. An example of such event is when the
temperature exceeds a user-designated value, an event predicate
returns True. In this procedure, we search for the conditional
branch either "br" or "switch" instruction without a loop, and then
perform the same data/control dependence analysis. In particular,
we need to analyze both true and false branches of a "br"
instruction, because both branches may contain control actions and

we also consider the not-happening case (i.e., the branch without
triggering any control action) as an implicit event.

3.2 Event Dependence Analysis
Our event dependence analysis generates an event-annotated CFG,
i.e., approximating the set of statements/instructions that connect
events and their triggered actions. During the event identification,
we identify individual events that are involved in a control pro-
gram. We directly associate a non-binary event with its control
intensity loop. A challenge arises when dealing with nested binary
events. We address the nested events challenge using a bottom-up
approach for recursive searching for event dependencies.

Algorithm 2 describes our event dependence analysis for
nested binary events. Given a binary-event triggered basic block
BBeta, we backward traverse all its control dependent blocks until
reaching the root in a recursive manner, and extract corresponding
branch labels (i.e., True or False). In the recursive function
FindEveDependence (Line 5), once we find a basic block on
which BBcur is control dependent (Line 7), we check whether it
contains any external event (Line 9). If yes, we add this event
together with its branch label to Eb (Line 10). The condition
Eb∩Etmp = ∅ avoids potential loops when including new events
into Eb. Then, we recursively search any upstream event that
BBcur depends on (Line 12).

Algorithm 2: Event dependence analysis for binary events

1 Input: Event-triggered basic block BBeta; Control flow graph
Gcfg of program P ;

2 Output: Eb: events that trigger the execution of BBeta

3 Eb ← ∅;
4 BBcur = BBeta;
5 Function FindEveDependence (BBcur , Gcfg , Seb)
6 for BBtmp= getNextBB(Gcfg) do
7 if (BBtmp.toid == BBcur) then
8 Etmp=GetEvent(BBtmp) ;
9 if Etmp 6= ∅ and Eb ∩ Etmp = ∅ then

10 Eb= Eb ∪ Etmp;
11 BBcur = BBtmp;
12 FindEveDependence (BBcur , Gcfg , Eb);
13 end
14 return;

Fig. 5 illustrates an example of our event dependence analysis.
Block 18 (i.e., the label id) is control dependent on Block 15
in the True branch of E2 (called true-control-dependent). By
backward traversing the control dependence graph, we find Block
15 is further false-control-dependent on E1 in Block 0. Then,
we know Block 18 is control dependent on a composite event
[E1 ∧ E2]. In this example, we also find event dependencies for
Blocks 5 and 27. We finally identify three event-dependent basic
blocks, and obtain the corresponding event-annotated CFG.

In addition to the static analysis approach, an alternative for
event dependence analysis is using dynamic slicing [44], which
identifies statements triggered by a particular event during multiple
rounds of program executions. It is worth mentioning that our
event identification and dependence analysis is a general approach
for reasoning cyber-physical execution semantics, independent of
specific program anomaly detection models.

4 eFSA: AN INSTANTIATION OF Orpheus
In this section, we describe details about how to build the event-
aware finite-state automaton (i.e., eFSA) model, a system call level
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<label>:0        ...
%3 = call i32 @E1()
%4 = icmp ne i32 %3, 0
br i1 %4, label %5, label %15

<label>:15 
%16 = call i32 @E2()
%17 = icmp ne i32 %16, 0
br i1 %17, label %18, label %27

T F

<label>:5 
Actuation...

<label>:27 
…

T F
<label>:18 
Actuation...

𝐸1
dependent 

𝐸1⋀𝐸2
dependent 

𝐸1⋀𝐸2
dependent

Fig. 5: Event dependence analysis for nested events

FSA-based instantiation of the Orpheus framework. eFSA captures
the event-driven feature of CPS programs to detect evasive attacks.

4.1 Formal Description of eFSA
We construct the finite-state automaton (FSA) [45] model, which
is based on tracing the system calls and program counters (PC)
made by a control program under normal execution. Each distinct
PC (i.e., the return address of a system call) value indicates a
different state of the FSA, so that invocation of same system
calls from different places can be differentiated. Each system
call corresponds to a state transition. Since the constructed FSA
uses memory address information (i.e., PC values) in modeling
program behaviors (called the gray-box model), it is more resistant
to mimicry attacks than other program models [17], [46].

In an execution trace, given the kth system call Sk and the PC
value pck from which Sk was made, the invocation of Sk results in
a transition from the previous state pck−1 to pck which is labelled
with Sk−1. Fig. 6(a) shows a pictorial example program, where
system calls are denoted by S0,. . . ,S6, and states are represented
by integers (i.e., line numbers). Suppose we obtain three exe-
cution sequences, S0

1
S1

3
S2

6
S3

7
S2

6
S3

7
S5

10
S6

11 , S0

1
S1

3
S4

9
S4

9
S5

10
S6

11 , and
S0

1
S1

3
S5

10
S6

11
S1

3
S5

10
S6

11 , the learnt FSA model is shown in Fig. 6(b),
where each node represents a state and each arc represents a state
transition.

S0;
while(…){
S1;
if(E1())

for(…humidity…){
S2; 
S3;}

else if(E2())
for(…){S4;}

S5;
S6;}
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Fig. 6: System call based finite-state automaton (FSA) model: (a)
an example program; (b) the corresponding FSA model.

Our eFSA model extends FSA with external context con-
straints, where event-dependent state transitions in FSA are la-
beled with event constraints. We formally define the eFSA model
as a six-tuple: (S,Σ, s0, F, E, δ). S is a finite set of states which
are PC values, and Σ is a finite set of system calls (i.e., input
alphabet). s0 is an initial state, and F is the set of final states.
E represents a finite set of external events, which can affect the
underlying execution of a control program. δ denotes the transition
function mapping S×Σ×E to S. Note that a state transition may
come with multiple physical events (referred to as a composite

event). Thus, the input alphabet can be expressed as a cartesian
product: E = E1×E2×· · ·×En, where the input E consists of
n concurrent physical events. In particular, we consider the non-
occurrence (not-happening) of one or more events as an implicit
event in eFSA.

4.2 From Event-Annotated CFG to eFSA

To construct an eFSA model, we need to identify event-dependent
state transitions at the system call level in FSA. Towards this
end, we apply the event dependence analysis results (described
in Sec. 3.1 and 3.2) to transform instruction-level dependencies
in LLVM IR to the state transition dependencies in FSA. Such a
mapping might be achieved through static analysis, e.g., passing
over the parse tree to search for system call invocations. How-
ever, a static analysis based approach requires the modifications
of gcc compiler or system call stubs, and even requires hand-
crafted modifications for library functions [47], [48]. In eFSA,
we adopt a dynamic profiling based approach to discover event
dependent state transitions. We first transform instruction-level
event dependencies in LLVM IR to statement-level dependencies
in source code with line numbers. Then, we map line numbers
and file names to return addresses (e.g., by using the addr2line
tool) that are collected in the dynamic profiling phase when the
FSA model is constructed. In this way, we obtain the system call
level event-dependent state transitions in FSA. Subsequently, we
augment the event-driven information over the underlying FSA,
and finally construct the eFSA model.
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Fig. 7: An example of the eFSA model

Fig. 7 shows an example of eFSA model corresponding to
the FSA example in Fig. 6, where an event dependent transition
is labeled by "[System Call

PC ]|Events". In this example, there are
two binary events and one non-binary event. Through the event
dependence analysis, we identify that lines 5-7 (where S2 and
S3 are invoked) and line 9 (where S4 is invoked) are dependent
on the binary events E1 and E2, respectively. To avoid redun-
dancy, we associate a binary event to the first state transition
in FSA that is dependent on it. For a non-binary event, we
associate it with the control intensity loop. In Fig. 7, we iden-
tify binary-event dependent state transitions [S1

3
S2

6 ]|E1, [S1

3
S4

9 ]|
E1 ∧ E2, and a non-binary-event dependent control intensity
loop [S2

6
S3

7 ]|NB1. It also contains an implicit event dependent
transition [S1

3
S5

10 ]|(E1 ∧ E2).

4.3 Security Policies in eFSA

eFSA expresses causal dependencies between physical events and
program control flows. By checking execution semantics (i.e.,
enforcing cyber-physical security policies) at runtime, eFSA im-
proves the robustness against data-oriented attacks by increasing
the difficulties that an attack could bypass the anomaly detection.
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For state transitions that are dependent on binary events, the
cyber-physical policy enforcement is to make sure these binary
events return the ground truth values. For control intensity loops
that are dependent on non-binary events, we enforce security
policies through a control intensity analysis, which models the
relationship between the observable information in cyber space
(i.e., system calls) and sensor values in physical space. eFSA then
enforces the policy that the observed control intensity should be
consistent with the corresponding sensor measurements.

4.4 Control Intensity Analysis
The main challenge for detecting runtime control intensity anoma-
lies lies in that, given system call traces of a control program,
we need to map the control intensity to its reflected sensor
measurements, where only the number of loop iterations in a
control intensity loop is available. To this end, we first obtain
the number of system calls invoked in each loop iteration. Then,
we model the relationship between sensor measurements and the
amount of system calls in a control intensity loop through a
regression analysis.

Execution Window Partitioning and Loop Detection: Typically,
control programs monitor and control physical processes in a
continuous manner, where the top-level component of a program
is composed of an infinite loop. For instance, an Arduino pro-
gram [49] normally consists of two functions called setup()
and loop(), allowing a program consecutively controls the
Arduino board after setting up initial values. We define an ex-
ecution window as one top-level loop iteration in a continuous
program, and a behavior instance as the program activity within
an execution window. The term execution window is equivalent
to the scan cycle in industrial control domain [34]. We partition
infinite execution traces into a set of behavior instances based on
the execution window. The underlying FSA model helps identify
loops since it inherently captures program loop structures. We first
identify the starting state in the top-level loop of a FSA. Then,
once a top-level loop back edge is detected, a behavior instance is
obtained.

Regression Analysis: The purpose of the regression analysis
is to quantify the relationship between sensor measurements and
system call amount in a control intensity loop. Given the number
of system calls invoked in each loop iteration, one straightforward
approach is through manual code analysis. In this work, we present
an approach for automating this process. During the identification
of non-binary events in Sec. 3.1, we know what sensor types
(i.e., sensor reading APIs) are involved in a control intensity
loop. In the training phase, we collect normal program traces
together with the corresponding sensor values. Then, we perform
a simple regression analysis to estimate the relationship between
the system call amount (i.e., outcome) and sensor measurements
(i.e., explanatory variables) for each control intensity loop. For
example, suppose a control intensity loop is triggered by the
change of humidity sensor value (details are in Sec. 7.4). We
observe that an increase of humidity results in more iterations
of the control intensity loop, where each loop iteration incurs 3
system calls. Thus, we can reversely derive the changes of physical
environment by observing the number of iterations in a control
intensity loop.

4.5 Generalization of eFSA
Control programs running on embedded devices may receive
network events from the control center, and then execute actu-

ation tasks. Though eFSA mainly detects software-exploit based
environmental event spoofing, it is also applicable to network
event-triggering scenarios. For example, we consider each type of
network packet as an event, and the eFSA model is augmented with
network events. Such an eFSA model can detect false command
injection attacks. It checks the consistency of system call traces
at the receiver and sender, ensuring their system call invocations
conforming to the network API semantics [50].

5 EFSA-BASED DETECTION

In this section, we present how an eFSA-based anomaly detector
detects anomalies particularly caused by data-oriented attacks, and
discuss about the design choices of event verification.

5.1 Runtime Monitoring and Detection

Event Verifier

Unknown Program Traces

State Transition 
Checking

Event Consistency 
Checking

Local 
verification

Distributed 
verification

Detect control-
based anomalies

Detect execution 
semantic anomalies

Normal
Physical 
model 

Fig. 8: An instance of detecting attacks on control branch

Our anomaly detector traces system calls as well as the cor-
responding PC values during the execution of a control program.
As shown in Fig. 8, the anomaly detection is composed of an
event verifier and two checking steps: i) state transition integrity
checking against the basic FSA model, and ii) event consistency
checking against the event verification in the eFSA-based anomaly
detector, which is our new contribution.

• Event-independent state transition. For each intercepted sys-
tem call, we check if there exists an outgoing edge labelled
with the system call name from the current state in FSA. If
not, an anomaly is detected. If the current state transition is not
event-dependent, we move the current state of the automaton
to the new state. This basic state-transition checking has been
shown to be effective against common types of control-oriented
attacks (e.g., code injection attacks or code-reuse attacks [16])
which violate control flow integrity of the model.

• Event-dependent state transition. In case of an event de-
pendent state transition according to the eFSA model, we first
perform the above basic state-transition checking. More im-
portantly, with the help of the event verification (discussed in
Sec. 5.2), we then check the consistency between the runtime
execution semantics and program’s behavior, i.e., whether a
specific physical event associated with this event-dependent
state transition is observed in the physical domain. This step can
detect stealthy data-oriented attacks that follow valid state tran-
sitions but are incompatible with the physical context. Another
important aspect is the selection of event checkpoints. To avoid
redundant checking, we set the checkpoint for a binary event at
its first event-dependent state transition. For a non-binary event,
we perform the event checking after it jumps out of the control
intensity loop.
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5.2 Event Verification Strategies

The objective of event verification is to detect event spoofing
caused by runtime data-oriented software exploits. Event verifi-
cation is highly application specific, and it is actually orthogonal
to the eFSA model itself. We describe several possible approaches
for verifying physical context.
• Local event verification: which is able to detect the inconsis-

tency between program runtime behavior and cyber-physical
execution semantics. For example, the monitor re-executes a
binary-event function to confirm the occurrence of the event. To
detect control intensity anomalies, the monitor retrieves sensor
measurements and compares them against the derived sensor
values from system call traces. There may exist false posi-
tives/negatives due to sensor’s functional failures in practice.

• Distributed event verification: which assesses the physical
context by exploiting functionally and spatially redundancy
of sensors among co-located embedded devices. Since sensor
data normally exhibit spatio-temporal correlation in physical
environments, it increases the detection accuracy by involving
more event verification sources.

• Physical model based verification: which is complementary
to the runtime event verification. Cyber-physical inconsistency
may be detected based on physical models [51]. For example,
one may utilize fluid dynamics and electromagnetics as the
basic laws to create prediction models for water system [52]
and power grid [53]. Based on the prediction models and
predefined threat constraints, these methods can then check
whether the predicted environment values are consistent with
a control system’s behavior.

6 IMPLEMENTATION

To demonstrate the feasibility of our approach, we have imple-
mented a prototype with around 5K lines in C/C++, Bash and
Python codes, including the trace collection and preprocessing,
event identification and dependence analysis, eFSA model con-
struction, and runtime anomaly detection modules. Our prototype
uses multiple off-the-shelf tools and libraries in Linux.

We choose Raspberry Pi 2 with Sense HAT as the main
experimental platform, which is a commonly used platform for
building embedded control applications [8], [34], [35]. Sense Hat,
an add-on board for Raspberry Pi, provides a set of environmental
sensors to detect physical events including pressure, temperature,
humidity, acceleration, gyroscope, and magnetic filed. During the
training phase, we collect program traces on Raspberry Pi and
perform the eFSA model construction on a Linux Desktop (Ubuntu
16.04, Intel Xeon processor 3.50GHz and 16GB of RAM). In
the testing phase, the anomaly detector is deployed on Raspberry
Pi to detect runtime control-based or data-oriented attacks. As a
special case, we conduct experiments for post-mortem analysis of
anomalous behaviors on a commercial drone to demonstrate how
eFSA can be applied to network event-triggering scenarios (where
details can be found in Sec. 7). In the following, we present key
implementation aspects in our prototype.

Dynamic Tracing. We use the system tool strace-4.13 to
intercept system call of a running control program. To obtain the
PC value from which a system call was invoked in a program, we
need to go back through the call stacks until finding a valid PC
along with the corresponding system call. We compile strace
with -libunwind support, which enables stack unwinding and
allows us to print call stacks on every system call.

[76eb989c] write(1, "Start\n", 6) = 15
>/lib/arm-linux-gnueabihf/libc-2.19.so(__write+0x1c) [0xc289c]
>/lib/arm-linux-gnueabihf/libc-2.19.so(_IO_file_write+0x48) [0x6b008]
>/lib/arm-linux-gnueabihf/libc-2.19.so(_IO_file_setbuf+0xd4) [0x6a4a8]
>/lib/arm-linux-gnueabihf/libc-2.19.so(_IO_do_write+0x18) [0x6c038]
>/lib/arm-linux-gnueabihf/libc-2.19.so(_IO_file_overflow+0xf4) [0x6c408]
>/lib/arm-linux-gnueabihf/libc-2.19.so(__overflow+0x20) [0x6cf14]
>/lib/arm-linux-gnueabihf/libc-2.19.so(_IO_puts+0x140) [0x615b8]
>/home/pi/Solard(main+0x20) [0x43c]

Fig. 9: An example of using strace tool with stack unwinding
support, where call stacks are printed out with the system call.

It is worth mentioning that our model works in the presence of
Address Space Layout Randomization (ASLR), which mitigates
software exploits by randomizing memory addresses, as the low
12 bits of addresses are not impacted by ASLR (PC values can be
easily aligned among different execution traces of a program).
Fig. 9 shows an example of using strace tool with stack
unwinding support. In this example, we use the PC value of
relative address 0x43c for the write system call. As a result,
system calls that are triggered from different places in a program
will be associated with different PC values, which enables the FSA
model to accurately capture a program’s structures (e.g., loops and
branches).

Event Identification and Dependence Analysis. Our event
identification and dependence analysis tool is implemented within
the Low Level Virtual Machine (LLVM)4 compiler infrastructure,
based on an open source static slicer5 which builds dependence
graph for LLVM bytecode. An advantage of using LLVM-based
event dependence analysis is that, our tool is compatible with
multiple programming languages since LLVM supports a wide
range of languages. Our event identification module identifies the
line numbers in source code where an event is involved. Then,
the event dependence analysis outputs the line numbers of event
dependent statements.

Anomaly Detector with Event Verification. In our prototype,
we implement a proof-of-concept near-real-time anomaly detector
using named pipes on Raspberry Pi, including both local and
distributed verifications (corroboration with single or multiple
external sources). We develop a sensor event library for Raspberry
Pi Sense Hat in C code, based on the sensor reading modules
in experix6 and c-sense-hat7. The event library reads
pressure and temperature from the LPS25H sensor, and reads
relative humidity and temperature from the HTS221 sensor, with
maximum sampling rates at 25 per second. Our local event verifier
calls the same event functions as in the monitored program, and lo-
cally check the consistency of event occurrence. In the distributed
event verifier, we deploy three Raspberry Pi devices in an indoor
laboratory environment. We develop a remote sensor reading
module which enables one device to request realtime sensor data
from neighbouring devices via the sockets communication.

7 EXPERIMENTAL VALIDATION

We conduct CPS case studies, and evaluate eFSA’s detection
capability against runtime data-oriented attacks. Our experiments
aim to answer the following questions:
• What is the runtime performance overhead of eFSA (Sec. 7.2)?
• Whether eFSA is able to detect different data-oriented attacks

(Sec. 7.3 and 7.4)?

4. http://llvm.org/
5. https://github.com/mchalupa/dg
6. http://experix.sourceforge.net/
7. https://github.com/davebm1/c-sense-hat



9

7.1 CPS Case Studies
Solard8. It is an open source controller for boiler and house
heating system that runs on embedded devices. The controller
collects data from temperature sensors, and acts on it by con-
trolling relays via GPIO (general purpose input/output) pins on
Raspberry Pi. Control decisions are made when to turn on or off
of heaters by periodically detecting sensor events. For example,
CriticalTempsFound() is a pre-defined binary event in
Solard. When the temperature is higher than a specified threshold,
the event function returns True.
SyringePump9. It was developed as an embedded application for
Arduino platform. Abera et al. [8] ported it to Raspberry Pi. The
control program originally takes remote user commands via serial
connection, and translates the input values into control signals
to the actuator. SyringePump is vulnerable since it accepts and
buffers external inputs that might result in buffer overflows [8]. We
modify the syringe pump application, where external inputs are
sent from the control center for remote control, and environmental
events drive the pump’s movement. Specifically, in the event that
the relative humidity value is higher than a specified threshold, the
syringe pump movement is triggered. In addition, the amount of
liquid to be dispensed is linearly proportional to the humidity value
subtracted by the threshold. Such sensor-driven syringe pumps are
used in many chemical and biological experiments such as liquid
absorption measurement experiment.

7.2 Training and Runtime Performance
In the training phase, we collect execution traces of Solard and
SyringePump using training scripts that attempt to simulate pos-
sible sensor inputs of the control programs. By checking Solard
and SyringePump’s source codes, our training scripts cover all
execution paths.

We first measure the time taken for training models in our
prototype, where the main overhead comes from the event de-
pendence analysis. Table 1 illustrates eFSA’s program analysis
overhead in the training phase. For comparison purpose, we deploy
the LLVM toolchain and our event dependence analysis tool on
both Raspberry Pi and Desktop Computer (Intel Xeon processor
3.50GHz and 16GB of RAM). From Table 1, Raspberry Pi takes
much longer time (more than 150 times) than desktop computer
to complete the program dependence analysis task. It only takes
0.745s and 0.0035s for event dependence analysis of Solard (46.3
kb binary size) and SyringePump (17.7 kb binary size) on a
desktop computer, respectively. Since Solard and SyringePump
run in a continuous manner and thus generate infinite raw traces.
The model training overhead is measured by how much time it
takes for training per MByte raw trace. Results show that it takes
less than 0.2s to process 1 MByte traces on the desktop computer.
The number of states in Solard’s and SyringePump’s eFSA is 34
and 65, respectively.

Event Dependence Analysis
Desktop Computer Raspberry Pi 2

Solard 0.745s 109.975s
SyringePump 0.0035s 1.726s

TABLE 1: Average delay overhead in training phase

Next, we measure the performance overhead incurred by
eFSA’s anomaly detector on Raspberry Pi. The system call tracing

8. https://github.com/mrpetrov/solarmanpi
9. https://github.com/control-flow-attestation/c-flat

overhead has no difference between FSA and eFSA, incurring
1.5x∼2x overhead in our experiments. Table 2 reports the run-
time detection latency results. The average delay for each state
transition (i.e., each intercepted system call) checking out of more
than 1000 runs is around 0.0001s. It takes 0.063s on average
to perform the local event checking. The end-to-end latency for
the distributed event checking from each co-located device can
be broken down into two main parts: i) network communication
around 0.042s, and ii) sensor reading delay around 0.0582s.
In our experiment, we deploy two co-located devices, and thus
the total distributed event checking delay is around 0.212s. It is
expected that the overhead of distributed event checking is linearly
proportional to the number of event verification sources.

Delay (Raspberry Pi 2) Mean Standard Deviation
FSA State Transition Checking 0.00013293s 0.00004684s

Local Event Verification 0.06279120s 0.00236999s
Distributed Event Verification 0.21152867s 0.03828739s

TABLE 2: Runtime overhead in the monitoring phase

7.3 Detecting Attacks on Control Branch

In this experiment, we evaluate eFSA’s security guarantees against
control branch attacks.

7.3.1 Solard
In Solard, we engineer a buffer overflow vulnerability and ma-
nipulate the temperature sensor values to maliciously prevent
the heater from being turned off. This cyber-physical attack is
similar to the recent real-world German steel mill attack [28],
which may result in a blast furnace explosion. In this experiment,
we attach the Raspberry Pi on an electric kettle (i.e., 1-Liter
water boiler). The control program keeps monitoring temperature
values. When the temperature is lower than 50◦C , it turns on the
heater. And when the temperature is higher than 60◦C , where
CriticalTempsFound() is supposed to return True, it turns
off the heater. In the monitoring phase, when we detect an event-
dependent state transition in eFSA model, the local event verifier
performs event consistency checking.
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Fig. 10: An instance of Solard experiment

Fig. 10 illustrates an instance of the Solard experiment. We
corrupt the temperature sensor values in the range of 40∼45◦C ,
which falsifies the return value of CriticalTempsFound()
to be always False. In every scan cycle, eFSA ob-
serves a state transition dependent on the not-happening of
CriticalTempsFound() (i.e., an implicit event), and thus
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the event verifier checks the instantaneous temperature value. In
our experiment, because the Raspberry Pi does not physically
interact with the electric kettle, the ground truth temperature
keeps increasing up to more than 80◦C in Fig. 10. However,
eFSA successfully raises an alarm at the first moment when it
finds a mismatch between the execution semantics (temperature
exceeding 60◦C) and program behavior.

We did encounter sensor measurement failures, e.g., isolated
dots as shown in Fig. 10. On average, the false sensor measure-
ment rate is lower than 1% in our experiments. This means that
the detection rate and false positive/negative rate would depend
on sensors’ functional reliability in practice. Existing methods,
such as data fusion [54] can be applied to enhance the detection
accuracy.

7.3.2 SyringePump
In SyringePump, we set the threshold to 40rH , i.e., when the rel-
ative humidity value is higher than 40rH , it drives the movement
of syringe pump by sending control signals to dispense liquid. The
buffer overflow attack manipulates the humidity sensor values to
purposely trigger event-push control actions without receiving
an external event or environmental trigger. Such an attack leads to
unintended but valid control flows.

Fig. 11 illustrates an example of the experiment. The remote
user command corrupts the humidity sensor value to be 48.56rH ,
which falsifies the return value of event-push to be True. For
each intercepted system call, we check if there exists an outgoing
edge labelled with the system call name from the current state
in FSA. In case of any event-driven state transition according to
eFSA, the event verifier checks consistency between the runtime
execution semantics (e.g., the instantaneous humidity value) and
program internal state. As shown in Fig. 10, eFSA raises an alarm
when it finds a mismatch between the execution semantics and
program behavior.

Fig. 11: An instance of SyringePump experiment

7.4 Detecting Attacks on Control Intensity
In this experiment, we demonstrate that eFSA is able to detect con-
trol intensity attacks with only system call traces. In SyringePump,
we set the threshold that triggers the movement of syringe pump
to be 30rH . The corrupted humidity value determines the amount
of liquid to be dispensed, which equals to the humidity value
subtracted by 30rH in this test. In the training stage, we obtain
the number of system calls invoked in each loop iteration. Then,
we model the relationship between sensor measurements and the
amount of system calls in a control intensity loop. Through control

intensity analysis, we know the number of system calls with no
event occurrence is 40 per scan cycle, and each loop iteration
(i.e., dispensing a unit of liquid) in the control intensity loop
corresponds to 3 system calls.
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Fig. 12: An instance of SyringePump experiment with a sampling
rate of 5 minutes

Fig. 12(a) shows the value changes of the humidity variable
and system call amount per scan cycle of SyringePump. The
normal humidity value fluctuates between 34 rH and 38rH . As
a result, the amount of liquid to be dispensed is subsequently
changed, which is reflected by the number of system calls in each
control loop. We manipulate the humidity values to be 20rH and
48rH , respectively. In the monitoring phase, by observing the
number of system calls in each control loop, we can reversely
derive the changes of physical environment based on our control
intensity regression model as shown in Fig. 12(b). In this test, if
the difference between the derived value and the sampled average
value from event verifier is larger than 3rH , we consider it an
anomaly. By checking the humidity measurements from two co-
located devices (i.e., denoted as devices 1 and 2), our distributed
event verifier detects that the program’s runtime behaviors are
incompatible with physical contexts. Thus, eFSA successfully
detects the control intensity attacks.

From Sec 7.3 and Sec. 7.4, we demonstrate that enforcing
cyber-physical execution semantics in control-program anomaly
detection is effective to detect both types of data-oriented attacks.
As long as the current execution context is incompatible with the
observed program state transitions, eFSA is able to detect potential
anomalies.

8 DEPLOYMENT DISCUSSION

Although our work is focused on providing new security capabil-
ities in control-program anomaly detection against data-oriented
attacks, in this section, we examine the limitations of our imple-
mentation and discuss how our method can be deployed in the
near future.

Anomaly Detection as a Service: Embedded devices are
resource-constrained compared with general-purpose computers.
To reduce detection overhead, the anomaly detection may be
performed at a remote server. We envision deployment involv-
ing partnerships between hardware vendors and security service
providers (similar to ZingBox IoT Guardian [55]), where the
security provider is given access to embedded platforms and helps
clients to diagnose/confirm violations. The client-server architec-
ture resonates with the remote attestation in embedded systems,
which detects whether a controller is behaving as expected [8],
[56]. For detection overhead reduction, the remote server may
choose when and how frequently to send assessment requests
to a control program for anomaly detection. It is also possible
to selectively verify a subset of events, e.g., only safety-critical
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events specified by developers are involved. While the event
verifier implementation is not completely automated, our event
identification and dependence analysis tool does automate a large
portion of event code extraction and eases the developer’s burden.
We leave automatically generating event verification functions for
the anomaly detector as an important part of our future work.

Bare-metal CPS Devices: Our anomaly detection system
works on the granularity of system calls and it leverages dynamic
tracing facilities such as the strace tool, which requires the
operating system support. An important reason behind our choice
is that, the new generation of embedded control devices on the
market are increasingly coming with operating systems [35], [37].
For example, Raspberry Pi devices with embedded Linux OS have
been used as field devices in many CPS/IoT applications [57].
Linux-based PLCs for industrial control have emerged to replace
traditional PLCs [58] for deterministic logic execution. However,
embedded devices may still operate in bare-metal mode [8], where
we can not utilize existing tracing facilities to collect system call
traces. For traditional PLCs, our security checking can be added
to the program logic. We can also apply the event checking idea
to an anomaly detection system at the level of instructions. We
may instrument the original control program with event checking
hooks by rewriting its binary, e.g., inserting hooks at the entry of
event-triggered basic blocks. We consider it as the future work
to extend our design paradigm for fine-grained anomaly detection
with binary instrumentation.

Tracing Overhead and Time Constraints: Though system
call traces are a common type of audit data in anomaly detection
systems, we would like to point out that the conventional software-
level system call tracing incurs unnegligible performance overhead
to the monitored process [59]. It holds for time-insensitive embed-
ded control applications, e.g., smart home automation, but would
be a technical challenge for time-sensitive applications. While we
employ the user-space strace software to collect system calls in
our prototype, tracing tools are orthogonal to our detection design.
For performance consideration, alternative tracing techniques may
be adopted in replacing strace to improve the tracing perfor-
mance [39]. For example, it is possible to improve the performance
for system call interposition by modifying the kernel at the
cost of increased deployment effort. With the recently unveiled
Intel’s Processor Trace (PT) and ARM’s CoreSight techniques,
hardware tracing infrastructures are increasingly embedded in
modern processors, which can achieve less than 5% performance
overhead [60]. The recent work, Ninja [61], offers a fast hardware-
assisted tracing on ARM platforms. The overhead of instruction
tracing and system call tracing are negligibly small. Therefore, we
anticipate that future tracing overhead will be significantly reduced
as the hardware-assisted tracing techniques are increasingly used.

9 RELATED WORK

Our contribution in this work lies at the intersection of two
research areas: CPS anomaly detection and program behavior
modeling. In this section, we briefly summarize related works in
these two research areas.

9.1 Anomaly Detection in CPS
Due to the diversity of CPS applications, existing anomaly
detection solutions are proposed to detect specific attacks for
specific applications, such as smart infrastructures [4], unmanned
aerial vehicles [62], medical devices [63], automotive [64], [65],

industrial control process [5], [34], [51]. The majority of research
efforts in this area thus far have concentrated on behavior model-
based anomaly detection [51], and can be generally classified into
two categories: 1) cyber model (e.g., program behavior model,
network traffic analysis, or timing analysis); 2) physical model
(e.g., range-based model or physical laws). Our proposed eFSA
analyzes both the cyber and physical properties of CPS, as well as
their interactions. Thus, we refer to it as the cyber-physical model.
Table 3 compares representative CPS anomaly detection solutions.

• Program behavior model. Regarding the CPS anomaly detection
based on program behavior models in the cyber domain, Yoon et
al. [31] proposed a lightweight method for detecting anomalous
executions using the distribution of system call frequencies.
The frequencies are for individual system calls, i.e., 1-grams.
The authors in [20] proposed a hardware based approach
for control-flow graph (CFG) validation in runtime embedded
systems. McLaughlin et al. [34] presented the Trusted Safety
Verifier (TSV) to verify safety-critical code executed on pro-
grammable controllers, such as checking safety properties like
range violations and interlocks of PLC programs. C-FLAT [8]
instruments target control programs to achieve the remote at-
testation of execution paths of monitored programs, and the
validity of control flow paths is based on static analysis. Given
an aggregated authenticator (i.e., fingerprint) of the program’s
control flow computed by the prover, the verifier is able to
trace the exact execution path and thus can determine whether
application’s control flow has been compromised. C-FLAT [8] is
the most related work to our approach. Both C-FLAT and eFSA
target at designing a general approach for detecting anomalous
executions of embedded systems software. However, C-FLAT
is insufficient to detect data-oriented attacks due to the lack
of runtime execution context checking. It can only partially
detect control intensity attacks with the assumption of knowing
legal measurements of the target program. However, if the legal
measurement covers a large range of sensor values, attacks can
easily evade its detection because it does not check runtime
consistency between program behavior and physical context.

• Traffic-based model. Control systems exhibit relatively simpler
network dynamics compared with traditional IT systems, e.g.,
fixed network topology, regular communication patterns, and
a limited number of communication protocols. As a result,
implementing network-based anomaly detection systems would
be easier than traditional mechanisms. Feng et al. [66] presented
an anomaly detection method for ICS by taking advantage of
the predictable and regular nature of communication patterns
that exist between field devices in ICS networks. In the training
phase, a base-line signature database for general packages is
constructed. In the monitoring phase, the authors utilize Long
Short-Term Memory (LSTM) network based softmax classifier
to predict the most likely package signatures that are likely
to occur given previously seen package traffic. The anomaly
detector captures traffic anomalies if a package’s signature is not
within the predicted top k most probable signatures according
to the LSTM-based model.

• Timing-based model. Several studies utilized timing information
as a side channel to detect malicious intrusions. The rationale
is that execution timing information is considered an important
constraint for real-time CPS applications, and mimicking timing
is more difficult than mimicking the execution sequence. To
this end, Zimmer et al. [11] used the worst-case execution
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Research Work Category Approach Security Guarantee Validation

Yoon et al. [31] Program behavior model
(cyber) Syscall frequencies Frequency-based program control flow anomaly Raspberry Pi testbed

Feng et al. [66] Network traffic analysis
(cyber) Machine learning based traffic analysis Traffic alteration Traffic data from a gas pipeline

system

Zimmer et al. [11] Timing analysis model
(cyber) Static/dynamic timing analysis Code injection attacks Simulation/Testbed

C-FLAT [8] Program behavior model
(cyber) Program analysis and instrumentation Control-oriented attacks and limited

non-control-data attacks Raspberry Pi testbed

Hadziosmanovic et al. [52] Range-based model
(physical)

Attribute values extracted from
network traffic False data injection attacks Traffic data from water treatment

plants

Cardenas et al. [5] Physical laws Linear model derived from training
data False data injection attacks Simulation

SRID [25] Physical laws Correlation analysis of system
variables. False data injection attacks Simulation

C2 [67] Control policies
(physical) User specified control policies Control signal violation Raspberry Pi testbed

eFSA (Our work) Cyber-physical model Event-aware FSA Data-oriented attacks Raspberry Pi testbed

TABLE 3: Comparison of representative CPS anomaly detection approaches

time (WCET) obtained through static analysis to detect code
injection attacks in CPS. Such timing-based detection technique
is realized by instrumenting checkpoints within real-time appli-
cations. Sibin et al. [68] focused on detecting intrusions in real-
time control systems. Yoon et al. [69] presented SecureCore,
a multicore architecture using the timing distribution property
of each code block to detect malicious activities in real-time
embedded system. Lu et al. [21] investigated how to reduce
timing checkpoints without sacrificing detection accuracy in
embedded systems.

• Range based model. Enforcing data ranges is the simplest
method to detect CPS anomalies in the physical domain. As
long as sensor readings are outside a pre-specified normal range,
the anomaly detector raises an alarm. Hadziosmanovic et al.
[52] presented a non-obtrusive security monitoring system by
deriving models for PLC variables from network packets as the
basis for assessing CPS behaviors. For constant and attribute
series, the proposed detection approach raises an alert if a value
reaches outside of the enumeration set. However, range-based
detection suffers from a low detection rate because it neglects
the program’s execution context, e.g., if the legal measurement
covers a large range of sensor values, attacks can easily evade
its detection.

• Physical laws. The idea of using physical models to define
normal operations for anomaly detection is that, system states
must follow immutable laws of physics. Wang et al. [25]
derived a graph model to defeat false data injection attacks in
SCADA system. It captures internal relations among system
variables and physical states. Cho et al. [64] presented a brake
anomaly detection system, which compares the brake data with
the norm model to detect any vehicle misbehavior (e.g., due
to software bugs or hardware glitches) in the Brake-by-Wire
system. Other examples include utilizing fluid dynamics and
electromagnetics as the basic laws to create prediction models
for water system [52] and power grid [53], respectively. Based
on the prediction models and predefined threat constraints,
these methods check whether sensor readings are consistent
with the expected behaviors of a control system. Cardenas et
al. [5] proposed a physical model based detection method by
monitoring the physical system under control, and the sensor
and actuator values. The authors also proposed automatic re-
sponse mechanisms by estimating the system states. Urbina et
al. [51] discussed the limitations of existing physics-based
attack detection approaches, i.e., they cannot limit the impact
of stealthy attacks. The authors proposed a metric to measure
the impact of stealthy attacks and to study the effectiveness of
physics-based detection.

• Control policies. Physical model can also be specified by control
policies. The main purpose of the policies is to improve the
survivability of control systems, i.e., without losing critical
functions under attacks. For example, McLaughlin et al. [67]
introduced a policy enforcement for governing the usage of CPS
devices, which checks whether the policy allows an operation
depending on the state of the plant around the time the operation
was issued. The policies specify what behaviors should be
allowed to ensure the safety of physical machinery and assets.

• Cyber-physical model. Such a model captures the cyber-
physical context dependency of control programs. Our proposed
eFSA characterizes control-program behaviors with respect to
events, and enforces the runtime consistency among control
decisions, values of data variables in control programs, and the
physical environments. Thus, it is able to detect inconsistencies
between the physical context and program execution.

As shown in Table 3, cyber models and physical models
have different security guarantees. The former targets at detecting
CPS control program anomalies in the cyber domain. While the
latter mainly focuses on detecting false data injection attacks in
the physical domain [53]. The cyber-physical interaction (i.e.,
interactions between cyber components and physical components)
in CPS makes it challenging to predict runtime program behaviors
through static analysis of the program code or model training. Ex-
isting cyber models [8], [31] are effective against control-oriented
attacks, however, insufficient to detect data-oriented attacks. An
effective CPS program anomaly detection needs to reason about
program behaviors with respect to cyber-physical interactions,
e.g., the decision of opening a valve has to be made based on
the current water level of the tank. ContexIoT [30] provides
context identification for sensitive actions in the permission grant-
ing process of IoT applications on Android platforms. Though
both ContextIoT and eFSA consider execution contextual integrity,
ContextIoT does not support the detection of data-oriented attacks.

Distinctive from existing works in this area, our Orpheus
focuses on utilizing the event-driven feature in control-program
anomaly detection and our program behavior model combines
both the cyber and physical aspects. Consequently, physics-based
models, which can be inherently integrated into our approach
to enhance security and efficiency, do not compete but rather
complement our scheme. Stuxnet attack [9] manipulated the nu-
clear centrifuge’s rotor speed, and fooled the system operator by
replaying the recorded normal data stream during the attack [36].
Since eFSA’s detection is independent on the history data, it makes
Stuxnet-like attacks detectable in eFSA by detecting runtime incon-
sistencies between the physical context (runtime rotor speed) and
the control program’s behavior. In addition, attackers may exploit
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hardware vulnerabilities [70] to manipulate data in memory so as
to launch attacks on control branch or control intensity. eFSA is
also able to detect anomalies caused by such hardware attacks.

9.2 Program Behavior Modeling
Program behavior modeling has been an active research topic
over the past decade and various models have been proposed
for legacy applications [17]. Warrender et al. [32] presented the
comparison of four different program behavior models, including
simple enumeration of sequences, sequence frequency-based (i.e.,
n-gram), rule induction-based data mining approach, and Hidden
Markov Model (HMM). Sekar et al. [45] proposed to construct
an FSA via dynamic learning from past traces. Recently, Xu et
al. [33] proposed a probabilistic HMM-based control flow model
representing the expected call sequences of the program for
anomaly detection. Shu et al. [39], [71] proposed an anomaly
detection approach with two-stage machine learning algorithms
for large-scale program behavioral modeling.

Different from these program behavior models for legacy ap-
plications, in this paper, we propose a customized eFSA model for
detecting anomalies in CPS. Existing program anomaly detection
models mainly focus on control flow integrity checking, and thus
can not detect runtime data-oriented attacks. eFSA focuses on
detecting data-oriented exploits, and the capability for detecting
control-oriented exploits inherits from the underlying FSA.

The design paradigm of Orpheus, i.e., augmenting physical
event constraints on top of a program behavior model, can be
applied to most of the aforementioned program behavior models.
For example, HMM-based models [33] can be enhanced with
event checking on event-dependent state transitions. For the n-
gram model [32], it is possible we identify event-dependent n-
grams in the training phase and apply the event checking when
observing any event-dependent n-gram in testing. In addition,
control-flow integrity [18], [35] can also be augmented with event
checking before executing control tasks.

10 CONCLUSION

In this work, we presented Orpheus, a new security mechanism for
CPS control programs in defending against data-oriented attacks,
by enforcing cyber-physical execution semantics. As an FSA-
based instantiation of Orpheus, we proposed the program behavior
model eFSA, which advances the state-of-the-art program behavior
modelling. To the best of our knowledge, this is the first anomaly
detection model that integrates both cyber and physical properties.
We implemented a proof-of-concept prototype to demonstrate the
feasibility of our approach. Three real-world case studies demon-
strated eFSA’s efficacy against different data-oriented attacks. As
for our future work, we plan to integrate physics-based models into
our approach, design robust event verification mechanisms, and
extend the Orpheus design paradigm to support actuation integrity
for fine-grained anomaly detection at the instruction level without
the need of tracing facilities.
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