Editorial Manager(tm) for Identity in the Information Society
Manuscript Draft

Manuscript Number:
Title: Web2ID: An Identity Management Solution For Mashups and Webtops
Article Type: Manuscript

Keywords: Mashup, Webtops, Security, Communication, AJAX, Web,
OMOS

Corresponding Author: Web2ID: An Identity Management Solution Saman Zarandioon,
Corresponding Author's Institution:

First Author: Saman Zarandioon

Order of Authors: Saman Zarandioon; Saman Zarandioon; Danfeng Yao, P.h.D; Vinod Ganapathy

Abstract: This paper addresses identity management in modernWeb-2.0-based mashup applications.
Identity management supports convenient access to information when mashups

are used in sensitive environments, such as banking, investment and online shopping, by
providing services such as single sign-on.

We present Web2ID, a new identity management protocol tailored for mashup applications.
Web2ID leverages a secure mashup framework and enables transfer of credentials

between service providers and consumers. We also describe a new relay framework

in which communication between two service providers is mediated by a relay agent within

the mashup. We show that Web2ID is privacy-preserving and prevents service providers

from learning a user's surfing habits.

We present an implementation of Web2ID and the relay framework using a JavaScriptbased
library that executes within the browser. Qur implementation does not require clientside

changes and is therefore fully compatible even with legacy browsers.We also highlight

the key challenges faced in creating a portable, in-browser library to support identity management
in mashups. Finally, we demonstrate how Web2ID can provide identity management

for Web-based desktops, a popular new class of client-side mashup applications.

Page containing authors' details

\title{Web2ID: An Identity Management Solution For Mashups and Webtops
\thanks{This work has been supported in part by NSF grant CCF-0728937,
CNS-0831186, and the Rutgers University Computing Coordination

Council Pervasive Computing Initiative Grant}}

\author{ Saman Zarandioon \and
Danfeng Yao \and
Vinod Ganapathy

}

\institute{Department of Computer Science, Rutgers University \at
Piscataway, N] 08854 \\
\email {samanz@cs.rutgers.edu, danfeng@cs.rutgers.edu, vinodg@cs.rutgers.edu}

}

*Manuscript (without any authors' details)
Click here to download Manuscript (without any authors' details): web2ID.ps

Noname manuscript No.
(will be inserted by the editor)

Web2ID: An Identity Management Solution For Mashups and
Webtops

Abstract This paper addresses identity management in modern Web-2.0-based mashup ap-
plications. Identity management supports convenient access to information when mashups
are used in sensitive environments, such as banking, investment and online shopping, by
providing services such as single sign-on.

We present Web2ID, a new identity management protocol tailored for mashup appli-
cations. Web2ID leverages a secure mashup framework and enables transfer of creden-
tials between service providers and consumers. We also describe a new relay framework
in which communication between two service providers is mediated by a relay agent within
the mashup. We show that Web2ID is privacy-preserving and prevents service providers
from learning a user’s surfing habits.

We present an implementation of Web2ID and the relay framework using a JavaScript-
based library that executes within the browser. Our implementation does not require client-
side changes and is therefore fully compatible even with legacy browsers. We also highlight
the key challenges faced in creating a portable, in-browser library to support identity man-
agement in mashups. Finally, we demonstrate how Web2ID can provide identity manage-
ment for Web-based desktops, a popular new class of client-side mashup applications.

1 Introduction

Mashup applications integrate information from multiple autonomous data sources within
the Web browser. For example, iGoogle allows users to create personal pages containing
“gadgets” from multiple Web domains, such as NYTimes, Weather.com and Google Maps.
As such, mashups have gained in popularity because they provide a seamless browsing ex-
perience.

Despite their popularity, mashups are still not in widespread use for sensitive Web ap-
plications, such as banking, investment, online shopping and bill payment. Such mashup
applications currently require user authentication to prevent unauthorized access to sensi-
tive information. A Web user who includes such sensitive applications in a mashup must
authenticate herself individually to each of these applications. For example, mint.com and
yodlee.com allow users to view a summary of their financial activities by accessing back-
end services, such as banks and credit card companies. However, they require the user to

Address(es) of author(s) should be given

http://www.editorialmanager.com/idis/download.aspx?id=853&guid=857e83fa-bc7d-4e73-b37a-64a2b5ce326e&scheme=1

authenticate with each of these services. Studies show that users who manage multiple Web
identities often use weak passwords, or write them down to alleviate the burden of having
to memorize their passwords for each domain—both of which can potentially compromise
security.

Existing techniques to ease user authentication leverage federated identity management
solutions, such as Single Sign-On (SSO). In conventional SSO, a user authenticates herself
to an identity provider (IdP) website. The IdP allows the user to sign into other participat-
ing service provider (SP)' websites without requiring her to authenticate again. For exam-
ple, suppose that Alice authenticates herself using a secure logon session with an identity
provider IdP.com. She may later wish to access services provided at CarRental.com and
Airline.com. Instead of requiring Alice to authenticate herself again to CarRental.com and
Airline.com (the SPs), IdP.com could assert Alice’s identity to these websites. IdP.com can
provide Alice’s user name and other attributes that verify her identity to CarRental.com
and Airline.com.

However, two key difficulties prevent existing identity management protocols from be-
ing directly applicable to modern Web-2.0-based mashup environments. First, these pro-
tocols implement SSO via a series of HTTP redirections within the user’s browser. These
redirections perform inter-domain communication between the IdP and SP and transmit the
user’s credentials from the IdP to the SP. However, redirections are ill-suited for stateful
Ajax-based applications, such as Web desktops and Web-based office applications, because
they involve unloading/reloading the application upon each redirection. Without application-
level support, unloading/reloading operations will result in the loss of unsaved data. Second,
the use of an identity provider to manage credentials and personal information raises pri-
vacy concerns. For example, existing solutions require direct communication between the
IdP and SPs. As a result, [dP.com may learn that Alice has accounts at CarRental.com
and Airline.com and her usage pattern of these sites. Similarly, CarRental.com may query
user’s flight schedule (or other attributes) from Airline.com.

Several identity management schemes have been proposed to address IdP-related pri-
vacy concerns by anonymizing user credentials, defining privacy policies, or hiding a user’s
digital trail [4,7,14,24,26]. There are two main differences between these privacy-aware
identity management solutions and our work. First, we study identity management in client-
side mashup environments through a secure and efficient in-browser framework. Second, we
propose a novel single sign-on protocol that operates without requiring the participation of
a trusted party identity provider.

We present Web2ID, a new protocol for identity management (and SSO) in mashup
applications. By leveraging a secure mashup framework developed in our prior work [30],
Web2ID enables transfer of credentials without requiring page redirections, and works seam-
lessly with Ajax-based Web-2.0 applications. We also describe a new relay mashup frame-
work, based on which a trusted, client-side relay application can be built in the mashup
to transmit credentials between providers. Our Web2ID protocol offers the following main
benefits:

— Privacy. We protect user privacy by eliminating the requirement of a trusted party iden-
tity provider in the single sign-on process. To realize this property, we utilize public-key
cryptography in our authentication protocol. Moreover, we provide a client-side com-
munication framework called a mashlet relay which enables a service provider to send
a query to another service provider without revealing its identity. A mashlet is a HTML

! Identity providers have also been known as authorities or asserting parties. Service providers have also
been known as replying parties.

page hosted by an iframe in the browser (described in Section 2). The mashlet-relay
framework protects user privacy in mashup environments because service providers that
host user data are unable to learn how a user consumes her data. This feature is espe-
cially important when the user wants to provide her identity attributes (certified by a
trusted party) to another service provider.

— Compatibility with legacy browsers and modern Ajax oriented mashups. Our

framework is implemented as a JavaScript library that is incorporated with mashup ap-
plications. It does not require browser modifications or specialized plugins to operate
and is fully portable across browsers and execution platforms. We illustrate the porta-
bility of our framework by incorporating it with several popular browsers, including
Firefox, Opera, Apple Safari, IE and Google Chrome. Moreover, we avoid using HTTP
redirections for communication; consequently, our protocol is compatible with modern
Ajax-based Web applications.
Our implementation of the relay framework required in-browser support for both sym-
metric and asymmetric cryptography in the form of a JavaScript library. We highlight
the key difficulties in creating such a library for a legacy browser and also consider this
library as an independent contribution of this paper.

2 Background and Definitions

In this section, we present background material on mashup frameworks, discuss the prob-
lems addressed by our identity management protocol, and conclude with a description of a
popular identity management protocol (OpenID).

2.1 Mashups and Mashlets

Mashup applications aggregate content from a number of providers and display them within
Web browsers. Such applications can be designed either as server-side mashups or client-
side mashups. In server-side mashups, a proxy (called the mashup server) aggregates con-
tent from multiple sources. The Web browser loads the mashup application by visiting a
URL corresponding to the proxy. For example, Facebook applications use the RESTful
API provided by Facebook to query a user’s social information and aggregate it with other
data. In contrast, client-side mashups directly aggregate content within the Web browser.
Several frameworks have recently been proposed to support safe yet expressive client-side
mashups [3,10,16,18,28,31]. In this paper, we restrict our attention to client-side mashup
applications.

The client-side components of a mashup application are called mashlets. Mashlets rep-
resent the service provider that is hosting them in the client side and run in the browser
with the privileges given to their hosts. To be concrete, a mashlet is simply a HTML page
which loads to an iframe and contains some JavaScript code that enables it to communicate
with other mashlets in the page. A mashup application is a Web application that aggregates
a number of mashlets, possibly from different sources on the Web. We also use the term
mashlet container to refer to the mashup application.

A number of recently-proposed frameworks allow mashlets to securely communicate
with other mashlets executing in a mashup application [3,16,18,28,31]. A secure inter-
mashlet communication protocol is one that guarantees mutual authentication, data con-
fidentiality, and message integrity. Mutual authentication in inter-mashlet communication

means that two mashlets that communicate with each other must be able to verify each
other’s domain name. Message integrity requires that any attempt to tamper with the mes-
sages exchanged between two mashlets should be detected/prevented. Data confidentiality
means a mashlet should not be able to listen to the communication between two other mash-
lets running under different domains.

For concreteness, the rest of this paper describes mashups and mashlets in the context
of OpenMashupOS (OMOS) [23,31], a secure client-side mashup framework that we de-
veloped in prior work. However, the concepts developed in this paper are applicable to any
client-side mashup framework that provides the above properties.

2.2 Identity Management in Mashup Applications

In the following discussion, we consider three problems in identity management and discuss
how the Web2ID protocol and our mashup relay framework address each of these problems.
Where applicable, we also discuss why existing techniques fail to address the problem.
User Authentication. When sensitive Web applications, such as those for banking, invest-
ment and tax services, are integrated into a mashup environment, it is highly desirable to
use an authentication protocol that provides single sign-on (SSO). SSO enables these ser-
vice providers (i.e., the bank or the investment company) to authenticate the user without
requiring her to prove her identity separately to each provider. The goal of an authentication
protocol in a mashup environment is for the user to prove the ownership of an identity to
a service provider without revealing any information that can be misused by a malicious
service provider to impersonate the user.

Most existing identity management protocols for the Web, including OpenlD [1], use
a unique URL to represent the identity of a principal. The advantage of using a URL as
opposed to a name or email address is that a URL is tangible, clickable, user-friendly, and
can contain information that facilitates the authentication process. This URL is called the
principal’s identity URL . The static page that is located at identity URL is called the identity
page. The server that hosts the identity page is called the identity host. Therefore, during
authentication, the user claims ownership of an identity URL and proves her claim to a
service provider by following the corresponding authentication protocol. However, all these
authentication protocols require a trusted third party, called the Identity Provider (IdP), to
validate the user’s claim. Users first create an account with IdP and use the identity page to
delegate the authentication of their identity URL to that IdP. But this violates user privacy
because the IdP can learn the surfing habits of the user.

Web2ID uses public-key cryptography to enable users to prove ownership of their iden-
tity URL without relying on third parties. In Web2ID, users are represented by a mashlet
hosted at their identity URL, in much the same way that service providers are represented
on the client-side by their mashlets. We call the mashlet that is hosted at the identity URL an
identity mashlet. That is, in Web2ID, the identity page is a mashlet, i.e., it includes JavaScript
libraries required for communication and providing authentication services.

During the authentication protocol, the user first presents her identity credentials to her
identity mashlet. In turn, the identity mashlet acts on behalf of the user and interacts with
other mashlets to prove that the user owns the identity that corresponds to its URL. The iden-
tity mashlet enables other desirable features including authorization delegation and attribute
exchange. We define both problems below.

Attribute Exchange. An important feature supported by most identity management frame-
works is that of attribute exchange, in which one service provider requests a user’s identity

attributes (e.g., her age) or preferences from another service provider. Attribute exchange is
especially important for mashup applications, in which interaction between mashlets is the
norm. We refer to a service provider that requests user’s attributes as an attribute requester
and the service provider that stores user attributes and settings as an attribute provider (also
called a wallet [25]). An attribute provider may optionally certify user attributes (e.g., for
attribute-based authorization) or simply send non-certified values (e.g., for providing set-
tings and preferences).

An identity attribute exchange protocol should ideally accommodate three privacy re-
quirements:

— Requirement 1: An attribute provider should share a user’s attributes only upon explicit
consent from the user.

— Requirement 2: An attribute requester should be able to query a user’s attributes with-
out necessarily knowing the identity of the user.

— Requirement 3: The protocol should be able to anonymize an attribute requester to
prevent an attribute provider from learning identity of the requester (and thereby, the
user’s Web surfing habits).

Designing a browser-based protocol that can satisfy all these requirements is challeng-

ing. Existing browser-based attribute exchange protocols use a series of HTTP redirections
to keep users in the loop to acquire their consent without revealing their identity to the
requester (Requirement 1). However, in such protocols, the requester must send a callback
URL to the provider; as a result, HTTP redirection-based communication discloses the iden-
tity of the requesters, thereby violating Requirement 3. State of the art techniques to remove
the need for communication between the attribute requester and provider use sophisticated
cryptographic techniques (e.g., idemix [6]). However, these solutions are not currently suit-
able for practical use in browser-based protocols [25]. Web2ID uses our proposed mashlet
relay framework to anonymize the attribute requester.
Authorization Delegation. Web application mashlets included in a mashup typically access
resources hosted at other domains. In this context, the mashlet that accesses resources is
typically called the Consumer, while the domain that hosts the resource is called the Service
Provider. Consumers should not be able to access a user’s protected resources unless the
user grants them the required access permission.

An authorization delegation protocol allows a user to delegate permissions to a con-
sumer to access her resources hosted at a service provider. For example, a user may be able
to delegate permissions needed to access her files on a photo-sharing website (the service
provider) to a website that provides photo editing utilities (the consumer). An authorization
delegation protocol should be privacy-preserving in that it must not reveal the user’s identity.
In the example above, for instance, the user may wish to grant the photo editing service read
access to her photos hosted on the photo sharing website without revealing her identity to
the photo editing service.

3 Threat Model

In this section, we present the threat model for Web2ID.

Users may be malicious. As is standard with AJAX-based applications, some messages of
the Web2ID protocol are exchanged on the client-side, within the user’s browser via inter-
mashlet communication. Because the user has complete control over the browser, a mali-
cious user may alter the client-side component of the Web2ID protocol, for example, by

forging the identity of another user or providing forged identity attributes to an attribute re-
quester. Consequently, for transactions in which the user must not be trusted, the correctness
and integrity of the Web2ID protocol must not rely on the client-side portion of the protocol
executing correctly. Web2ID uses cryptographic techniques to ensure the integrity of data
that passes through the client.

Service providers may be malicious. When a service provider authenticates a user, it must
receive certain information that enables it to ensure the authenticity of the user. A malicious
service provider may misuse this information to impersonate the user to a second service
provider using a relay attack. For example, a malicious service provider attacker.com that
authenticates Alice may use her credentials to impersonate her to another service provider
honest.com. In this attack, attacker.com tries to log into honest.com claiming the owner-
ship of Alice’s identity URL (e.g., alice.me). When honest.com challenges attacker.com,
it relays that challenge to Alice when she tries to prove her identity to attacker.com. In turn,
attacker.com uses this information to convince honest.com of Alice’s identity.

In attribute exchange, a malicious attribute provider may try to violate a user’s privacy
by learning the identity of requesters that try to obtain the user’s attributes. As a result,
the attribute provider may learn the user’s surfing habits. Similarly, a malicious attribute
requester may also try to learn the user’s identity or attributes without her agreement.

Finally, in the authorization delegation protocol, a malicious consumer may try to con-

vince a service provider to give it access to a user’s protected resources without possessing
appropriate authorization (i.e., explicit consent from the user). In the case where the user
wishes to protect her privacy from the consumer, a malicious consumer may try to learn the
user’s identity during the course of authorization.
Man-in-the-Middle (MitM) attacks. Based on their capabilities, man-in-the-middle at-
tackers (MitM) can be either active or passive. A passive MitM attacker only listens to
the conversation between two parties in the protocol. The goal of a passive attacker is to
obtain information that can be used to impersonate the user, get unauthorized access to her
private resources or violate her privacy. In contrast, an active attacker can also modify the
content of conversation. An active MitM may try to change the result of an authentication
or authorization check by modifying data transmitted in the protocol. MitMs can also be
classified based upon their location in the network. Client-side MitMs involve a malicious
mashlet that tries to spoof mashlet-to-mashlet communication in the protocol. A network
MitM spoofs network communication, such as those between a mashlet and its server, or
between two servers. In the Web2ID protocol, we assume that the point to point network
communications are safe against active MitM attacks, which can be guaranteed by using
secure lower level protocols like SSL. Finally, malicious mashlets may also try to subvert
the protocol by launching frame phishing attacks against the user [18].

4 Basic Web2ID Protocol

The basic Web2ID protocol enables users to prove their identity to a service provider website
without the use of a trusted third party. This enables users to independently prove their iden-
tities and prevent any third party from learning their surfing habits. The Web2ID protocol
achieves this goal using public-key cryptographic primitives in a manner akin to public-key
client authentication in SSH (RFC 4252 [2]). Suppose that a principal P (e.g., Alice) wishes
to adopt an identity I (e.g., an identity URL, such as alice.me) and prove her ownership
of that URL to a service provider SP.com. We explain below how identity adoption and
authentication work in Web2ID.

Identity Adoption. To adopt an identity URL I, say alice.me, Alice first hosts an iden-
tity mashlet at this URL. The identity mashlet is a component that is trusted by Alice
and represents her within a mashup application. To configure her identity mashlet, Alice
must navigate to her identity mashlet using a browser. When the identity mashlet loads for
the first time, it detects that it is not configured, and generates a public/private-key pair
(Pu(I),Pr(I)). The public key is embedded within the identity mashlet, while the private
key must be stored safely by Alice.

Authentication. When a user such as Alice attempts to authenticate herself with a service
provider, she claims the ownership of an identity URL, such as alice.me. In turn, the service
provider sends a session token encrypted under the public key associated with the identity
URL alice.me. When the user then sends requests to access resources, she must prove
ownership of the session token corresponding to her claimed identity. Figure 1 illustrates
how service provider SP.com assigns a session token to the user who claims the ownership
of identity alice.me. As this Figure illustrates, authentication happens in seven steps, as
described below:

1. The user claims to own an identity I. For instance, this identity could be an identity
URL alice.me. This claim can be communicated to the mashlet of the service provider
SP.com. For example, the user may enter the URL in a form provided by SP.com.

2. The service provider’s mashlet sends the claimed ID I to the service provider and, if
not already loaded, loads the identity mashlet located at the claimed identity URL (i.e.
alice.me).

3. The service provider extracts the public key Pu(I) and the type/version of the corre-
sponding public-key encryption algorithm Alg from the claimed identity page.

4. The service provider first generates a session token y, and encrypts x and the do-
main name of its mashlet SP.com with the public key Pu(T). It then sends the result
A = Epy(ry(x, SP.com) back to the service provider’s mashlet as response. Note that
the domain name of the service provider must be included in A to protect users against
relay attacks by malicious service provider (see Section 3).

5. The service provider’s mashlet sends A = Ep,,1)(x, SP.com) to the identity mashlet
for decryption.

6. If the identity mashlet does not already have the private key Pr(I), it asks the user to
provide her login credentials. Using the user’s login credentials identity mashlet com-
putes the private key. For example, the user can load the encrypted value of her private
key from a USB memory stick and provide a passphrase that can be used by the mashlet
to compute the private key. Alternatively, the user may enter the private key directly by
swiping a smart card that contains her private key.

Once the identity mashlet has the private key and user permits the authentication, the
identity mashlet decrypts A and verifies that the domain name of the service provider
(SP.com) matches the domain name in the token.

7. The identity mashlet sends the computed session token x back to the service provider

mashlet.

In our implementation, inter-mashlet communication is facilitated by the OMOS frame-
work [30] which provides mutual authentication, and confidentiality and integrity guaran-
tees for the data exchanged between two mashlets. This ensures that a malicious mashlet in
the mashup application will not be able to compromise communication between the iden-
tity mashlet and the service provider’s mashlet (so the value x will not be available to an
eavesdropper).

Browser

Request

T « .

Response

———-- : 5
,
: SP.com ?

C Private Key: [#ss==ssseses |
Identity Host Log in v Ignore
Alice.me

0

(vsy 68) By
()nd

79 EPu(I)(7.SP.com)
=

gemsooooooooooooooooa

B SP.com EE)x
I=Alice.me :) 2

—1Web2ID: Allce.mel
SID.E

Service Provider
SP.com

Fig. 1 An identity mashlet represents the user within the application. The user can prove ownership of the
identity mashlet by proving the possession of the private key that corresponds to the public key located at
URL of the identity mashlet.

Upon the completion of the above protocol, the service provider can verify that the
value of the session token received from the identity [is valid. This proves the user’s claim
of ownership of I to SP.com. Existing identity management protocols prove the possession
of the session token by including it with each request, and are therefore vulnerable to session
hijacking via MitM attacks. Our implementation of Web2ID uses a MAC (message authen-
tication code) to prove possession of the session token.” In this approach, the MAC value
of each XMLHttpRequest request is computed using the session token and is included
in every request. The service provider serves a request only if the included MAC value is
correct. Note that during the above protocol does not require the service provider to keep
any protocol-specific state, thereby ensuring a stateless implementation of the web applica-
tion at the service provider. In addition, the user’s credentials are never transmitted over the
network; instead such communication happens on the client-side, where communication is
secured using OMOS.

The Web2ID authentication protocol can also be used by a service provider to prove the
ownership of its mashlet. We use this feature as part of authorization delegation protocol
that we describe next. The authorization delegation and attribute exchange protocols build
upon the authentication protocol described above.

The above basic Web2ID protocol supports user authentication. It can be generalized
to support more complex operations such as identity attribute exchange and authorization

2 To do so, we ported the necessary cryptographic functions HMAC-SHA1 and HMAC-SHA256
(RFC2104 [19], RFC3174 [9]) into the OMOS framework.

delegation. In Section 5, we will present a mashup relay framework and explain how it
facilitates attribute exchange in Web2ID. Our authorization delegation protocol is described
in Section 6.

Security Analysis of the User Authentication Protocol. Because Web2ID uses client-side
inter-mashlet communication, its security relies on the client-side communication protocol
that is used in its implementation. We assume that the mashlet framework that is used for
implementation of Web2ID guarantees confidentiality of inter-mashlet communication. This
assumption implies that the mashlet framework protects the protocol against MitM attacks
by malicious mashlets. Next, we analyze how the user authentication protocol resists against
attacks launch by adversaries.

Since the session token is encrypted by the public key that is associated with the
claimed identity URL (located at the identity page), the user can get access to the session
token only if she owns the corresponding private key. Therefore, assuming that only the
owner of an identity URL has access to the private key that corresponds to the public key
embedded in the corresponding identity page, she will be the only person that can use that
session token. This prevents malicious users from forging identities that does not belong to
them.

To protect users against replay attacks, Web2ID requires service providers to encrypt
the domain name of their mashlet besides the session token. This way the identity mashlet
can ensure that the mashlet that is requesting the session token is not replaying an encrypted
session token issued by another service provider. Finally, since user’s credentials and ses-
sion tokens are never sent over network in clear text, Web2ID authentication is immune to
passive MitM attacks. As discussed earlier, Web2ID relies on the underlying communication
protocol (e.g., https) to protect users against active MitM network attackers.

5 Relay Mashlet and Attribute Exchange in Web2ID

In this section, we introduce a new mashlet relay framework which is a simple-yet-general
mashup application that enables user-centric client-side communications between two do-
mains. Then we explain why such a mashlet relay framework is useful in the implementation
of identity attribute exchange in Web2ID.

5.1 Mashlet Relay Framework

We define mashlet relay framework as a special client-side mashup framework with three
mashlets within a browser environment where the communication of two mashlets, each
hosting contents of a remote server, is indirect and realized through a third mashlet that is
hosted by the local host. We refer to the two mashlets hosted by remote servers as server
mashlets. A server mashlet also communicates to its corresponding remote server via the
mashlet-to-server communication mechanism. We refer to the mashlet that bridges the com-
munication of the two server mashlets as the relay mashlet. All inter-mashlet communica-
tion follows the mashlet-to-mashlet messaging mechanism. The relay mashlet effectively
passes messages between two server mashlets and is able to modify the messages based
on user’s inputs. Figure 2 shows a schematic drawing of such a mashlet relay framework,
where the mashlet in the middle (Mediator) mediates the communication between a re-
quester (e.g., SP.com) and a provider (e.g., AttProvider.com). The mediator mashlet is
launched by the local host of the individual user. It anonymizes the identity of the requester

10

(e.g., SP.com), as the provider (e.g., AttProvider.com) learns nothing about who issues the
request. Such a mashlet relay framework, although simple, supports a user-centric design
where the user is able to monitor and actively control the messages being communicated
among server mashlets. As a consequence, the client-side relay mashlet eliminates the need
of direct communication between the two server mashlets. This feature plays a key role in
enabling privacy-aware identity management in Web2ID.

SP.com Q@@ P

o
Access Criteria: o SP.com is requesting
Age > 18 Cortnind your age: Certified Age
el

(=9 | |20

o i

Fig. 2 Web2ID users mashlet relay communication framework for attribute exchange. In mashlet relay
framework, a mashlet (center) mediates the communication between requester (left) and provider (right)
and anonymizes the identity of requester.

This mashup-based relay framework naturally facilitates the construction of a privacy-
aware identity management protocol, namely identity attribute exchange in SSO, that en-
ables the exchange of user’s identity credentials without the direct communication between
the identity provider and service provider. In existing (federated) identity management sys-
tems, direct communications between providers on user’s ID information are typically re-
quired, which, however, is undesirable as providers may learn sensitive attributes of the user.
Therefore, the segregation of providers in their communication protects user privacy and
prevents providers from colluding to discover user activities. Yet, in the meantime, proper
message exchanges among providers should be allowed, e.g., a service provider may need to
verify Alice’s identity attributes hosted by an identity provider. Next, we explain why such
a mashlet relay framework is useful in the identity attribute exchange in Web2ID.

5.2 Identity Attribute Exchange

When a service provider requests a user’s identity attributes from another service provider,
the user may wish to anonymize the identity of the provider requesting these attributes.
Doing so prevents the attribute providing service from learning the user’s surfing habits.
To implement privacy-aware identity attribute exchange, Web2ID avails of the mashup re-
lay framework. In particular, the relay mashlet mediates the exchange of identity attributes
between service providers. Because the relay mashlet forwards the request to the attribute
provider only after obtaining the user’s consent, users have full control over what attributes
can be exchanged.

Figure 2 presents an example that shows how using Web2ID a service provider SP.com
can query user’s age certified by AttProvider.com. If the attribute requester already knows
the user’s identity, the identity mashlet of the user can itself be used as a relay mashlet.
Alternatively, a mashlet loaded from a trusted third party or the local machine can act as the

11

relay mashlet. We omit the security definition and analysis for our identity attribute exchange
protocol, as they can be easily deduced following the analysis in the basic Web2ID protocol.

6 Web2ID Extension: Realizing Authorization Delegation

Section 2 defined the problem of authorization delegation in single sign-on for Web ap-
plications. We can realize authorization delegation as a natural generalization of the user
authentication procedure in the basic Web2ID protocol. The details are presented in this
section. A user may wish to delegate to a consumer the rights to access her resources hosted
on a service provider. There are two cases that arise in the implementation of authorization
delegation, based upon the privacy guarantees that the user requires.

Case 1: Protecting user identity from the consumer. In the first case, the user may not
want to disclose her identity to the consumer. For example, a user Alice may wish to print
her photos hosted at a photo sharing website SP.com by allowing a printing website Con-
sumer.com to access her photos at SP.com. Yet, she may not wish disclose her identity (i.e.
Alice.me) to Consumer.com. To support this case, the authorization delegation protocol
should not give any information to the consumer that reveals her identity.

Figure 3 illustrates the authorization delegation protocol, via which Consumer.com
acquires an opaque token AC' to access Alice’s resource (e.g., /a/V.jpg) without learning
her identity I (e.g., Alice.me). As this figure illustrates, the service provider SP.com uses
a secret key SK, known only to the service provider, to generate an opaque token AC =
Es i (Consumer.com, GET, /a/v.jpg, I) that grants Consumer.com read access (i.e., a
GET request) to the resource /a/v.jpg, which belongs to 1.

When the service provider SP.com receives a request from Consumer.com (via back-

end server-to-server communication) containing the access token AC, it first decrypts AC
and ensures that that the identity of the requester matches the principal that the token is
granted to (Consumer.com); if so, it allows the request.
Case 2: User identity known to consumer In this case, the consumer already knows the
user’s identity (e.g., because the user has authenticated herself to the consumer). Figure 4
illustrates the protocol used in this case. The user’s identity mashlet can independently issue
an access delegation certificate using the user’s private key to grant the consumer access
to her protected resources hosted on a service provider. In turn, the service provider can
validate the certificate using the user’s public key. The service provider can obtain the public
key using the identity URL of the user that the resource belongs to.

The Web2ID authorization delegation protocol does not require the consumer to pre-
register with the service provider. This property is in sharp contrast to similar protocols
(such as OAuth), which require the consumer to pre-register with the service provider.
Additionally, Web2ID does not require the service provider or the consumer to maintain
protocol-related state during delegation, therefore it is scalable and easy to implement.
Security Analysis. Before serving a request, service providers verify that the access tokens
are either issued using their own secret keys or the private key of the owner of the resource.
Since these types of tokens can be issued only with user’s consent, consumers will not be
able to access users resources without agreement of their owner.

Moreover, to prevent MitMs from using hijacked access tokens, Web2ID requires that
all access tokens be bound to the domain name of the mashlet that the token is granted
to; therefore, these tokens can be used only by the service provider that owns the mashlet.
Service providers can use Web2ID authentication to prove ownership of the mashlet that the
token is issued for.

Browser
A

AT= E@I{ (Consumer.com,GET, /a/vjpgl) ¢ - v

Grant Access to Consumer.com Sontiser e Baaubits
GET /a/ vJpg Read access to
falv.jpg
(f __________ A.T _________ v s l Grant Access][Deny Access I
v/
Service Provider T \
SP.com P
. | «
i 2 | S
i ggl | '
’ 22 o
| « © |
- s
£ Bl Alice
> =) o I
| g | :
i ! =)
1 | 5
: @\ d
v Consumer.com :'@@
AT E
- |/alv.]
Dol Photo: |/a/v.jpg

“““““““ 2 [Print)

Consumer.com

Fig. 3 In Web2ID, a service provider can issue an opaque token to a consumer to access user’s resources. In
doing so, Web2ID does not reveal the user’s identity to the consumer.

In the access tokens issued by the service provider, the identity URL of the user is
encrypted by service provider’s secret key. Therefore, the consumer will not be able to learn
the identity of user and this protects the privacy of the user.

7 Implementation and Evaluation

As described in Section 4, realizing Web2ID requires in-browser symmetric and public-key
cryptographic primitives. However, we could not find any JavaScript cryptographic libraries
that provide all the operations that are required for implementation of Web2ID (i.e., HMAC,
public-key encryption and public/private key generation). The only JavaScript-based library
that implemented public-key cryptography [27] did not support public/private key genera-
tion, which is required by Web2ID.

Therefore, we developed a JavaScript-based cryptographic library that not only supports
operations that are required by Web2ID but also can be easily extended to support other
cryptographic operations. Our library is fully compatible with commodity browsers, such as
IE, Firefox, Chrome, Opera and Safari, and does not require any browser modifications.

7.1 Implementation Details

We based our implementation of the JavaScript cryptographic library on the Java Cryptogra-
phy Architecture (JCA) [17,22], an open-source Java-based cryptographic toolkit. We used

Browser

Alice.me EEX

Consumer.com Requests
Read access to
lalv.jpg on SP.com

Service Provider
SP.com

Grant Access || Deny Access
. X
| i -~
1 w " 6.
| <) o -
I - 7 |
I ~ L5 .
| = P
1 = R=iry :
T = B
! © il
| = EXG)
| [g
| w &
| (G]
|

Photo: [/a/v.jpg

v
Consumer.com
AC=E Pr(D) (Consumer. com, SP.com, GET. /a/v.jpg)

Fig. 4 The identity mashlet issues a delegation certificate for read access to resource /a/v.jpg. Using this
certificate the consumer can access /a/v.jpg on SP.com.

Google Web Toolkit (GWT) to translate code from Java to JavaScript. However, in imple-
menting this library and porting it to commodity browser platforms, we encountered three
key challenges, namely performance, browser interference, and code complexity, that we
describe below.

Performance. Directly compiling the JCA library into JavaScript resulted in extremely poor
performance of cryptographic operations. We found that the main performance bottlenecks
were Biglnteger operations, such as modInverse, mod, and multiplication operations, that
are frequently used in cryptographic operations. We addressed this problem by replacing
the JCA implementation of BigInteger with the native JavaScript code using the JavaScript
Native Interface (JSNI). This replacement significantly improved the performance, with en-
cryption and decryption operations consuming less than a second (see also Section 7.2).
Browser Interference. Recall that the implementation of the Web2ID protocol requires
generation of public/private key pairs when the identity mashlet is first loaded. We observed
that key generation algorithms for public-key cryptographic algorithms such as RSA were
quite expensive. Because most browsers (and JavaScript interpreters) are single-threaded,
users cannot interact with the browser during key generation. Most browsers time out
JavaScript functions that execute for long durations of time (typically about 10 seconds).
As a result, key generation algorithms are interrupted by the browser.

To overcome browser interference during our key generation operations and keep the
browser responsive, we used an incremental and deferred command technique. We observed
that the most expensive operation during the generation of public/private RSA key pairs
was the generation of probable prime numbers p and ¢. The BigInteger.getProbablePrime
function continuously generates random odd integers until it finds a one that passes Miller-

14

Rabin primality test, thereby resulting in long execution times. We changed this procedure
so that each iteration ran in a continuous time slice. We then scheduled the next iteration
for another time slice and returned control to the browser. This process continues until the
key generation algorithm finds a number that passes Miller-Rabin test. We found that this
approach was effective at keeping the browser responsive and preventing browser timeouts
of JavaScript execution.

onGenerated()

Miller-Rabin test Failed! Failed! Failed! Passed!

Time

V///] Browser Time Slice

[T] ith Iteration in getProbablePrime function

Fig. 5 Deferred execution of prime number generation.

The above approach causes all procedures invoked during key generation to be asyn-
chronous. Consequently, the key generation algorithm takes as input a call back function that
returns the result to the browser. The following code snippet provides an example. Instead
of directly returning KeyPair, the function generateKeyPair, accepts a callback object of
type KeyPairCallback and returns KeyPair by calling onGenerated function once the key
is generated.

KeyPairGenerator keyGen = null;
try
{
keyGen = KeyPairGenerator.getInstance ("RSA");
}
catch (NoSuchAlgorithmException e)
{
Log.error (e.toString());
}
keyGen.initialize (512); // Key Length
KeyPair keyPair = keyGen.genKeyPair();
// original signature: KeyPair generateKeyPair();
keyGen.generateKeyPair (new KeyPairCallback ()
{
public void onGenerated(KeyPair keyPair)
{
PrivateKey privateKey = keyPair.getPrivate();
Log.debug ("Private key : " +privateKey);

b

Code complexity. JCA, upon which our JavaScript library is based, uses several Java fea-
tures, such as reflection, that are not supported by GWT. Consequently, we first modified
JCA to a set of core components that were sufficient to implement cryptographic operations
needed for Web2ID. We then used this stripped-down version of JCA with GWT to produce
our JavaScript library.

RSA Key Generation

70000

60000 alE

50000 W Firefox
I

30000

20000 W Opera

10000

1024
Key Length

Fig. 6 Key generation performance of our cryptographic library on different browsers.

7.2 Experiments

In this section, we report on the performance of in-browser cryptographic operations that are
required for the implementation of Web2ID. Our goal is to study feasibility and overhead
of using in-browser cryptographic operations. We ran experiments on a machine with the
following configuration: Intel Core 2 CPU, 980 MHz, 1.99 GB RAM, Microsoft Windows
XP 2002 SP2. We tested our implementation using the following browsers: Google chrome
v1.0.154.53 Firefox v3.0.8, Internet Explorer v7.0.5730.13, Opera v9.27, and Apple Safari
v3.1.1.

The most expensive cryptographic operation that is required by Web2ID is key gen-
eration. Figure 6 shows the runtime of our RSA keypair generation function for keys of
size 512 and 1024 bits. Since key generation is a probabilistic process, the values reported
are averaged results over ten runs. As this Figure shows, Google Chrome, which uses a
fast JavaScript Engine (V8), generates a 1024-bit key pair in under 4 seconds. The slowest
browser was IE, which took about one minute to generate a 1024-bit key pair. Because key
generation is a one-time operation and the browser stays responsive during this time, we feel
that this delay is acceptable.

Figure 7 shows the performance of RSA encryption/decryption using keys of length
1024 bits. As expected, decryption is more costly compared to encryption and the perfor-
mance is quite reasonable for web applications. Of the browsers that we tested, Google
Chrome had the best performance (less than 100ms for decryption using 1024-bit key).

8 Applying Web2ID to Web-based Desktop Applications

In this section, we present an application of the Web2ID protocol to a web-based desktop
application (in short, a Webrop). We also show how Web2ID addresses requirements that
existing identity management protocols, such as OpenlD, are unable to fulfill.

8.1 Background on Webtops

Recent advances in Web programming technologies have given rise to Web-based productiv-
ity applications (i.e., office applications), such as word processors, spreadsheets, and image-

RSA Encryption/Decryption

2500 {

olE
2000 4 m Firefox
oChrome
» 19901 O Safar
£
1000 4 mOpera
500 A
0 T

Encryption Decryption

Fig. 7 Performance of RSA encryption and decryption on different browsers.

processing tools. Unlike traditional desktop-based office applications, these web-based of-
fice applications provide a number of advantages, such as the ability to easily share data,
and the ability to save and retrieve data in a ubiquitous manner. Although in their infancy,
such web-based applications have a large user-base, as evidenced by the popularity of appli-
cations such as Google Docs.

However, additional support is needed to fully realize the power of such Web-based
office applications. In particular, applications such as Google Docs typically allow users
to only run one office application within each browser page (or tab). The applications are
isolated from each other (e.g., within an i f rame) and cannot easily share a user’s resources.
Web-based desktop applications (or Webtops) address this problem by providing a desktop-
like environment within the browser. Users can open multiple office applications within a
webtop, and can easily share data between these applications (e.g., using drag-and-drop). A
number of popular Webtops are now available, including Glide OS, eyeOS, and G.ho.st [13,
11,12].

8.2 Zaranux: An Open-source Webtop

To demonstrate the application of Web2ID to Webtops, we built an open-source Webtop
application called Zaranux [32]. Integrating Web2ID into a Webtop requires access to the
source code of the Webtop. We chose to build Zaranux because were were unable to procure
the source code of existing Webtops.

Zaranux emulates a desktop environment, such as Gnome or KDE, within the Web
browser. It provides several applications, including a command-line interface (i.e., a termi-
nal), via which users can easily browse and access their remote file system, upload/download
files, and run third-party applications. Each third-party application, such as a word proces-
sor, runs within its own protection domain and can access user data in a controlled manner
after obtain the user’s consent. Figure 8 presents a screenshot that shows how a user can
view a list of “running processes” by issuing a ps command from the terminal, in a manner
akin to a traditional desktop. In this case, the running “processes” are the Web applications
executing within the purview of the Webtop. The end-user can similarly explore her file
system, view images, and edit documents using third-party applications.

In a manner akin to system calls in operating systems, Zaranux exposes an API via which
office applications can access the services provided by Zaranux. In our implementation, this

[0 Zorss, Lo besed webt

C ¢ httpi/fzaranux.com/)@ &
) Windows Marketplace (7] New folder (1 Other bockmrks.

[cusonize ks [15E RecustDatabase

Image Viewer BE

Terminal BES

[soe
|1001 1000 Sat Feb 27 14:20:09 GHT-S00 2010 shell
e [1002 1000
e = fomo

Hotepad
0 photos =

Contact: infoRzaranux.com
AboutZarsnu oo

nnnnnnn nat is zaram

27 14:20:19 GNT-500 2010 Explorer

| Moot Zarseus bt
Zaranux is a web-based operating system that by 27 14:20:33 GNT-500 2010 Zohouriter

8 casteintro o
& Qe

Word B
3

e Format - || Insert |~ Review | Views v | PageSetup =
E poiibed by Y

A b Eym ot [z [format-V][B, 7 Uk ¥ ADE=E

L — —T— 1 l] El El q 7 T
& e - =N
. [What is Zaranux? ~
My Compter
@ Zaranux is a web-based operating system that by emulating a desktop environment (lke
T— Mac/Windows) provides its users with a convenient access fo their web-enabled resources (e.¢

B00TSECTD0S FileSystem, Camera) and applications (Word, Excel, Player. ...).
& caphudg xis s
1 (I contighisi - Shortcuts:

conFiGSYS

5. i
ogin/Create Account [Cirl-L (Chrome/Fircfo: Ctrl-Alt-L)
[Next View |Ctrl-PageUP (Chrome: Cirl-Alt-PageUP) [
SR T NI P 7= O P B XN SO S =

- 1

Z

Fig. 8 Zaranux emulates a desktop operating system on the Web. Users can run Linux-like commands
through a terminal or use an explorer to browse their file system and run various powerful third-party appli-
cations such as Web-based versions of Excel, Word and Media Player. Third-party applications can access
user’s file system in a controlled manner.

API resembles a POSIX-style system call API. This API includes both a server-side compo-
nent and a client-side component, corresponding, respectively, to the server- and client-side
portions of the Webtop. Server-side APIs are RESTFul-oriented, and are accessible over the
network using the HTTP protocol. The client-side API builds upon our prior work on client-
side inter-domain communication protocols (developed in OMOS). Figure 9 illustrates how
Zaranux exposes its services in both the client side and the server side. As this figure il-
lustrates, the photo editor application can either communicate with the back-end servers
directly, on the server side (via the HTTP protocol), or within the Webtop, where commands
are communicated between mashlets (of the photo-editor and the back-end, respectively)
using the OMOS protocol.

We have also implemented a high-level SDK library to ease the development of office
applications for Zaranux. This SDK library implements several classes and functions that
resemble those provided in the java. io package. The most significant difference is that
most methods in the Zaranux SDK are asynchronous, i.e., they return their result using
callback objects. The following code-snippet illustrates how an application can read a file
using the Zaranux SDK. Note that this code resembles Java code to read a file on a local
file system. This feature allows the code to easily be compiled using both a Java compiler
to produce server-side code, as well as a JavaScript compiler (e.g., Google Web Toolkit) to
produce client-side code. The Java compiler produces code that uses the server-side API,
whereas code produced using the JavaScript compiler uses the client-side API.

import com.zaranux.java.io.x;
import com.zaranux.api.AsyncCallback;

void read(new AsyncCallback<String> callback)

{
File file = new File("/documents/test.txt");
FileInputStream fis = new FileInputStream(file);
InputStreamReader isr = new InputStreamReader (fis);

Browser

Zaranux.com
POSIX System Call API

Jaoueleg-peot - °

. Zaranux.com

POSIX System Call API

OMOS Protocol

Alice

HTTP Protocol

PhotoEditor.com

PhotoEditor.com

Fig. 9 Zaranux provides its services through POSIX-like system call APIs. These APIs are accessible both
from client side and server side. In this example, PhotoEditor.com application can interact with Zaranux from
its backend or mashlet in the client side.

char[] cbuf = new char[1024];
isr.read(cbuf, new AsyncCallback<Integer> ()

{

public void onSuccess (Integer n)

{
String data = new String(cbuf,0,n);
callback.onSuccess (data);

}

public void onFailure (Throwable t)

8.3 Implementing Identity Management in Zaranux

Because Webtops support a variety of office applications, typically from different sources,
users often have to authenticate themselves with each such application. A Webtop that inte-
grates an identity management solution can therefore greatly improve end-user experience.
However, existing identity management solutions are not directly applicable to Webtop en-
vironments, as discussed earlier in this paper. Office applications are typically stateful and
contain unsaved data. Existing identity management solutions are implemented via a series
of HTTP redirections, which will result in the loss of unsaved data.

We therefore integrated our implementation of Web2ID with Zaranux. Below, we dis-
cuss how Web2ID provides single sign-on, authorization delegation and resource access in
Zaranux.

19

User Authentication and Single Sign-On. A user first logs into Zaranux and enters his cre-
dentials into a mashlet provided by an identity provider (as discussed in Section 4). The im-
plementation of Web2ID in Zaranux ensures that any applications that require authentication
can seamlessly verify the identity of the user without requiring the user to authenticate again.
Zaranux shares the identity of its users with applications only after getting their consent. The
example below explains a common authentication scenario.

Suppose that Alice has logged into Zaranux, and has started a finanicial application, e.g.,

located at the URL http://investment.com. When Alice tries to access her data at invest-
ment.com, it must authenticate her. To do so, the mashlet from investment.com requests
Alice’s identity URL by making a client-side system call to Zaranux. After getting Alice’s
concent, Zaranux returns her identity to investment.com. In turn, according to Web2ID
protocol, to verify this claim, investment.com mashlet forwards the claimed URL to the
investment.com server, which retrieves the public key from Alice’s identity URL, encrypts
a session token and returns it to the client side (as in the Web2ID protocol). Note that all
these steps are transparent to Alice, once she has authenticated herself to Zaranux, which in
turn provides identity management services to other office applications that require authen-
tication.
Authorization Delegation and Resource Access. In Zaranux, an office application that
wishes to access a resource, such as a file or directory, invokes a client-side API akin to
the open system call on traditional desktop operating systems. This API call returns a file
handle that can be used to access the resource. This file handle serves as an opaque ca-
pability token that delegates a certain access permission (e.g., read, write or delete) to the
token holder. Zaranux also implements the authorization delegation protocol (discussed in
Section 6), and uses relays to enable delegation in a privacy-preseving manner.

9 Related work

Our Web2ID protocol can be realized with any secure mashup frameworks. They provide
general infrastructure and environments for content providers to communicate in our identity
management applications. There have been a couple of recent work that proposed secure
mashup solutions including MashupOS [28], SMash [18], PostMessage method [3], and
OMOS [31]. The main goal of these solutions is two-fold: to isolate contents from different
sources in sandbox structures such as frames and to achieve frame-frame communication.

SMash [18] uses the concepts in publish-subscribe systems and creates an efficient event
hub abstraction that allows the mashup integrator to securely coordinate and manage con-
tents and information sharing from multiple domains. SMash mashup integrator (i.e., the
event hub) is assumed to be trusted by all the web services. MashupOS [28] applies concepts
in operating systems in mashup and develops sophisticated browser extensions and environ-
ments that enable the separation and communication of frames similar to inter-process com-
munication management in the operating system. As mentioned earlier, the OpenMashupOS
(OMOS) framework contains a key-based protocol providing secure frame-to-frame com-
munication [31].

Camenisch er al. presented the architecture of PRIME (Privacy and Identity Manage-
ment for Europe), which implements a technical framework for processing personal data [7].
PRIME focuses on enabling users to actively manage and control the release of their private
information. Privacy policies for liberty single sign-on [20,8] have been presented [24] by
Pfitzmann. The paper identifies a number of privacy ambiguities in Liberty V1.0 specifi-
cations [21] and propose privacy policies for resolving them. A good article on the issues

20

and guidelines for user privacy in identity management systems was written by Hansen,
Schwartz, and Cooper [15].

In the federated identity management (FIM) solution by Bhargav-Spantzel et al., per-
sonal data such as a social security number is never transmitted in cleartext to help prevent
identity theft [4]. Commitment schemes and zero-knowledge proofs are used to commit data
and prove the knowledge of the data. BBAE is the federated identity-management protocol
proposed by Pfitzmann and Waidner [26]. They gave a concrete browser-based single sign-
on protocol that aims at the security of communications and the privacy of user’s attributes.
Goodrich et al. proposed a notarized FIM protocol that uses a trusted third-party, called no-
tary server, to effectively eliminate the direct communication between identity provider and
service provider [14]. The main difference with these proposed privacy-aware ID manage-
ment solutions and our approach is that we study ID management in the client-side mashup
environment through a novel and efficient mashlet relay framework.

In the access control area, the closest work to ours is the framework for regulating
service access and release of private information in web-services by Bonatti and Sama-
rati [5]. They study the information disclosure using a language and policy approach. We
designed cryptographic solutions to control and manage information exchange. Another re-
lated work aiming to protect user privacy in web-services is the point-based trust manage-
ment model [29], which is a quantitative authorization model. Point-based authorization
allows a consumer to optimize privacy loss by choosing a subset of attributes to disclose
based on personal privacy preferences. The above two models mainly focus on the client-
server model, whereas our architecture include two different types of providers.

10 Conclusions

As mashup applications increase in popularity, we expect that they will also be used with
sensitive Web services, such as financial and banking applications. When mashups are used
in such scenarios, it is key to provide features such as identity management and SSO. Exist-
ing identity management protocols are ill-suited for modern AJAX-based Web applications

This paper presented Web2ID, an identity management protocol for mashup applica-
tions. Web2ID preserves the privacy of the end user and eliminates the need for a trusted
identity provider in the online single sign-on process. We described how this feature can
be realized with conventional public-key cryptography. We also described a mashlet-relay
framework that enables efficient yet indirect communication between two server mashlets
via a local relay mashlet controlled by the user. Such a relay framework allows for attribute
exchange without disclosing the user’s surfing habits to service providers. Our implemen-
tation of Web2ID and the relay framework is implemented as an in-browser library and is
fully compatible with commodity browsers.

11 Acknowledgements

The first author would like to thank the help of professors at Bahai Institute for Higher
Education (BIHE).

References

1. OpenID Specification. http://openid.net/developers/specs/.

21

2. RFC 4252, The Secure Shell (SSH) Authentication Protocol http:/tools.ietf.org/html/rfc4252.

3. Adam Barth, Collin Jackson, and John C. Mitchell. Securing Browser Frame Communication. In Pro-
ceedings of the 17th USENIX Security Symposium, 2008.

4. Abhilasha Bhargav-Spantzel, Anna Cinzia Squicciarini, and Elisa Bertino. Establishing and Protecting
Digital Identity in Federation Systems. Journal of Computer Security, 14(3):269-300, 2006.

S. Piero A. Bonatti and Pierangela Samarati. A Uniform Framework for Regulating Service Access and
Information Release on the Web. Journal of Computer Security, 10(3):241-272, 2002.

6. Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous cre-
dential system. In ACM Computer and Communication Security 2002. ACM, 2002.

7. Jan Camenisch, Abhi Shelat, Deiter Sommer, Simone Fischer-Hiibner, Marit Hansen, Henry Krasemann,
G. Lacoste, Ronald Leenes, and Jimmy Tseng. Privacy and Identity Management for Everyone. In
Proceedings of the 2005 ACM Workshop on Digital Identity Management, pages 2027, November 2005.

8. S. Cantor, F. Hirsch, J. Kemp, R. Philpott, E. Maler, J. Hughes, J. Hodges, P. Mishra, and J. Moreh.
Security Assertion Markup Language (SAML) V2.0. Version 2.0. OASIS Standards.

9. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). In RFC3147.

10. Robert Ennals and Minos Garofalakis. MashMaker: mashups for the masses. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pages 1116 — 1118. ACM, 2007.

11. eyeOS, http://eyeos.org/.

12. G.ho.st, http://g.ho.st/.

13. Glide OS, http://www.glidedigital.com.

14. Michael T. Goodrich, Roberto Tamassia, and Danfeng (Daphne) Yao. Notarized federated ID manage-
ment and authentication. Journal of Computer Security, 16(4):399-418, 2008.

15. Marit Hansen, Ari Schwartz, and Alissa Cooper. Privacy and Identity Management. IEEE Security and
Privacy, 6(2):38—45, 2008.

16. Collin Jackson and Helen J. Wang. Subspace: Secure Cross-Domain Communication for Web Mashups.
In Proceedings of the 16th International Conference on World Wide Web, pages 611-620, 2007.

17. Java Cryptography Architecture. http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html.

18. Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, and Sachiko Yoshihama. SMash:
Secure Component Model for Cross-Domain Mashups on Unmodified Browsers. In Proceedings of the
17th International Conference on World Wide Web, 2008.

19. Krawczyk, Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication. In RFC2104.

20. Liberty Alliance Project. http://www.projectliberty.org.

21. July 2002. Liberty Alliance Project: Liberty Protocols and Schemas Specification, Version 1.0.

22. OpenJDK, http://openjdk.java.net/.

23. OpenMashup. http://www.openmashupos.com/.

24. Birgit Pfitzmann. Privacy in Enterprise Identity Federation - Policies for Liberty Single Signon. In Pro-
ceedings of the Third International Workshop on Privacy Enhancing Technologies (PET 2003), volume
2760, pages 189-204, 2003.

25. Birgit Pfitzmann and Michael Waidner. Privacy in browser-based attribute exchange. In Proceedings of
the 2002 ACM workshop on Privacy in the Electronic Society, pages 52—62. ACM, 2002.

26. Birgit Pfitzmann and Michael Waidner. Federated Identity-Management Protocols. In Security Protocols
Workshop, pages 153—174, 2003.

27. RSA IS library. http://www-cs-students.stanford.edu/ tjw/jsbn/.

28. Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and Communication Abstrac-
tions for Web Browsers in MashupOS. In ACM Symposium on Operating Systems Principle (SOSP),
pages 1-16. ACM Press, 2007.

29. Danfeng Yao, Keith B. Frikken, Mikhail J. Atallah, and Roberto Tamassia. Point-Based Trust: Define
How Much Privacy Is Worth. In Proc. Int. Conf. on Information and Communications Security (ICICS),
volume 4307 of LNCS, pages 190-209. Springer, 2006.

30. Saman Zarandioon, Danfeng Yao, and Vinod Ganapathy. Omos: A framework for secure communication
in mashup applications. In ACSAC’08: Proceedings of the 24th Annual Computer Security Applications
Conference, December 2008.

31. Saman Zarandioon, Danfeng Yao, and Vinod Ganapathy. OMOS: A Framework for Secure Commu-
nication in Mashup Applications. In ACSAC’08: Proceedings of the 24th Annual Computer Security
Applications Conference, December 2008.

32. Zaranux, http://openjdk.java.net/, Saman Zarandioon.

