
 Danfeng (Daphne) Yao
 Assistant Professor

 Department of Computer Science
 Virginia Tech

基于用户意图的异常检测
User Intention Based Anomaly Detection

Tianjin University June 2012

Botnet threats are pervasive

botmaster

How big are botnets? E.g., ~ 6 million bots found by AT&T,
average 3-5% enterprise assets infected by botnets [GTISC 08]

Mariposa botnet 12 million IPs;
Stolen data belonging to 800K users;
Malware changes every 48 hours;
Attacker uses real name in DNS

Government

Corporate

Individual

Security breaches
Compromise info

Identity theft
Financial loses

Financial loses
IP theft

Source: GTISC, PandaSolution

Map of Mariposa bots

Malware installation
 E.g., drive-by downloads: 450,000
out of 4.5 millions URLs [Google 08]

Evolving landscape of attacks
[1980’s - early 1990’s]
Curiosity fueled hacking:
capability demonstration
of hackers

[late 1990’s – early 2000]
Financial driven attacks:
spam, stealing credit
cards, phishing, large-
scale botnets

[late 2000 – present]
Targeted attacks: stealing
proprietary information,
information warfare

Challenges caused by:
Scale, complexity,
anonymity

Internet was a friendly place. Security problem
then was a day at the beach.

-- Barbara Fraser ‘08

Detecting malware – code vs. behavior

First academic use of term virus by Fred Cohen in 1984,
who credits advisor Len Adleman with coining it

Signature based scanning

–  Analyze malware samples, extract signatures, and statically
scan the file system for malicious code

But malware may encrypt/obfuscate itself
–  To detect malware behaviors at run time (dynamically)
–  E.g., system call execution, memory/stack access

But what about zero-day malware/exploit?
–  Anomaly detection

But how to define the normalcy of a program?
 D. Denning ’87: anomaly detection

Problem: how to ensure system integrity
 （系统完整性）?

Our approach: host-based bot detection by enforcing normal system
and network patterns

Motivation: Humans and bots have distinct patterns when interacting
with computers

Challenge 1: How to find robust features?

Challenge 2: How to prevent bot forgery?

Challenges in Winning Bot Wars

Trusted computing platform

Root Key

Platform Registers

SHA-1 hash

User inputs and activities

Using our user-intention based anomaly
detection techniques, a PC owner wants to
know:

•  Who is using the computer
•  Where the keystroke is from
•  Where the packet is from
•  What/who causes outbound traffic
•  What/who downloads files on the

computer
•  Whether or not the apps behave

For preserving system integrity

Know who is using the computer

Keystroke Dynamics Based Authentication

Related keystroke dynamics
[MRW CCS 99] [MR CCS 97]

Keystroke timing follows a Gaussian distribution

TUBA (Telling hUman and Bot Apart)

 Use Scenario

 1. Training Phase: user keystroke data collected
 2. TUBA challenge: asks user to prove identity by typing a string

TUBA challenge is personalized

Used support vector machine (SVM) for classification, 92.26% TP, 3.39% FP

How robust is keystroke dynamics based authentication
against forgery attacks?

Our Architecture and Adversary Model
Client-server architecture

 Data collection & processing on a trusted server

Adversary model
•  Infect the user’s computer
•  Monitor, intercept and modify network traffic
•  Collect and inject keystroke information of the general public,

except the owner
Can also support a stand-alone architecture

Hardware

Kernel & X
Server

TUBA

SSH
tunnel

Hardware

Kernel & X Client

Evaluator Timing
models

X key
events

evaluation

Alice’s PC

Human vs. Bots

String GaussianBot NoiseBot
TP FP TP FP

www.cooper.edu 96.29% 2.00% 100.0% 0.00%

1calend4r 93.74% 3.43% 97.71% 1.43%
deianstefan@gmail.com 96.57% 1.71% 99.71% 0.29%

Keystroke timing analysis is robust against the bots that we studied Summary: Keystroke timing analysis is robust against statistical bots studied

20 users: 10 males 10 females, ages [18-23]
Session time [20 min – 1 hr]
Collected samples: 6 words, 35 samples of each

Duration of i-th character as random variable Xi> 0

1. Gaussian distribution with mean µi and variance σi
2:

 Xi ~ N(µi,σi
2) -- GaussianBot

2. Constant with additive uniform noise:
 Xi ~ µi + U(-ηi; ηi) -- NoiseBot

 Assuming first-order Markov model

Deian Stefan, Xiaokui Shu, and Danfeng Yao.
Robustness of Keystroke-Dynamics Based Biometrics
Against Synthetic Forgeries.
Computers & Security. 31. 109-121. 2012. Elsevier.

Keystroke dynamics authentication work appeared in:

Know where your keystroke is from

Preventing Stronger Adversaries With TPM
A stronger adversary may:
•  Gain root on the computer
•  Collect the owner’s keystroke information
•  Tampering TUBA client

Our prototype on Intel Core 2
Duo (INT-C0-102) following
TPM Interface Spec 1.2

Our goal: to prevent fake key event injections & tampering TUBA

Hardware TPM

Kernel trust agent

Client

Hardware

Kernel

Server

Evaluator
SVM
models

Trusted-key event,
 TPM quote or key exch.

Encryption +
authentication

Evaluation or key exch.

Related TCB/TPM work [MPR NDSS 09] [GBMR, NSDI 08] [MPPRI, EuroSys 08]

Highlights in TUBA Integrity Service
1. Server verifies trusted boot of client

2. Key exchange between agent & server
3. Trust agent signs keystroke events

4. Client relays signed events

Trusted-key event,
 TPM quote or key exch.

Encryption +
authentication Hardware TPM

Kernel trust
agent

Client Server

Secrecy of Signing key is guaranteed

Sign a packet (SHA1) with a 256-bit key: 18.0 usec
Encrypt a packet (AES-CBC) with a 256-bit key: 67.6 usec
(Averaged on 1312 keystroke events with TPM key initiation.)
Bandwidth (i.e., communication overhead): 13 KBps

Summary: Robust TUBA introduces minimal overhead and practically
causes no delay even for a fast typist

Our Approach: Cryptographic
Provenance Verification (CPV)

Data-provenance integrity – origin of kernel-level data not spoofed

CPV differs from traditional digital signatures

Signs a document Signer knows what to
sign and what not

 CPV - a robust attestation mechanism that ensures
true origin of data
 TUBA embodies our CPV approach

Know where your outbound network
packet is from

i.e., to catch all outbound traffic from a host for inspection

Apply Cryptographic Provenance
Verification to Network Stack

User Space

Kernel Space

Network Stack

2 Kernel Modules:
 Sign Module
 Verify Module

Key management:
 Key derived from TPM

Technicalities:
 Defragmentation
 Signature transfer

Prototype in Windows

Application

Transport

Network

Data Link

Physical

Malware
Traffic

Legitimate Traffic

Tampering
Prevention

1

TPM-based
integrity service

3

Sign
Module

Verify
Module

Signatures 2

Our solution enables advanced traffic inspection – no packet left behind

Throughput Analysis in CompareView
•  As packet size increases, overhead decreases
•  < 5% overhead for 64KB packet size
•  Signing partial packet reduces overhead

Successfully detected several real-world and synthetic rootkit-based malware

Summary: Our work enables robust personal firewall

Fu_Rootkit, hxdef, AFXRootkit, our proof-of-concept rootkit

No

With

Kui Xu, Huijun Xiong, Chehai Wu, Deian Stefan, and Danfeng Yao.
Data-Provenance Verification For Secure Hosts.
IEEE Transactions of Dependable and Secure Computing
(TDSC). 9(2), 173-183. March/April 2012.

Cryptographic provenance verification work appeared in:

Know what/who causes your outbound traffic

Motivation for traffic anomaly
detection on a host

How	 to	 distinguish	 the	 malicious	
outbound	 packets	 from	 the	
legitimate	 ones	 on	 a	 host?	 	

Our approach for traffic anomaly
detection

To	 enforce	 dependence	 properties	 among	
outbound	 network	 requests	 of	 a	 host	

Key observation	
• User	 inputs	 trigger	 outbound	 network	
packets	

To	 fetch	 index.html	

To	 sent	 i
ndex.htm

l	

To	 fetch	 more	 Ailes	 (css/js	 etc.)	

A Technical Challenge

To	 parse	 the	
html	 Aile	

Browser automatically sends many outbound requests.

Work Flow of CR-Miner

User Events

Dependence
Rules

CR-Miner

Traffic events (outbound)

User event

Traffic event

Traffic dependence graph (TDG)

Threat	 model:	 application-‐level	 malware	

Events and their attributes

 User events

Traffic event

 Traffic events

Timestamp Event Name	 Value	 URL	
A	 0:0:01.077	 KeyDown	 Return	 http://www.engadget.com/	
B	 0:0:02.910	 MouseClick	 -‐	 Left	 X=1069	 Y=474	 http://www.cnet.com/	
C	 0:0:03.000	 Wheel	 -‐120	 N/A	

Timestamp	 Object
Requested	

Remote Domain
Name	 Referrer	

1	 0:0:02.863	 /	 www.engadget.com	 http://www.engadget.com/	
2	 0:0:02.873	 /media/main.css	 	 www.engadget.com	 http://www.engadget.com/...	
3	 0:0:03.113	 /	 www.cnet.com	 null	

Dependence	 rules	 specify	 relations	 of	
attributes	 of	 dependent	 events	

Definitions in Our Traffic Dependency
Graph (TDG)

A	 B	 C	 D	 User	 events	
(Root)	

	 Traffic	 events	
	 1

2

3 8

5 7

4 6

(Subroot)	
	

Timeline	

Definition of security: a legitimate traffic
event belongs to a tree in a TDG that is
rooted at a legitimate user event.

Vagabond traffic event

Our BFS-Based Algorithm to Construct
Traffic Dependence Graph

Traffic	 events	
1

2 3 8

5

7 4

6
Is_Subroot()

Is_Child()
9

10

B	 D	 F	 A	 User	 events	 C	 E	 G	 H	

Input:	 	 	
	 -‐	 an	 existing	 TDG	 (trees	 of	 events,	 which	 root	 at	 user	 events)	
	 -‐	 a	 new	 outbound	 trafAic	 event	 q	
Output:	 	 	 -‐	 whether	 or	 not	 q	 is	 legitimate	

Security Analysis

-‐	 Forgery	 of	 events	 and	 defense	
-‐	 Piggybacking	 attack	 and	 defense	

Integrity	 of	 trafAic	 information	
•  Signer	 and	 veriAier	
•  Add	 a	 message	 authentication	 code	 (MAC)	

Implementation Architecture

System	
services	

(updates	 etc.)	

	
Windows	 API	

Hook	 API	 IP	 Helper	 API	 LIBPCAP	 API	

Application	 Programs	
	

	
Other	 App.	 Browser	 Signer	

CR-‐Miner	 Causal	 relation	 analyzer	
Process	 module	 Traf9ic	 module	

Veri9ier	
Hook	 module	

Our prototype in Windows is called CR-Miner.

Questions to be answered in
experimental evaluation

•  Can we detect real-world stealthy malware traffic?
•  How accurate is the dependency inference algorithm?
•  How efficient is the BFS (breath-first search) based

dependency inference algorithm?
•  Does the inference accuracy suffer in noisy traffic?

User	 study	 with	 20	 participants	
A	 30-‐minute	 surAing	 session	 for	 each	 user

Experiments

Hit Rate # of User Cases Percentage (%)
0.98 ≤ r < 0.985 1 5
0.985 ≤ r < 0.99 2 10
0.99 ≤ r < 0.995 4 20

0.995 ≤ r < 1 10 50
r = 1.00 3 15

High	 hit	 rate:	 	 ≥	 0.98	 for	 all	 user	 cases.	
Are	 the	 vagabond	 trafAic	 events	 that	 we	 found	
real,	 i.e.,	 malicious?	

Hit rate r = percentage of traffic events whose causal
 relations are identified by CR-Miner

Experiments cont’d

Does	 the	 inference	 accuracy	 suffer	 in	
noisy	 trafAic?	
• Accuracy	 =	 99.2%	 in	 merged	 data	 set	

Spyware	 detection	
•  Infostealer	 and	 a	 trojan	
• Proof-‐of-‐concept	 password	 snifAier	

Hao Zhang, Danfeng Yao, Naren Ramakrishnan, and Matthew Banick.
User Intention-Based Traffic Dependence Analysis for Anomaly
Detection.
Workshop on Semantics and Security (WSCS), in conjunction with
the IEEE Symposium on Security and Privacy. San Francisco, CA.
May 2012.

Traffic dependency work appeared in:

Know what/who downloads files on your
computer

Drive-by Download Attacks	
Steps of malicious code injection & host infection 	

Legitimate web server

A#acker	 Victim user

A#acker	 compromises	 	
a	 legi0mate	 server,	 and	
uploads	 malicious	 JavaScript.	

User	 visits	 website	

A#acker	 controls	 the	 infected	 vic0m	

1 2

Compromised	 server	
sends	 back	 malicious	
code	

3

Our approach for DBD detection:
–  Monitor file-creation events and user actions
–  Identify the dependency between them

User	 	
ac(ons	

System	
	 events	

Key Observation:
Legitimate system events should be triggered by users’ actions.

Our User Intention Based DBD Detection

Challenge: Browser automatically creates files
E.g., a user indirectly triggers 482 file creation in Temporary Internet Files folder
and 47 in Cookies directory within 30 minutes of surfing.

Components and work flow

Execution monitor	

Downloadable	 area	

Input recorder

File	 system	 monitor	

Accessible	 area	 	

DeWare prototype in Windows 7 Ultimate edition

Dependency Rules Among Events

–  Rule 1 File properties of events match.

•  The file user confirms to create should be same as the one actually
created.

–  Rule 2 URLs match.

•  The file should be downloaded from the URL that user requests.

–  Rule 3 Process properties of events match.

•  The process that receives input should be the one creating the file.

–  Rule 4 Temporal constraint is satisfied.

•  A legitimate file creation event should take place within a short
threshold after a valid user-input event.

A file creation event and its triggering user event need to
satisfy dependency rules

Evaluation of detection ability (2) 	

Against popular DBD exploits:
–  We successfully detected the lab reproduced exploits:

Ø Heap Feng Shui attack

Ø HTML Object Memory Corruption Vunerability

Ø Superbuddy through AOL activeX control

Ø Adobe Flash player remote-code execution

Ø Microsoft Data Access Component API misuse

Ø DBD exploiting IE 7 XML library

Evaluation of DBD detection ability (1) 	

Against real-world malicious websites

Ø 84 out of 142 malicious websites were detected by
DeWare
Ø Some websites track incoming requests and a second visit would

not trigger exploit

Ø Malicious websites download .exe and/or .dll files
Ø E.g., to \Temp folder

Ø Popular exploit kits are used:
Ø Phoenix exploit kit
Ø Eleonore exploits pack
Ø Targeting at multiple vulnerabilities including Flash, PDF, Java, and

browser

False positive evaluation	

False positive analysis is based on the temporal
correlation is performed on the 21 user study data.

The number of false alarms is small, less than 1%.

Evaluations on commodity software on IE
7 XML DBD attacks

360 Safeguard

v3.0 .1112 No detection
360 v6.0.1 2008-6-16 No detection
360 v6.0.1 2008-10-27 No detection
360 v6.0.2 2009-10-14 Detected Heap Spray attack,

shutdown iexplorer.exe

Zonealarm Pro

7.0.483
Anti-spyware engine
5.0.189 Captured a.exe trying to

access internet. Clicked
"Deny", but H.exe was still
downloaded successfully

8.0.400
Anti-spyware engine
5.0.209

9.1.008
Anti-spyware engine
9.1.008

Security Software
Reaction

Product
Driver Engine
Version Definition

Trend Micro Internet
Security Pro v8.952

Pattern version 6.289 No detection
Pattern version 6.587.50 No detection

Microsoft Security
Essentials 　

V i r u s D e f i n i t i o n
1 . 6 9 . 8 2 5 S p y w a r e
Definition 1.69.825

Detected. User clicked clean
the threats, but DBD files
were still downloaded and
not deleted by MSE.

McAfee, Kaspersky, AVG

Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell.
Detecting Infection Onset With Behavior-Based Policies.
In Proceedings of the Fifth International Conference on Network
and System Security (NSS). Milan, Italy. Sep. 2011.

Drive-by download detection work appeared in:

Know whether or not your apps behave

We have provided a white-box approach

Legitimate or Malicious: an app-
classification problem

Problem: How to classify unknown apps as benign or
malicious?

Source: http://news.cnet.com/8301-1009_3-57328575-83/androids-a-malware-magnet-saysmcafee/?tag=mncol;topStories

Example of Malicious App: HippoSMS

	

void onStart()

entry void onStart()

entry void sendsms(String, String, String)

void sendsms(“1066156686”, “8”, “msg”)

r0 = @param0: String r2 = @param2: Stringr1 = @param1: String

android.telephony.gsm.SmsManager.sendTextMessage(r0, r1, r2)

class MessageService

void sendsms(String, String, String)

This malware sends SMS messages to a hard-coded
premium-rated number without the user’s awareness

public class MessageService{!
 !

!public void onStart(){!

! sendsms("1066156686", "8", "");!

!}!

!public void sendsms(param1,
param2, param3){!

 !

!
localSmsManager.sendTextMessage(!

 param1, param2, param3);!

!}!

}

A Data Dependence
Graph Malicious code

What is the norm? How to enforce it?
Requests to access system resources

should be based on user inputs / actions

Our approach:

Identify the dependency relation between critical
system events and user-initiated events in programs

Resources to protect from
malicious programs:
¨  File system access
¨  Network access
¨  Sensitive/personal data

SendSMS()

User inputs/ actions

ReadFile()

User inputs/actions

✖ ✔

Our User-Centric Dependence
Based Anomaly Detection Approach

Our Static Analysis Tool:
We utilize definition-use structures provided by Soot (a

static analysis toolkit for Java)
Our tool can analyze Java bytecode / source code

Program
source / bytecode

Check dependency
rule

Classification
results

Data-flow
analysis

Identify user
inputs/actions

Data Dependence
Graph

Identify
sensitive paths

Identify critical
functions API

Evaluation Results on Legitimate and
Malicious Android Apps

Most malware apps tested do not satisfy our data dependence requirement

App/Malware
Name

of User Inputs/
Actions (Source)

% of Sensitive Func. Calls
without User Inputs

Library of Sensitive
Function Calls

Le
gi

tim
at

e

SendSMS 3 0% android.telephony.gsm

BMI Calculator 2 0% android.app.Activity

BluetoothChat 2 0% java.io.OutputStream

SendMail 4 0% android.app.Activity

Tip Calculator 4 0% android.widget

M
al

ic
io

us

GGTracker.A 0 100% org.apache.http.impl.client

HippoSMS 0 100% android.telephony.gsm
android.content.ContentResolver

Fakeneflic 3 0% org.apache.http.impl.client

GoldDream 0 100% android.content.Context
java.io.FileOutputStream

Walk & Text 0 100% android.content.ContentResolver
org.apache.http.impl.client

RogueSPPush 0 100% android.telephony.gsm
android.content.ContentResolver

Dog Wars 0 100% android.telephony.gsm
android.content.ContentResolver

Security Analysis

Attacks Countermeasures

Phishing apps / social
engineering apps

Site authentication and user education

Using superfluous user
inputs and actions

Easy to detect by using our approach to
track the dependency

Code obfuscation or
Java reflection

Dynamic taint analysis

Karim Elish, Danfeng Yao and Barbara Ryder.
User-Centric Dependence Analysis For Identifying Malicious Mobile Apps.
In Proceedings of the Workshop on Mobile Security Technologies
(MoST), in conjunction with the IEEE Symposium on Security and Privacy.
San Francisco, CA. May 2012.

Program analysis work appeared in:

Using our user-intention based anomaly
detection techniques, we know:

•  Who is using the computer
•  Where the keystroke is from
•  Where the packet is from
•  What/who causes your outbound traffic
•  What/who downloads files on your

computer
•  Whether or not your apps behave

For preserving system integrity

Conclusions and Future Work

User-intention based anomaly detection is a promising
approach; we’ve demonstrated its use in detecting
anomalies in

•  network traffic,
•  file system events,
•  apps,
•  keystrokes …

Future work:
 More investigation on white box anomaly detection

and analysis
 Android based mobile system integrity

Funding Sources:
•  NSF CAREER, ARO, DHS, VT ICTAS, S2ERC

Huijun Xiong

Current Ph.D. students

Personnel in Yao group

Kui Xu Hussain Almohri Johnny Shu Tony Zhang Karim Elish

Deian Stefan
(REU 08)

Chehai Wu
(MS 09)

Matt Banick
(BS 11)

Previous group members

