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Botnet threats are pervasive 

botmaster 

How big are botnets? E.g., ~ 6 million bots found by AT&T, 
average 3-5% enterprise assets infected by botnets [GTISC 08] 

Mariposa botnet 12 million IPs;  
Stolen data belonging to 800K users; 
Malware changes every 48 hours; 
Attacker uses real name in DNS  

Government 

Corporate 

Individual 

Security breaches 
Compromise info 

Identity theft 
Financial loses 

Financial loses 
IP theft 

Source: GTISC, PandaSolution 

Map of Mariposa bots  

Malware installation 
 E.g., drive-by downloads: 450,000 
out of 4.5 millions URLs [Google 08] 
   



Evolving landscape of attacks 
[1980’s - early 1990’s]
Curiosity fueled hacking: 
capability demonstration 
of hackers 
 
[late 1990’s – early 2000] 
Financial driven attacks: 
spam, stealing credit 
cards, phishing, large-
scale botnets 
 
 

[late 2000 – present] 
Targeted attacks: stealing 
proprietary information, 
information warfare 
 
Challenges caused by:  
Scale, complexity, 
anonymity 
 

Internet was a friendly place. Security problem 
then was a day at the beach.  

-- Barbara Fraser ‘08 



Detecting malware – code vs. behavior 

First academic use of term virus by Fred Cohen in 1984, 
who credits advisor Len Adleman with coining it 

 
Signature based scanning 

–  Analyze malware samples, extract signatures, and statically 
scan the file system for malicious code 

But malware may encrypt/obfuscate itself 
–  To detect malware behaviors at run time (dynamically) 
–  E.g., system call execution, memory/stack access 

But what about zero-day malware/exploit? 
–  Anomaly detection 

But how to define the normalcy of a program? 
       D. Denning ’87: anomaly detection 

 
 



Problem: how to ensure system integrity
 （系统完整性）? 



Our approach:  host-based bot detection by enforcing normal system 
and network patterns 
 

Motivation: Humans and bots have distinct patterns when interacting 
with computers 
 

Challenge 1: How to find robust features? 
 
Challenge 2: How to prevent bot forgery? 
 
 
 

Challenges in Winning Bot Wars 

Trusted computing platform 

Root Key 

Platform Registers 

SHA-1 hash 

User inputs and activities 



Using our user-intention based anomaly 
detection techniques, a PC owner wants to 
know: 

•  Who is using the computer  
•  Where the keystroke is from 
•  Where the packet is from 
•  What/who causes outbound traffic 
•  What/who downloads files on the 

computer 
•  Whether or not the apps behave  

For preserving system integrity 



Know who is using the computer  



Keystroke Dynamics Based Authentication 

Related keystroke dynamics 
[MRW CCS 99] [MR CCS 97] 

Keystroke timing follows a Gaussian distribution  

TUBA (Telling hUman and Bot Apart) 

 Use Scenario 

 1. Training Phase: user keystroke data collected 
 2. TUBA challenge: asks user to prove identity by typing a string 

TUBA challenge is personalized 

Used support vector machine (SVM)  for classification, 92.26% TP, 3.39% FP  



How robust is keystroke dynamics based authentication 
against forgery attacks? 



Our Architecture and Adversary Model 
Client-server architecture 

 Data collection & processing on a trusted server 
 
 
 
 
 
 
 
 
 
Adversary model 
•  Infect the user’s computer  
•  Monitor, intercept and modify network traffic 
•  Collect and inject keystroke information of the general public, 

except the owner 
Can also support a stand-alone architecture 

Hardware 

Kernel & X 
Server 

TUBA 

SSH 
tunnel 

Hardware 

Kernel & X Client 

Evaluator Timing 
models 

X key 
events 

evaluation 

Alice’s PC 



Human vs. Bots 

String GaussianBot NoiseBot 
TP FP TP FP 

www.cooper.edu 96.29% 2.00% 100.0% 0.00% 

1calend4r 93.74% 3.43% 97.71% 1.43% 
deianstefan@gmail.com 96.57% 1.71% 99.71% 0.29% 

Keystroke timing analysis is robust against  the bots that we studied Summary: Keystroke timing analysis is robust against statistical bots studied 

20 users: 10 males 10 females, ages [18-23] 
Session time [20 min – 1 hr] 
Collected samples: 6 words, 35 samples of each 

Duration of i-th character as random variable Xi> 0 
 

1. Gaussian distribution with mean µi and variance σi
2:  

  Xi ~ N(µi,σi
2)  -- GaussianBot 

2. Constant with additive uniform noise:  
  Xi  ~ µi + U(-ηi; ηi) -- NoiseBot 

 Assuming first-order Markov model 



Deian Stefan, Xiaokui Shu, and Danfeng Yao.  
Robustness of Keystroke-Dynamics Based Biometrics 
Against Synthetic Forgeries.  
Computers & Security. 31. 109-121. 2012. Elsevier. 

Keystroke dynamics authentication work appeared in:  



Know where your keystroke is from 



Preventing Stronger Adversaries With TPM 
A stronger adversary may: 
•   Gain root on the computer 
•   Collect the owner’s keystroke information 
•   Tampering TUBA client 

Our prototype on Intel Core 2 
Duo (INT-C0-102) following 
TPM Interface Spec 1.2 
 

Our goal: to prevent fake key event injections & tampering TUBA 

Hardware TPM 

Kernel trust agent 

Client 

Hardware 

Kernel 

Server 

Evaluator 
SVM 
models 

Trusted-key event,  
 TPM quote or key exch. 

Encryption + 
authentication 

Evaluation or key exch. 

Related TCB/TPM work [MPR NDSS 09] [GBMR, NSDI 08] [MPPRI, EuroSys 08] 



Highlights in TUBA Integrity Service 
1. Server verifies trusted boot of client 

2. Key exchange between agent & server 
3. Trust agent signs keystroke events 

4. Client relays signed events 
  
   
 

Trusted-key event,  
 TPM quote or key exch. 

Encryption + 
authentication Hardware TPM 

Kernel trust 
agent 

Client Server 

Secrecy of Signing key is guaranteed 
  

Sign a packet (SHA1) with a 256-bit key:   18.0 usec  
Encrypt a packet (AES-CBC) with a 256-bit key:   67.6 usec  
(Averaged on 1312 keystroke events with TPM key initiation.) 
Bandwidth (i.e., communication overhead):   13 KBps 
 

  
Summary: Robust TUBA  introduces minimal overhead and practically 
causes no delay even for a fast typist   



Our Approach: Cryptographic 
Provenance Verification (CPV)                  

Data-provenance integrity – origin of kernel-level data not spoofed  

CPV differs from traditional digital signatures 

Signs a document Signer knows what to 
sign and what not  

 CPV - a robust attestation mechanism that ensures 
true origin of data 
  TUBA embodies our CPV approach 



Know where your outbound network 
packet is from 

i.e., to catch all outbound traffic from a host for inspection 



Apply Cryptographic Provenance 
Verification to Network Stack 

User Space 

Kernel Space 

Network Stack 

2 Kernel Modules: 
  Sign Module 
  Verify Module 
 
Key management:  
  Key derived from TPM 
 
Technicalities: 
  Defragmentation  
  Signature transfer 
 
Prototype in Windows 

Application 

Transport 

Network 

Data Link 

Physical 

Malware  
Traffic 

Legitimate Traffic 

Tampering 
Prevention 

1

TPM-based  
integrity service 

3 

Sign 
Module 

Verify 
Module 

Signatures 2 

Our solution enables advanced traffic inspection – no packet left behind 



Throughput Analysis in CompareView 
•  As packet size increases, overhead decreases 
•  < 5% overhead for 64KB packet size 
•  Signing partial packet reduces overhead 

Successfully detected several real-world and synthetic rootkit-based malware 

Summary: Our work enables robust personal firewall 

Fu_Rootkit, hxdef, AFXRootkit, our proof-of-concept rootkit 

No 

With 



Kui Xu, Huijun Xiong, Chehai Wu, Deian Stefan, and Danfeng Yao.  
Data-Provenance Verification For Secure Hosts.  
IEEE Transactions of Dependable and Secure Computing 
(TDSC). 9(2), 173-183. March/April 2012.  

Cryptographic provenance verification work appeared in:  



Know what/who causes your outbound traffic 



Motivation for traffic anomaly 
detection on a host 

How	  to	  distinguish	  the	  malicious	  
outbound	  packets	  from	  the	  
legitimate	  ones	  on	  a	  host?	  	  



Our approach for traffic anomaly 
detection 

To	  enforce	  dependence	  properties	  among	  
outbound	  network	  requests	  of	  a	  host	  

Key observation	  
• User	  inputs	  trigger	  outbound	  network	  
packets	  



To	  fetch	  index.html	  

To	  sent	  i
ndex.htm

l	  

To	  fetch	  more	  Ailes	  (css/js	  etc.)	  

A Technical Challenge 

To	  parse	  the	  
html	  Aile	  

Browser automatically sends many outbound requests. 



Work Flow of CR-Miner 

User Events 

Dependence 
Rules 

CR-Miner 

Traffic events (outbound) 

User event 
 

Traffic event 
 

Traffic dependence graph (TDG) 

Threat	  model:	  application-‐level	  malware	  



Events and their attributes 

      User events 
 
 
 
Traffic event 
 
      Traffic events 
 

Timestamp Event Name	   Value	   URL	  
A	   0:0:01.077	   KeyDown	   Return	   http://www.engadget.com/	  
B	   0:0:02.910	   MouseClick	  -‐	  Left	   X=1069	  Y=474	   http://www.cnet.com/	  
C	   0:0:03.000	   Wheel	   -‐120	   N/A	  

Timestamp	   Object 
Requested	  

Remote Domain 
Name	   Referrer	  

1	   0:0:02.863	   /	   www.engadget.com	   http://www.engadget.com/	  
2	   0:0:02.873	   /media/main.css	  	   www.engadget.com	   http://www.engadget.com/...	  
3	   0:0:03.113	   /	   www.cnet.com	   null	  

Dependence	  rules	  specify	  relations	  of	  
attributes	  of	  dependent	  events	  



Definitions in Our Traffic Dependency 
Graph (TDG)   

A	   B	   C	   D	  User	  events	  
(Root)	  

	  Traffic	  events	  
	   1 

2 

3 8 

5 7 

4 6 

(Subroot)	  
	  

Timeline	  

Definition of security: a legitimate traffic 
event belongs to a tree in a TDG that is 
rooted at a legitimate user event.  

Vagabond traffic event 



Our BFS-Based Algorithm to Construct 
Traffic Dependence Graph 

Traffic	  events	  
1 

2 3 8 

5 

7 4 

6 
Is_Subroot() 

Is_Child() 
9 

10 

B	   D	   F	  A	  User	  events	   C	   E	   G	  H	  

Input:	  	  	  
	  -‐	  an	  existing	  TDG	  (trees	  of	  events,	  which	  root	  at	  user	  events)	  
	  -‐	  a	  new	  outbound	  trafAic	  event	  q	  
Output:	  	  	  -‐	  whether	  or	  not	  q	  is	  legitimate	  



Security Analysis 

-‐	  Forgery	  of	  events	  and	  defense	  
-‐	  Piggybacking	  attack	  and	  defense	  

Integrity	  of	  trafAic	  information	  
•  Signer	  and	  veriAier	  
•  Add	  a	  message	  authentication	  code	  (MAC)	  



Implementation Architecture 

System	  
services	  

(updates	  etc.)	  

	  
Windows	  API	  

Hook	  API	  IP	  Helper	  API	  LIBPCAP	  API	  

Application	  Programs	  
	  

	  
Other	  App.	  Browser	  Signer	  

CR-‐Miner	  Causal	  relation	  analyzer	  
Process	  module	  Traf9ic	  module	  

Veri9ier	  
Hook	  module	  

Our prototype in Windows is called CR-Miner. 



Questions to be answered in 
experimental evaluation 

•  Can we detect real-world stealthy malware traffic? 
•  How accurate is the dependency inference algorithm? 
•  How efficient is the BFS (breath-first search) based 

dependency inference algorithm? 
•  Does the inference accuracy suffer in noisy traffic? 

User	  study	  with	  20	  participants	  
A	  30-‐minute	  surAing	  session	  for	  each	  user 



Experiments 

Hit Rate # of User Cases Percentage (%) 
0.98 ≤ r < 0.985 1 5 
0.985 ≤ r < 0.99 2 10 
0.99 ≤ r < 0.995 4 20 

0.995 ≤ r < 1 10 50 
r = 1.00 3 15 

High	  hit	  rate:	  	  ≥	  0.98	  for	  all	  user	  cases.	  
Are	  the	  vagabond	  trafAic	  events	  that	  we	  found	  
real,	  i.e.,	  malicious?	  

Hit rate r = percentage of traffic events whose causal 
     relations are identified by CR-Miner 



Experiments cont’d 

Does	  the	  inference	  accuracy	  suffer	  in	  
noisy	  trafAic?	  
• Accuracy	  =	  99.2%	  in	  merged	  data	  set	  

Spyware	  detection	  
•  Infostealer	  and	  a	  trojan	  
• Proof-‐of-‐concept	  password	  snifAier	  



Hao Zhang, Danfeng Yao, Naren Ramakrishnan, and Matthew Banick.  
User Intention-Based Traffic Dependence Analysis for Anomaly 
Detection.  
Workshop on Semantics and Security (WSCS), in conjunction with 
the IEEE Symposium on Security and Privacy. San Francisco, CA. 
May 2012. 

Traffic dependency work appeared in: 



Know what/who downloads files on your 
computer 



Drive-by Download Attacks	
Steps of malicious code injection & host infection  	

Legitimate web server 

A#acker	   Victim user 

A#acker	  compromises	  	  
a	  legi0mate	  server,	  and	  
uploads	  malicious	  JavaScript.	  

User	  visits	  website	  

A#acker	  controls	  the	  infected	  vic0m	  

1 2

Compromised	  server	  
sends	  back	  malicious	  
code	  

3



Our approach for DBD detection: 
–  Monitor file-creation events and user actions 
–  Identify the dependency between them 

User	  	  
ac(ons	  

System	  
	  events	  

Key Observation: 
Legitimate system events should be triggered by users’ actions. 

Our User Intention Based DBD Detection 

Challenge: Browser automatically creates files  
E.g., a user indirectly triggers 482 file creation in Temporary Internet Files folder 
and 47 in Cookies directory within 30 minutes of surfing.  



Components and work flow 

Execution monitor	

Downloadable	  area	  

Input recorder  

File	  system	  monitor	  

Accessible	  area	  	  

DeWare prototype in Windows 7 Ultimate edition 



Dependency Rules Among Events 

 

–  Rule 1 File properties of events match. 

•  The file user confirms to create should be same as the one actually 
created. 

–  Rule 2 URLs match. 

•  The file should be downloaded from the URL that user requests. 

–  Rule 3 Process properties of events match. 

•  The process that receives input should be the one creating the file. 

–  Rule 4 Temporal constraint is satisfied. 

•  A legitimate file creation event should take place within a short 
threshold after a valid user-input event. 

A file creation event and its triggering user event need to 
satisfy dependency rules 



Evaluation of detection ability (2) 	

Against popular DBD exploits:  
–  We successfully detected the lab reproduced exploits:  

Ø Heap Feng Shui attack 

Ø HTML Object Memory Corruption Vunerability 

Ø Superbuddy through AOL activeX control 

Ø Adobe Flash player remote-code execution 

Ø Microsoft Data Access Component API misuse 

Ø DBD exploiting IE 7 XML library 



Evaluation of DBD detection ability (1) 	

Against real-world malicious websites 
 

Ø 84 out of 142 malicious websites were detected by 
DeWare  
Ø Some websites track incoming requests and a second visit would 

not trigger exploit 

Ø Malicious websites download .exe and/or .dll files 
Ø E.g., to \Temp folder 

Ø Popular exploit kits are used: 
Ø Phoenix exploit kit 
Ø Eleonore exploits pack 
Ø Targeting at multiple vulnerabilities including Flash, PDF, Java, and 

browser  



False positive evaluation	

False positive analysis is based on the temporal 
correlation is performed on the 21 user study data.  
 
The number of false alarms is small, less than 1%. 



Evaluations on commodity software on IE 
7 XML DBD attacks 

360 Safeguard 

v3.0 .1112  No detection 
360 v6.0.1 2008-6-16 No detection 
360 v6.0.1 2008-10-27 No detection 
360 v6.0.2 2009-10-14 Detected Heap Spray attack, 

shutdown iexplorer.exe 

Zonealarm Pro 

7.0.483 
Anti-spyware engine 
5.0.189 Captured a.exe trying to 

access internet. Clicked 
"Deny", but H.exe was still 
downloaded successfully 

8.0.400 
Anti-spyware engine 
5.0.209 

9.1.008 
Anti-spyware engine 
9.1.008  

Security Software 
Reaction 

Product 
Driver Engine 
Version Definition 

Trend Micro Internet 
Security Pro v8.952 

Pattern version 6.289 No detection 
Pattern version 6.587.50  No detection 

Microsoft Security 
Essentials 　 

V i r u s  D e f i n i t i o n 
1 . 6 9 . 8 2 5 S p y w a r e 
Definition 1.69.825   

Detected. User clicked clean 
the threats, but DBD files 
were still downloaded and 
not deleted by MSE. 

McAfee, Kaspersky, AVG 



Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell.  
Detecting Infection Onset With Behavior-Based Policies.  
In Proceedings of the Fifth International Conference on Network 
and System Security (NSS). Milan, Italy. Sep. 2011.  
 
 

 

Drive-by download detection work appeared in:  



Know whether or not your apps behave  

We have provided a white-box approach 



Legitimate or Malicious: an app-
classification problem 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Problem: How to classify unknown apps as benign or 
malicious? 
 
Source: http://news.cnet.com/8301-1009_3-57328575-83/androids-a-malware-magnet-saysmcafee/?tag=mncol;topStories 

 



Example of Malicious App: HippoSMS 

	  

void onStart()

entry void onStart()

entry void sendsms(String, String, String)

void sendsms(“1066156686”, “8”, “msg”)

r0 = @param0: String r2 = @param2: Stringr1 = @param1: String

android.telephony.gsm.SmsManager.sendTextMessage(r0, r1, r2)

class MessageService 

void sendsms(String, String, String)

This malware sends SMS messages to a hard-coded 
premium-rated number without the user’s awareness 

public class MessageService{!
   .....!

!public void onStart(){!

!   sendsms("1066156686", "8", "");!

!}!

!public void sendsms(param1, 
param2, param3){!

       .....!

!   
localSmsManager.sendTextMessage(!

       param1, param2, param3);!

!}!

} 

A Data Dependence 
Graph Malicious code 



What is the norm? How to enforce it? 
Requests to access system resources  

should be based on user inputs / actions 

Our approach: 

Identify the dependency relation between critical 
system events and user-initiated events in programs  

Resources to protect from  
malicious programs:  
¨  File system access 
¨  Network access 
¨  Sensitive/personal data 

SendSMS() 

User inputs/ actions 

ReadFile() 

User inputs/actions 

✖ ✔ 



Our User-Centric Dependence 
Based Anomaly Detection Approach 

Our Static Analysis Tool: 
We utilize definition-use structures provided by Soot (a 

static analysis toolkit for Java)  
Our tool can analyze Java bytecode / source code 

Program 
source / bytecode 

Check dependency 
rule  

Classification 
results 

Data-flow 
analysis 

Identify user 
inputs/actions 

Data Dependence 
Graph 

Identify  
sensitive paths 

Identify critical 
functions API 



Evaluation Results on Legitimate and 
Malicious Android Apps 

Most malware apps tested do not satisfy our data dependence requirement 

App/Malware 
Name 

# of User Inputs/ 
Actions (Source) 

% of Sensitive Func. Calls 
without User Inputs 

Library of Sensitive 
Function Calls 

Le
gi

tim
at

e 

SendSMS 3 0% android.telephony.gsm 

BMI Calculator 2 0% android.app.Activity 

BluetoothChat 2 0% java.io.OutputStream 

SendMail 4 0% android.app.Activity 

Tip Calculator 4 0% android.widget 

M
al

ic
io

us
 

GGTracker.A 0 100% org.apache.http.impl.client 

HippoSMS 0 100% android.telephony.gsm  
android.content.ContentResolver  

Fakeneflic 3 0% org.apache.http.impl.client 

GoldDream 0 100% android.content.Context  
java.io.FileOutputStream 

Walk & Text 0 100% android.content.ContentResolver 
org.apache.http.impl.client 

RogueSPPush 0 100% android.telephony.gsm  
android.content.ContentResolver  

Dog Wars 0 100% android.telephony.gsm  
android.content.ContentResolver  



Security Analysis 

Attacks Countermeasures 

Phishing apps / social 
engineering apps 

Site authentication and user education 

Using superfluous user 
inputs and actions 

Easy to detect by using our approach to 
track the dependency 

Code obfuscation or 
Java reflection  

Dynamic taint analysis 



Karim Elish, Danfeng Yao and Barbara Ryder. 
User-Centric Dependence Analysis For Identifying Malicious Mobile Apps.  
In Proceedings of the Workshop on Mobile Security Technologies 
(MoST), in conjunction with the IEEE Symposium on Security and Privacy. 
San Francisco, CA. May 2012. 
 
  

Program analysis work appeared in:  



Using our user-intention based anomaly 
detection techniques, we know: 

•  Who is using the computer  
•  Where the keystroke is from 
•  Where the packet is from 
•  What/who causes your outbound traffic 
•  What/who downloads files on your 

computer 
•  Whether or not your apps behave  

For preserving system integrity 



Conclusions and Future Work 

User-intention based anomaly detection is a promising 
approach; we’ve demonstrated its use in detecting 
anomalies in  

•  network traffic, 
•  file system events,  
•  apps,  
•  keystrokes … 

 
Future work: 
 More investigation on white box anomaly detection 

and analysis  
 Android based mobile system integrity 
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