
Audit-log integrity using redactable signatures with

pseudonyms

Stuart Haber William G. Horne Tomas Sander Danfeng Yao∗

{stuart.haber, bill.horne, tomas.sander}@hp.com, dyao@cs.brown.edu

Abstract

In this paper we describe a new approach for the integrity of audit records. We show
how to simultaneously establish the integrity of an entire audit data set and of any de-
rived subsets, adapting techniques that have been used before for redactable signatures.
In addition, our algorithms allow for the pseudonymization of data fields, cryptograph-
ically enforcing the consistency of chosen pseudonyms. The resulting schemes do not
add significant computational overhead to a practical system, and are shown to be se-
cure under reasonable cryptographic assumptions. We believe these algorithms can be
a helpful tool to meet audit and reporting needs, in order to comply with such reg-
ulations as the US Sarbanes-Oxley Act (SOX). The algorithms enable proofs of the
integrity of audit data and derived reports, while simultaneously providing means to
protect privacy-sensitive information against internal and external consumers of these
reports.

1 Introduction

Audit and event logs are routinely collected in IT systems for a variety of applications such
as intrusion detection, forensics, fraud detection, network monitoring and quality control.
Recently, audit logs and IT auditing have become increasingly important as a means of
assuring compliance with financial and legal regulations, such as the Sarbanes-Oxley Act
(SOX) in the US. Variants of this type of governance law are in the process of being adopted
worldwide. A major goal of this legislation is to minimize the risk of fraudulent or erroneous
financial reporting. As most of the financial and accounting aspects for corporations are
handled by enterprise software systems ensuring their correct functioning as well as keeping
reliable audit trails of system events that might have an impact on financial reports is key
for the implementation of governance practices. Furthermore internal and external auditors
regularly have to review the correct working of the controls that have been put in place.

For any reasonable use of audit logs, the integrity of the data must be maintained. In
this paper, “integrity” means that the data has not been corrupted since it entered the
system, either accidentally or maliciously. In this paper we are not dealing with the case
where the data may have been corrupted before entering the system, for example due to
human data entry errors.

∗Work performed during an internship at HP Labs, Princeton.

1

For certain applications, we want to have strong assurances of data integrity without
relying on virtual and physical access control as the primary means of protection. Crypto-
graphic techniques are particularly well-suited for these situations.

However, cryptographic techniques are not directly compatible with certain practical
requirements, for the following reasons.

• In most practical settings, an entire set of audit data is not usable directly. Audit logs
can be voluminous, potentially consuming terabytes of storage. It is typical to query
the data or use data-mining techniques in order to create useful views of the data. In
addition, audit records may contain confidential or privacy-sensitive information that
must be filtered before being given to certain parties. (The removal of sensitive data
from documents is called redaction, and in this paper we adapt several techniques that
have been proposed for proving the integrity of redacted documents.)

• It is often the case that information is subject to data lifecycle and retention require-
ments. In some situations, organizations are required to keep certain types of data
for a specified time period, after which it may be desirable to delete that data, e.g. as
dictated by Section 802 of the Sarbanes-Oxley law in the United States[1], after it
is no longer needed for the purpose for which it was collected. In addition, users
in many jurisdictions have the right to request that their data be removed from an
organization’s system.

The problem is that most cryptographic techniques only establish the integrity of an entire
set of data in its original form. These techniques do not apply to establishing the integrity
of any data derived or transformed from its original bit-sequence representation. Although
the derived data could be signed again, this method would not establish a correspondence
between the integrity of the original and the derived data. In this paper we suggest a
practical solution to this problem for audit logs.

Another practical requirement we will be addressing in our proposed scheme is the need
for pseudonymization. Rather than exposing user names in the clear to auditors, it is often
sufficient and generally has much better privacy properties if user names can be replaced
by pseudonyms. In order to allow auditors to be able to correlate user actions reliably we
want to enforce cryptographically that pseudonyms are consistent, i.e. that all occurrences
of the same user name are replaced by the same pseudonym.

The first contribution of this work is the application of redactable signature schemes to
the problem of establishing the integrity of audit logs and derived subsets of audit data, as
opposed to documents. (See §3.1 below for references to previous work on redactable sig-
nature schemes.) The second contribution is that we introduce new cryptographic schemes
to maintain the integrity of data, even when parts of the data have been pseudonymized.
We formalize a three-party trust model consisting of a data owner, a redactor, and a user
(auditor), in which we provide a security analysis of the algorithms. We believe that this
model addresses practically relevant concerns for the usage of audit logs in compliance. In
addition, this use case raises additional research questions for which other natural audit
reports data integrity proofs can be constructed.

The structure of the paper is as follows. In §2, we describe our model and the basic
cryptographic building blocks that we need. In §3, we review previous work on redactable

2

signatures and describe the particular variant that we will use, and then go on to describe
two variants of our pseudonymization and redaction algorithms for documents. In §4, we
give a formal definition of our security requirements and a theorem stating the properties of
our protocols. In §5, we adapt these algorithms to a dynamic audit log scenario and show
how to address other practically relevant aspects of an integrity-enhanced auditing system.
Finally, in §6 we list a number of open problems for future work.

2 Preliminaries

2.1 Model

There are three players in our model: a data owner, a redactor, and a user. The data owner
prepares and authenticates the data once by producing a signature and some auxiliary
information. The data, signature, and auxiliary information are given to the redactor.
When a user submits a query for the data, the redactor redacts or pseudonymizes portions
of the data according to some policy. The redacted values might be simply deleted all
together or replaced by a special symbil indicated the value has been removed. If the
redactor pseudonymizes the data, the data will be replaced with proper pseudonyms, which
may be chosen by the data owner or the redactor. The data owner and the redactor may be
the same entity. Intuitively, the “integrity” of pseudonymized data captures the property
that the data should only be modified by the redactor according to the specifications of the
data owner.

We describe our cryptographic algorithms in terms of how they apply to simple doc-
uments, which can just be viewed as strings of characters. In Section 5, we describe how
these ideas extend to audit logs. Let m denote a document to be signed, segmented into
a sequence of subdocuments m1,m2, . . . ,mn. These might correspond to words, sentences,
or paragraphs, depending on the level of granularity desired. Let ⊥ be a standard symbol
denoting a redacted subdocument, agreed upon by convention by users of the system.

2.2 Cryptographic building blocks

The security of our algorithms relies on several cryptographic assumptions.
Let H denote a particular choice of collision-free hash function. (See [14], Chapter 9, for

more details). Let S be a digital signature scheme that is secure against existential forgery
attacks by an adaptive chosen-message adversary [7]. Let C(·, ·) be a secure commitment
scheme, as can be constructed based on the existence of collision-free hash functions [11]. (In
practice, one might implement C by simply taking C(m, r) = H(0,m, r) with a collision-free
hash function H, with 0 serving as a tag indicating input for the commitment scheme.)

Let G be a secure length-doubling pseudorandom generator, as used in the GGM con-
struction of pseudorandom functions [5]. Since we use it repeatedly throughout this paper,
we sketch the construction here. It works by computing the list of values pseudorandomly
from a single random seed s by building a binary tree from the root to the leaves. Specif-
ically, suppose that s is k bits long. The data owner uses the pseudorandom generator to
expand s to a 2k-bit string, and let the first and second k bits form, respectively, the left
and the right children of s. (In practice, this could be implemented by computing H(0, s)

3

for the left child and H(1, s) for the right child.) Continuing in this manner, we obtain n
leaves.

All of the algorithms discussed in this paper can be stated in terms of any sort of proofs
of integrity that begin by hashing their inputs with a one-way hash function, including both
digital signatures and time-stamp certificates. Precise definitions of the security of time-
stamping schemes are not yet clear in the cryptographic literature (see [10, 4, 3]). Therefore
we state all our security results in terms of digital signatures.

3 Redactable and pseudonymizable signatures

Several governments in the world have analogues to the US Freedom of Information Act
(FOIA). Under this act, formerly confidential documents are released to the public. Typ-
ically, before a document is released, certain words containing sensitive information—such
as names of individuals or national secrets—are redacted, i.e. blacked out.

For electronic documents, redaction is problematic when it is also important to protect
the authenticity and integrity of the document. While conventional digital signatures and
time-stamping schemes can be used to prove the integrity of the original data, these schemes
do not work if the document has been changed in any way. So the problem is to devise
a scheme that can be used to attest to the integrity of correctly redacted versions of the
original document (and no other versions). This problem has been independently considered
by several groups of authors, under different names: as “content extraction signatures” by
[18], as “digitally signed document sanitizing schemes” by [15, 16], and as “redactable
signatures” by [12].

In addition to redacting information, of particular interest in this paper is the ability
to pseudonymize information, i.e. to replace some information with an alternative name so
as to hide the actual value. An important property of pseudonyms is that they be used
consistently. That is, if a subdocument is replaced with a pseudonym in one part of the
document, any other occurances of the same same subdocument should be replaced by the
same pseudonym.

We begin by reviewing a redactable signature algorithm due to [12]. Then we present
two new algorithms for the verification of pseudonymized documents. In our first algorithm,
the pseudonyms are determined pseudorandomly. The communication overhead from the
redactor to the user is logarithmic in the number of pseudonymized subdocuments. In order
to allow the data owner to have greater control, for example to preserve some intended
meaning for the sub-documents, in our second algorithm, the data owner can choose the
pseudonyms arbitrarily. The communication overhead of this algorithm is linear in the
number of subdocuments. In both cases, our verification algorithm enforces the consistency
of the pseudonyms.

As with conventional digital-signature schemes, it should be computationally infeasible
to forge signatures. In addition, all information about redacted subdocuments should be
hidden, other than their existence. These requirements are formalized in §4 below.

4

3.1 A redactable signature algorithm

Because our pseudonymizing algorithms are all based on it, we describe in some detail a
particular redactable signature algorithm, which is a slight variant of the one due to [12].
In this algorithm, the additional data accompanying the original document is of constant
size, and only grows logarithmically with the number of redacted subdocuments.

The algorithm is as follows:
Setup: Given a security parameter, the data owner chooses a collision-free hash function

H, a secure pseudorandom generator G, a secure commitment scheme C, and a secure
signature scheme S. The data owner then generates a public-private key pair (PK, SK),
publishes (PK, H,C, S), and keeps the private key secret.

Sign: The data owner chooses a random seed s. Let r be a vector of length n denoting
the set of leaves of a GGM tree computed from s, using G. For each subdocument mi,
the data owner computes xi = C(mi, ri). Next, the data owner builds a Merkle hash tree
from the list of leaves (x1, . . . , xn) to form the root h, and signs it with the private key SK,
to get a signature σ. The data owner sends the following information to the redactor in
a secure channel: (m, s, σ). We assume that an adversary cannot obtain the information
transmitted in the secure channel.

Redact: The user requests the document m. Based on an appropriate policy, the
redactor releases a redacted version of m. Let L be the set of indices of sub-documents to
be redacted in document m. The redactor constructs the GGM tree from random seed s,
and obtains n pseudorandom numbers r1, . . . , rn. For k ∈ [1, n], let

M = {mk | k /∈ L} ,
R = {rk | k /∈ L} ,
C = {C(mk, rk) | k ∈ L} .

Let G be the minimum set of subroots of the GGM tree that covers R. Let D be the
minimum set of subroots of the Merkle tree that covers C.

The redactor then sends the following information to the user over a secure channel:
(L,M, G,D, σ).

The communication overhead of this algorithm can be compared to a baseline case where
the redactor simply redacts subdocuments and re-signs the document. In such a case, the
redactor would have to send to the user the following information: (L,m, σ). Thus, the
communication overhead from the redactor to the user of this algorithm is due to G and D,
which is logarithmic in the number of redacted subdocuments.

Verify: The user expands each of the subroots in G to reconstruct R. From these
values, the user can compute the commitments

C = {C(mk, rk) | k /∈ L} .

The user combines these commitments with the subroots in D to find the root of the Merkle
tree, and verifies the correctness of σ as a signature on that root with the respect to the
public key PK of the data owner.

5

3.2 Algorithm 1: Commitments as pseudonyms

First, we consider the case where all of the subdocuments are distinct. The algorithm is
straightforward. We use the redactable signature algorithm described in §3.1. However, we
use the commitments C(mk, rk) as the pseudonyms. The rendering algorithm that displays
the document would have to decide how to display these pseudonyms. For example, suppose
the commitments were realized as 160-bit hash values. In the simplest case, the rendering
algorithm could display them as 27 base-64 encoded characters. A slightly more complicated
rendering algorithm might display them as more user friendly values (e.g. “pseudonym1”,
“pseudonym2”, etc.) and give the user the options of clicking on that value or hovering
over it to reveal the commitment.

Now, suppose a subdocument can occur multiple times in the document. The above ap-
proach doesn’t work because the pseudonyms will not be consistent since the commitments
on which they are based each depend on a different random number.

Suppose there are l unique subdocuments. Then we can use a GGM tree to generate
l random numbers — one for each unique subdocument. The data owner then builds a
lookup table that defines for each k ∈ [1, n] the index of the random number corresponding
to subdocument mk. The above algorithm can then be applied by using the commitment
for mk based on the random number rj , where j is value of the lookup table at entry k.
Similarly, the redactor can compute the same lookup table when computing pseudonyms.

As with the redaction algorithm in §3.1, the communication overhead of this algorithm
is due to G and D, and so is logarithmic in the number pseudonymized subdocuments.

3.3 Algorithm 2: Data owner chooses pseudonyms

Our second algorithm relies on the data owner to specify pseudonyms. Details of the
algorithm are as follows.

Setup: The setup is the same as in Section 3.1.
Sign: The data owner chooses a vector p of n pseudonyms. It is the responsibility of

the data owner to choose pseudonyms that are consistent, i.e. if mi = mj then the data
owner should choose pi = pj .

As with Algorithm 1, a GGM tree with root s is used to generate n random values r.
For each subdocument, mi, the data owner computes hi = H(C(mi, ri), pi). These hashes
are then hashed together to form a single hash value h′ = H(h1, . . . , hn). The data owner
signs h′ with the private key SK, to get a signature σ. The data owner sends the following
information to the redactor over a secure channel: (m, p, s, σ).

Pseudonymize: The pseudonymization step is similar to the Redact step described in
Section 3.1. Specifically, L is the set of subdocuments that are chosen for pseudonymization,
and the GGM tree is built the same way and M , R, C, and G are computed identically.
However, in this algorithm, the redactor then sends the following information to the user
over a secure channel: (L,M, G,C, p, σ).

Verify: The user expands each of the roots in G to find the leaves rk corresponding to
those subdocuments that have not been pseudonimized. The user computes xk = C(mi, ri)
from mi and ri for those subdocuments that have not be pseudonymized. For those sub-
documents that have been pseudonymized, the user can obtain xk directly from C. From,
these values the user computes hk = H(xk, pk) and hashes them together to find h′, and

6

verifies the correctness of σ as a signature on h′ with the respect to the public key PK of
the data owner.

In this algorithm the communication overhead is due to G and p. While G is loga-
rithmic in the number of pseudonymized subdocuments, p is linear in the total number of
subdocuments.

3.4 Variations

There are several variations on the above algorithms that are worth noting. First, in
real documents only sensitive values are likely to be pseudonymized. It is straightforward
to modify Algorithm 2 to give the data owner the flexibility to only specify pseudonyms
for specific subdocuments. More importantly, it means that the redactor need only to
communicate a smaller list of pseudonyms to the user. Now the communication overhead
becomes linear in the length of this list.

The algorithms discussed so far have the property that the receiver of a partially redacted
document may redact them further. The authors of [16] posed the question how to prohibit
the redaction of certain subdocuments which may be desirable in some cases to preserve
some intended meaning of the document. Earlier on, the authors of [18] gave a solution for
a related problem of giving the signer more control about which subsets can be redacted
and which not.

[16] gives a redactable-signature algorithm with the additional feature that any subdoc-
ument can be specified by the original signer or a subsequent redactor to be nonredactable.
Their algorithmic ideas can be applied to our schemes as well and provide a similar func-
tionality. A caveat of the original solution in [16] is that the size of the cryptographic
companion data grows linearly O(n), with n the total number of subdocuments and the
constant being approximately the bit length of the used hash values. It is shown in [8]
that the space complexity of these algorithms can be improved so that the size of the data
accompanying the original document is of constant size and only grows logarithmically with
the number of redacted subdocuments.

Using related technical ideas to the ones in [8] also the space complexity of our Algorithm
2 in which the data owner chooses the pseudonyms can be improved significantly.

4 Security

In this section we formally define our security requirements, and state a theorem describing
the security achieved by the algorithms presented in §3 above.

The principal requirement for any kind of signature scheme is that it should be compu-
tationally infeasible to forge illegitimate signatures. In contrast to conventional signature
schemes, in the case of redactable and pseudonymizable signatures we need a precise char-
acterization of the class of modifications to the original document that we consider to be
legitimate. Following [12], we define a partial order on redacted pseudonymized documents,
as follows.
Definition 1 Let document M consist of n subdocuments {m1, . . . ,mn}. Let P1 and P2

be two redacted or pseudonymized versions of M. P1 ≺ P2 holds if and only if the set of

7

subdocuments that are redacted or pseudonymized in P2 is a subset of the set of subdocuments
that are redacted or pseudonymized in P1.

For example, suppose M contains four subdocuments m1, . . . ,m4. If m1 and m3 are
pseudonymized in P1, and m1 is pseudonymized in P2, then P1 ≺ P2. In particular, the
original document is � any redacted orpseudonymized version of it. Our goal is that given
a document P , anyone can obtain an appropriately redacted or pseudonymized document
P ′ ≺ P .

In addition to a suitable unforgeability requirement, the operations of redaction and
pseudonymization introduce requirements for confidentiality and consistency.

Our confidentiality requirement is that, given a redacted or pseudonymized document,
no adversary can infer anything about the original version of any of its subdocuments
that have been redacted or pseudonymized. We capture this property by requiring that
no adversary can distinguish two pseudonymized document P and P ′ whose corresponding
original documents M and M ′ only differ at a specific subdocument, as in the definition of
chosen-ciphertext security for probabilistic encryption schemes [6].

By consistency, we mean the requirement that all occurrences of a particular sub-
document of a pseudonymized document should be given the same pseudonym if it is
pseudonymized at all; and that distinct pseudonymized subdocuments should be given
distinct pseudonyms.

Next, we give a formal definition of security in the random oracle model, adapted from
those of [18, 16, 12]. We use a game definition extending both the definitions of security for
encryption schemes [6] as well as for signature schemes [7], capturing all of our desired secu-
rity properties in a single game. We allow an attacker to issue commit queries, i.e. queries
for commitments for documents, sign queries, i.e. queries for signatures for documents,
redact queries, i.e. queries for redacted versions, and pseudonymize queries, i.e. queries
for pseudonymized versions. These queries may be chosen adaptively. Also, we allow the
adversary to choose the document on which she wants to be challenged.
Definition 2 A pseudonymization protocol is secure if no probabilistic polynomial-time ad-
versary, issuing a polynomial number of queries in the game defined below, achieves a non-
negligible advantage in the game.

The game proceeds as follows.
Setup: The challenger takes a security parameter k, and runs the Setup algorithm. It

gives the adversary the resulting public parameters param, and keeps the private key SK
to itself.

Phase 1: The adversary issues several queries, where a query is one of the following:

1. Commit query (M): The challenger computes commitments of subdocuments in M .
The commitments and random values used are given to the adversary.

2. Sign query (hr): The challenger signs the root hash hr with its private key.

3. Redact query (M,L): The challenger runs the Redact algorithm to redact the sub-
documents in M whose indices are in list L, the resulting redacted document M ′, its
proof Prf, and the signature Sig of M are sent to the adversary.

8

4. Pseudonymize query (M,L): The challenger runs the Pseudonymize algorithm to
pseudonymize the subdocuments in M whose indices are in list L, the resulting
pseudonymized document P , its proof Prf, and the signature Sig of M are sent to
the adversary.

These queries may be asked adaptively. Also, the documents queried may be distinct.
Once the adversary decides that Phase 1 is over, she chooses a challenge for attacking
confidentiality. (There is no need to choose challenges for attacking unforgeability and
consistency.)

Confidentiality challenge: The adversary outputs two equal length documents M0,M1 ∈
M on which to be challenged, such that M0 and M1 are identical except in the i∗-th
subdocument. The challenger picks a random bit b ∈ {0, 1}, and sets (P ∗,Sig,Prf) =
Pseudonymize(Mb, i

∗,Sig, Info). It sends (P ∗,Sig,Prf) as a challenge to the adversary.
The adversary needs to guess whether M0 or M1 is used to produce the pseudonymized
version P ∗.

Phase 2: The adversary issues more queries, and the challenger responds as in Phase
1.

Guess: Adversary A outputs one or more of three guesses: one for attacking confiden-
tiality, one for attacking unforgeability, and one for attacking consistency.

• Confidentiality guess: The adversary outputs a guess b′ ∈ {0, 1}. The adversary
wins the game if b = b′. We define its advantage in attacking the scheme to be
|Pr[b = b′]− 1

2 |.

• Unforgeability guess: The adversary outputs (P̃ , S̃ig, P̃rf) where S̃ig is the signa-
ture of P̃ and P̃rf is the integrity proof. The constraint for choosing P̃ is that no
sign query has been issued for any document M ′ � P̃ in Phase 1 or 2. We define its
advantage in attacking the scheme as the probability that Verify(P̃ , S̃ig, P̃rf) is true.

• Consistency guess: The adversary outputs (P̃ , S̃ig, P̃rf) where S̃ig is the signature
of P̃ and P̃rf is the integrity proof, such that (1) at least two identical subdocuments
are given different pseudonym in P̃ , or (2) at least two different subdocuments are
given identical pseudonyms in P̃ . We define its advantage in attacking the scheme as
the probability that Verify(P̃ , S̃ig, P̃rf) is true.

Theorem 1 Assume that H is a collision-free hash function, S is a digital signature
scheme that is secure against existential forgery, C is a secure commitment scheme, and
G is a secure pseudorandom generator. Then the algorithms presented in §3 are secure
pseudonymization protocols.

We omit the proof of this theorem, due to lack of space. The theorem can also be stated
in terms of concrete security, depending on the security of its cryptographic building blocks.

5 Application to audit logs

It turns out that guaranteeing the integrity of audit data is similar to the problem of secure
document redaction. Computing an integrity certificate (for example a digital signature)

9

for an audit report that somehow ties to a signature for the entire database is exactly
analogous to computing a signature for a redacted document that ties to a signature for
the original document. In this section we apply the redactable, pseudonymizable signature
system described above to arrays of data such as the database tables in which audit-log
data is typically stored.

Consider a 2-dimensional array of entries, consisting of r rows and c columns. We will
consider the data in the array to constitute a single “document” whose rc entries are its
subdocuments, taken row by row (or column by column, depending on the application).
Building the GGM tree in order to sign the array according to any of the algorithms of §3
above, we take care to group the r pseudorandom leaves corresponding to the entries of
each row into individual subtrees, and build the Merkle tree in a similar manner. When r
is not an even power of 2, this will result in somewhat larger data structures for both the
GGM and Merkle trees, but considerably reduces the size of the companion data required
when entire rows of A are redacted.

The basic approach to verifying the integrity of queries against audit logs is straightfor-
ward. Essentially, audit messages are stored in a table in a database, viewed as an array, as
just described. Any response to a database query that consists of a subset of the entries of
the database, with certain ones of these pseudonymized, can be accompanied by a signature
that proves its integrity. However, there are several practical issues that must be addressed
that impose additional requirements on how the data is handled.

First, audit data arrives continuously. Therefore we cannot view the audit database as
a static table but rather as a continuously growing one.

Second, raw audit data is typically not structured in a standard way. The audit data
must be converted from its raw form into a structured form suitable for a database.

Third, audit systems in practice must be capable of handling large volumes of data
without loss. As a result, it is a requirement that incoming records be first stored in bulk
storage before any significant processing of the records can occur.

In the remainder of this section we discuss how these steps impact the integrity of the
data and what steps can be taken to preserve integrity throughout this lifecycle.

5.1 Epochs

The audit database is constantly being appended with new records. Therefore, we cannot
treat it as a single static table. To deal with this problem we partition the audit database
into a set of disjoint epochs. Each epoch may correspond to a specific number of rows of
the table, or to a time period during which records are appended to the database.

We apply any of the algorithms in §3 to the subset of rows corresponding to an epoch.
The final hash value for the epoch’s signature, i.e. the root of the relevant Merkle treem is
linked together in a hash chain, which can then be signed with a digital signature algorithm,
or time-stamped.

When users submit subset queries against the audit database, the result set is accom-
panied by the companion data for the redactable and pseudonymizable signatures in each
epoch of data, and any additional hash values necessary to verify the hash chain over the
relevant range of epochs. The signature or time-stamp on the last value in the chain is
sufficient to verify the integrity of the entire set.

10

5.2 Bulk storage and “shredding”

We anticipate that in large systems, audit data will be arriving at a server in sufficient
quantities that it may be infeasible to perform significant processing on the data in real
time. Moreover, it may be desirable to preserve the data in its rawest form to be certain
that processing operations did not modify or delete any relevant information.

Although processing may be limited, it may be possible to apply a signature or time-
stamping procedure directly on the raw records to preserve the integrity of bulk storage,
even if this does not allow the kind of subset queries that redactable signatures allow.

To get the records into a form that can be more efficiently queried, the audit records
are “shredded”; that is, each audit record is parsed into a list of fields1. These fields form
a database record that is appended to the audit database, consisting of a single designated
table. In practice, fields resulting from any particular audit record may end up in several
different tables in the database, but for simplicity we limit this discussion to just a single
table.

How can the integrity of the audit database be tied to the integrity of the raw data in
bulk storage? Here is one method, using the content integrity service (CIS). This service
is a procedure that can be used to demonstrate that information in a long-term digital
archive is authentic and has not been unintentionally or maliciously altered, even after its
bit representation in the archive has undergone one or more transformations [9].

The essence of the CIS is to use a secure digital time-stamping system, first to time-
stamp every document at ingestion into the archive, storing the resulting time-stamp cer-
tificate in the archive with the document; and second to produce an auditable record of
every transformation to a document in the archive, in such a way as to verifiably link
the time-stamp certificate for the transformed version of the document to its original form.
This can be regarded as a generalization of the procedure for “renewing” digital time-stamp
certificates or digital signatures that was introduced by the authors of [2].

We treat the audit data epoch by epoch. Consider first the case of a single epoch. As
audit data enters bulk storage, each raw audit record is hashed, and the list of hash values
from this epoch is used to build a Merkle hash tree, whose root R is signed.

Later, as a batch process, the records from this epoch are shredded, and the shred-
ded data is entered into a redactable array. Let R′ denote the root of the Merkle hash
tree that would be signed in one of the algorithms of §3. Instead, the shredding process
that transforms the raw data into the redactable parsed data that is to be stored in the
audit database can be regarded as a “transformation”, and CIS can be invoked for this
transformation. The resulting CIS certificate is a signature authenticating the raw data
encapsulated by the hash value R, the parsed data encapsulated by the hash value R′, as
well as the connection between the two.

For any single raw audit record a and its corresponding parsed version a′, the CIS
certificate for this epoch can be extended to give a CIS certificate for the single record, by
adding to the certificate the list of sibling hash values on the Merkle-tree path from a’s
hash value H(a) to R and the similar list linking H(a′) to R′. Presumably the end-to-end
verification of this extended certificate would only be performed by a party that is permitted
to see the entire record.

1The usage of “shred” is common in discussion of XML parsing.

11

Naturally, this use of CIS can be applied, epoch by epoch, to the entire audit database,
if desired.

6 Further work

Financial and other audit applications motivate a number of additional research questions.
In this paper we described how to apply redactable signatures to the problem of verifying

the integrity of subsets of data. However in many applications, it is necessary that audit
reports contain aggregate computations, such as counts or sums of data that meet a certain
condition. The research question is how to provide efficient correctness proofs for reports
containing aggregation.

Another practical issue is that audit data may be collected across multiple systems,
each of which locally stores its data. An interesting problem is how to establish the cor-
respondence between data across these systems. Timeline entanglement is a cryptographic
method to map a time step in the history of one service onto the timeline of another [13].
An interesting topic of research would be how to integrate redaction-enabled signatures
with timeline entanglement. In this way we could provide more flexible integrity assurance
for time-based audit reports, e.g. asking for a report on all the users that logged into the
system within a specified time window.

Pseudonymization for audit data raises at least two further questions. First, pseudonyms
as described in this work allow for linkability between any two reports in which the same
pseudonym might occur. This is not always desirable, e.g. if one wishes to prevent different
auditors from learning information by putting together two previously unrelated reports.
Thus the question is how pseudonyms can be updated to prevent unwanted linkability,
in such a way that the updated pseudonyms can still be used for integrity and correctness
proofs. A second question that pseudonymization (and redaction) motivate is generalization
of pseudonyms. For example, for a date like “Aug 10, 1973”, one may wish to allow a
redactor fine-grained control over how much information is redacted. Different natural
generalizations of this date might include “Aug 1973” or “1973” or “1970-1979”. How can
we give efficiently integrity assurances for these generalized pseudonyms?

We assume for audit data that append-only databases are a primary requirement. An-
other interesting question is whether the kinds of techniques discussed in this paper could
be applied to databases where frequent updates to data are allowed.

In terms of building practical systems to implement the algorithms described in this
paper, much more work needs to be done to make this approach practical. Specifically,
there are issues around key management, user interface design, and administrative tools
that are crucial to turning this technical idea into a practical product. A complete privacy-
aware solution may also need to filter the queries that are passed to the database. For
example, consider a database that handles HR records. Simple redaction of a sensitive
field such as ‘salary’ does not prevent breaches of privacy if users are allowed to ask for
employee records with salary over $100,000. A similar problem was addressed in the work
on privacy-enhanced access control by [17], and their methods might be applicable here as
well.

12

References

[1] Sarbanes-Oxley Act. From 2002, 107 Pub. L. No. 204, 116 Stat. 745.

[2] D. Bayer, S. Haber, and W.S. Stornetta. Improving the efficiency and reliability of
digital time-stamping. In R.M. Capocelli, A. De Santis, and U. Vaccaro, editors,
Sequences II: Methods in Communication, Security, and Computer Science, pages 329–
334. Springer-Verlag, 1993. (Proceedings of the Sequences Workshop, Positano, Italy,
1991.).

[3] A. Buldas and M. Saarepera. Do broken hash functions affect the security of time-
stamping schemes? In 4th Internatioanl Conf. on Applied Cryptography and Network
Security – ACNS ’06, volume 3989 of Lecture Notes in Computer Science, pages 50–65.

[4] A. Buldas and M. Saarepera. On provably secure time-stamping schemes. In Advances
in Cryptology — ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Sci-
ence, pages 500–514, October 2004.

[5] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Jour-
nal of the ACM, 33(4):792–807, 1986.

[6] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, April 1984.

[7] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against
adaptive chosen message attacks. SIAM J Computing, 17(2):281–308., April 1988.

[8] S. Haber, Y. Hatano, Y. Honda, W. Horne, K. Miyazaki, T. Sander, and S. Tezuka.
Efficient redactable signatures with disclosure control, 2006. In preparation.

[9] S. Haber and P. Kamat. A content integrity service for long-term digital archives. In
Proceedings of Archiving 2006. Society for Imaging Science and Technology, 2006. To
appear.

[10] S. Haber and W.S. Stornetta. Secure names for bit-strings. In Proceedings of the
4th ACM Conference on Computer and Communication Security, pages 28–35. ACM
Press, April 1997.

[11] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96,
volume 1109 of Lecture Notes in Computer Science, pages 201–215. Springer-Verlag,
1996.

[12] R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes.
In Proceedings of the RSA Security Conference Cryptographers Track, volume 2271
of Lecture Notes in Computer Science. Springer-Verlag, February 2002. Available at
http://www.ece.cmu.edu/~dawnsong/papers/hom-rsa02.pdf.

13

[13] P. Maniatis and M. Baker. Secure history preservation through timeline entanglement.
In Dan Boneh, editor, Proceedings of the 11th USENIX Security Symposium, pages
297–312. USENIX Press, 2002.

[14] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC press, 1996.

[15] K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, and H. Yoshimura. Digital doc-
uments sanitizing problem. Technical Report ISEC2003-20, 2003. IEICE Technical
Report.

[16] K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshimura, S. Tezuka,
and H. Imai. Digitally signed document sanitizing scheme with disclosure con-
dition control. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, E88-A(1):239–246, January 2005. Available at
http://ietfec.oupjournals.org/cgi/reprint/E88-A/1/239.

[17] M. Casassa Mont, R. Thyne, and P. Bramhall. Privacy enforcement with HP Select
Access for regulatory compliance. Technical Report HPL-2005-10, HP Labs, 2005.

[18] R. Steinfeld, L. Bull, and Y. Zheng. Content extraction signatures. In 4th International
Conference on Information Security and Cryptology — ICISC 2001, volume 2288 of
Lecture Notes in Computer Science, pages 285–304. Springer-Verlag, December 2001.

14

