A Cryptographic Provenance Verification Approach For
Host-Based Malware Detection

Deian Stefan

Department of Electrical Engineering

The Cooper Union
New York, NY 10003

stefan@cooper.edu

Danfeng (Daphne) Yao

Department of Computer Science

Rutgers University
Piscataway, NJ 08854

danfeng@cs.rutgers.edu

ABSTRACT

We present a malware detection approach by focusing on
the characteristic behaviors of human users. We explore
the human-malware differences and utilize them to aid the
detection of infected hosts. There are two main research
challenges in this study: one is how to select characteristic
behavior features, and the other is how to prevent malware
forgeries. We address both questions in this paper.

A cryptographic provenance verification technique is de-
scribed. Its two applications are demonstrated in keystroke-
based bot identification and rootkit traffic detection. Specif-
ically, we first present our design and implementation of a
remote authentication framework called TUBA for monitor-
ing a user’s typing patterns and verifying their integrity. We
evaluate the robustness of TUBA through comprehensive ex-
perimental evaluation including two series of simulated bots.
We then demonstrate our provenance verification approach
by realizing a lightweight framework for blocking outbound
rootkit-based malware traffic.

Keywords: authentication, malware detection, cryptog-
raphy, provenance, network

1. Introduction

Studies have estimated that millions of computers world-
wide are infected by malware and have become bots that are
controlled by cyber criminals [19]. The infected computers
are coordinated and used by the attackers to launch diverse
malicious and illegal network activities, including perpetrat-
ing identity theft, sending spam (estimated 100 billion spam
messages every day [37]), launching denial of service (DoS)
attacks, committing click fraud, etc. The victim’s comput-
ing experience also suffers as the computing cycles wasted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Chehai Wu
Department of Computer Science
Rutgers University
Piscataway, NJ 08854

wuc@cs.rutgers.edu

Gang Xu
AT&T
200 Laurel Ave
Middletown, NJ 07748

gangxu@att.com

on bot-induced activities typically degrade the performance
of the machine.

Most existing botnet detection solutions are quite effec-
tive in detecting existing botnets [12, 14, 19]. These ap-
proaches typically focus on analyzing the network traffic of
potentially infected machines to identify suspicious network
communication patterns. In particular, the traces of bot-
nets’ command and control (C&C) messages, i.e., how bots
communicate with their botmasters (or botherders), are cap-
tured and their signatures and access patterns are analyzed.
For example, a host may be infected if it periodically con-
tacts a server via IRC (Internet Relay Chat) protocol and
sends a large number of emails afterwards. An example of
a botnet detection solution that analyzes network traffic for
suspicious bot-like activities (e.g., egg downloading, scan-
ning local network, etc.) is BotHunter [13]. Network trace
analysis is a critical aspect of identifying malicious bots.
These solutions usually involve complex and sophisticated
pattern analysis techniques, and have been demonstrated
to produce low false positive and false negative rates. Fur-
thermore, they can be deployed by local ISPs to monitor
and screen a large number of hosts as part of a large-scale
network intrusion-detection system.

These methods alone are suboptimal as botnets are enti-
ties that are constantly evolving to avoid detection, and thus
their behaviors change accordingly. For example, although
IRC is still the dominating botnet command and control
protocol, recent studies have found that many botmasters
are responding to detection systems by switching away from
IRC to HTTP [17]. Unlike IRC C&C traffic, HTTP traffic
is usually allowed through firewalls and can be easily cam-
ouflaged to be used for covert channels. Sole reliance on
following and leveraging bots’ behaviors for detection may
require continuous modifications in order to keep up with
the newest development of botnets.

In this paper, we adopt a different malware detection ap-
proach by focusing on the characteristic behaviors of hu-
mans. There are intrinsic differences between how a person
and a bot uses and reacts to computer applications. For ex-
ample, studies of online chatting behaviors of chat bots and
humans have shown that bots and humans behave quite dif-
ferently [11]. These human-bot differences are furthermore

utilized to distinguish humans from bots and aid the detec-
tion of infected hosts. Our ultimate goal is to design robust
bot detection mechanisms that are extremely difficult for
future generations of botnets to circumvent.

There are, however, two main research challenges in this
study: how to select characteristic behavior features, and
how to prevent malware forgery. Certain features extracted
from humans’ computer interactions, such as click counts or
email sizes, may not be characteristic enough and cannot
be used to uniquely represent an individual. In addition,
advanced malware may attempt to mimic human activities
to spoof the legitimate user in the detection. Thus, the
host used to collect behavior features should distinguish true
events from fake events that are injected by malware in hope
to circumvent the authentication system (i.e., fake events
need to be identified). We address both challenges by devel-
oping a general provenance verification method. We present
the use of robust keystroke dynamics as a trait for intrusion
detection. We also deploy TPM-based integrity measures to
prevent malware forgery.

It is worth mentioning that keystroke and mouse move-
ment analysis has been studied for authentication and user
identification [6, 18, 21, 27, 35, 44, 21]. In comparison to
previous studies, we evaluate and improve the robustness
of keystroke dynamic authentication under malware envi-
ronments, which have unique challenges. Furthermore, we
develop general security frameworks that are useful beyond
the specific biometrics studied.

Our contributions are summarized as follows.

1. We design and implement a host-based bot detection
framework called TUBA (Telling hUmans and Bots
Apart). TUBA explores the uniqueness in human
keystroke dynamics, and uses it as a strong indicator
for potential bot infection. In order to further improve
the robustness of TUBA, we design and implement
a TUBA integrity service based on on the hardware
Trusted Platform Module (TPM). Our integrity ver-
ification mechanism uses a lightweight cryptographic
protocol to prevent bots from injecting fake keystroke
events into computer applications. The integrity ser-
vice also prevents tampering attacks on the TUBA.
Our experimental evaluation on the overhead, accu-
racy, robustness, and usability of TUBA demonstrates
the efficiency and feasibility of TUBA in host-based
malware detection.

2. To further illustrate the generality of our host-based
provenance verification approach, we describe the de-
sign and implementation of a lightweight rootkit detec-
tion method. We detect stealthy outbound traffic of
rootkits by enforcing a cryptographic provenance ver-
ification scheme for outgoing network packets. Thus,
rootkits that bypass normal user-mode network func-
tions to send traffic cannot provide their provenance
proofs and are effectively detected. We describe our
experimental evaluation with real-world and synthetic
rootkits. Our throughput validation on upstream net-
work traffic shows that for 64 KB packet size the over-
head for cryptographic operations is less than 5%.

Organization of the Paper: We give an overview for
our TUBA framework in the next section. We describe
the technical details of the main components in our TUBA
framework in Section 3. In Section 4, we present our simula-

tion algorithms for two intelligent bots aiming to break the
classification algorithm in TUBA. Our experimental eval-
uation is given in Section 5. In Section 6, we describe a
lightweight rootkit detection mechanism as another demon-
stration of our host-based provenance verification approach.
Related work is described in Section 7. In Section 8, we
conclude the paper and describe plans for future work.

2. TUBA Overview

We define cryptographic provenance verification as a ro-
bust attestation mechanism that ensures the true origin of
data produced by an entity such as a system device or a pro-
gram. Such a system can be realized by cryptographically
certifying (i.e., signing) the data generated at the source.
However, our provenance verification has a fundamental dif-
ference from the traditional cryptographic signature scheme.
In most signature schemes the signer is assumed to be a per-
son who exercises discretion in signing documents and also in
protecting his or her signing keys. In the context of malware
detection, the signer and verifier are programs, e.g., kernel
modules, which may be fooled or tampered with in the cer-
tifying process. As such, prevention against these attacks
is critical. As it will soon become clear, the techniques in
cryptographic provenance verification are also very different
from the language-based or policy-based tainted inference
analysis [33], as we emphasize on the enforcement of normal
system properties with lightweight cryptographic primitives
and trusted computing infrastructure.

Although simple, the cryptographic provenance verifica-
tion method can be used to ensure and enforce correct sys-
tem and network properties and appropriate workflow under
a trusted computing environment. We illustrate two such
applications in the rest of the paper.

TUBA is a remote biometric authentication system based
on trusted keystroke dynamic information. The goal of
TUBA is to ensure that the computer is used by its true
owner, and to identify bots’ activities. We refer to an in-
dividual who has legitimate access to the computer as the
owner. Without loss of generality, we assume that a com-
puter has one owner, as our solutions can be easily general-
ized to a multi-owner setting.

Security Goal: We aim to prevent unauthorized use of a
personal computer by a malicious bot (as part of a botnet)
or by an individual who is not the owner. Specifically, our
goal is to address the following important question:

Is the computer being used by the authenticated owner or
by an intruder (whether bot or human)?

Weak Adversary Model: An adversary may infect a
user’s computer through social engineering and/or malware.
The infected computer may belong to a large botnet con-
trolled by the adversary in order to carry out malicious ac-
tivities. The adversary considered is able to monitor, inter-
cept, and modify network traffic between the owner of the
computer and the rest of the Internet. We allow a powerful
adversary to access the keystroke data of the general public,
except that of the target computer’s owner. In other words,
the adversary is capable of collecting, analyzing, and syn-
thesizing keystroke data from anyone except the owner. The
adversary’s goal is to forge and mimic the owner’s keystroke
patterns that pass the authentication tests. In this weak
adversary model, we assume that any malicious keyloggers
installed on the user’s computer can be detected and re-

moved. We assume that our detection program, TUBA, is
not corrupted or disabled on the user’s computer. The latter
two assumptions suggest that the adversary’s unauthorized
access privileges are limited to those of the victim which we
assume to be non-superuser.

Strong Adversary Model: In the above description
we assume that the adversary can infect the user’s com-
puter, monitor and tamper with network traffic, collect and
inject keystroke information of the general public, except
the owner’s. However, keylogging is relatively easy to per-
form stealthily, and keyloggers are difficult to remove. In a
strong adversary model, we allow a bot to learn the owner’s
keystroke patterns, attempt to inject fake keystroke events,
tamper with the TUBA client, and gain superuser privileges
on the user’s computer, in addition to the power described
in the weak adversary model. TUBA with TPM-based in-
tegrity service defends against this type of strong adversaries
(described in Section 3.4).

Architecture: Our TUBA framework can be realized
with a stand-alone program on the client’s local machine.
The program is responsible for collecting training keystroke
data, building learning models, analyzing, and classifying
TUBA challenges. This type of stand-alone architecture
is easy to deploy and implement. It is, however, required
that the user ensure that the program is running and that
proper measures are taken if TUBA issues warnings or alerts.
TUBA can also be implemented as a client-server architec-
ture. The server can be run by the local ISP or a trusted
company providing security services for the user. In this
architecture, the server is responsible for data collection
and analysis in a remote fashion, e.g., using SSH (Secure
Shell) the client would remotely login to the server with
X11-forwarding enabled so that the keystroke events can be
monitored by the server. The connection and storage of the
remote server is assumed to be secure. Our prototype im-
plements a client-server protocol.

2.1 A Use Scenario in Client-Server Ar-

chitecture

To provide a context of our authentication framework,
we describe a usage scenario of TUBA in a client-server ar-
chitecture as follows.

1. Training Phase: The remote authentication server
collects keystroke data from a legitimate user. We as-
sume that the user’s computer is not infected during
the training phase, but may be infected and recruited
into a botnet after the training phase has ended. The
training phase is as follows.

(a) The user and the remote server authenticate each
other and set up a secure connection. The user
then types M strings s;, ¢ = 1,..., M, as speci-
fied by the server, n times each.

(b) The authentication server records the keystroke
data from the user, which is possible using the X
Window System. The user runs X server' with
an extension (XTrap), which intercepts the user’s
keystroke events and sends the information to the
application on the remote authentication server.

'Note that in X Window System the user’s machine is called
the X server and the remote program is called the X client,
which may seem counter-intuitive at the first sight.

(c) Once a sufficient number of samples have been
collected, the authentication server processes the
user’s keystroke data by training a support vec-
tor machine, the details of which are presented in
Section 3.

2. TUBA challenge: When a suspicious network event
is observed, TUBA prompts the user with a window
requesting him/her to type in a server-chosen string,
si. Based on this user’s keystroke timing data and the
classification model built during the training phrase,
TUBA decides whether the user is the legitimate owner
or not.

3. Recognize user’s own traffic: If the user passes the
authentication test and is verified as the PC’s owner,
then TUBA informs the owner that a suspicious event
has been observed and asks whether the owner is aware
of the network connection. TUBA assists the user
in identifying stealthy intruders on their computer by
utilizing his/her own behavioral features and personal
knowledge. In Section 5.3, we further describe our
experiments on evaluating how well a user is able to
identify her own traffic.

The suspicious events mentioned above may be triggered
by existing bot detection solutions, such as BotHunter [13],
BINDER [9], or according to other (simple) pre-defined poli-
cies.

We note that TUBA is more efficient than the recently-
proposed Not-A-Bot (NAB) system [15], as we do not need
to certify every keystroke event, only when a user responds
to a TUBA challenge. Furthermore, because of our timing-
based classification, TUBA also provides a fine-grained au-
thentication ability.

3. Classification, Remote Event
Collection, and Integrity Ser-
vice in TUBA

In this section, we describe the technical details of our
TUBA framework, including feature extraction, classifica-
tion, remote event collection, and the TUBA integrity ser-
vice. We implement a prototype that demonstrates the
usability and feasibility of remote authentication based on
keystroke dynamics. We further strengthen TUBA with the
integrity service that is capable of defending against the
strong adversary model defined in Section 2.

3.1 Feature Extraction

Given a sequence of key press and key release events, fea-
tures represent various temporal aspects of the user’s typing
patterns. Features may include the total typing time of the
word and inter-key timings such as the interval between two
adjacent press or release events. Even for a short string
such as the URL www.amazon. com, the dimensionality of all
possible features is quite high. The TUBA classification
algorithm uses principle component analysis (PCA) to re-
duce the dimensions of the feature vectors as a preprocessing
step. PCA is an (existing) data mining and statistical tech-
nique which is commonly used to condense high-dimensional
data to lower dimensions in order to simplify analysis. The
premise of PCA is to reduce the dimensions of and trans-
form the original multi-dimensional datasets so that high

variations within the data are retained (i.e., the principal
components are retained).

A high-dimensional feature vector used in the classifica-
tion, however, makes it difficult for adversaries to success-
fully simulate keyboard events that pass our classification
test. For example, the word “botnet” is typed by two indi-
viduals and as shown in Figure 1, three keystroke features
are used to distinguish the two users, including the press-to-
press (PP) time of two adjacent characters, key durations
of individual characters (D), and the total typing time of
a word. The two users’ samples are well-separated using a
3-dimensional feature vector in this example.

500 100 500 100
Totaltime 00 D(b’) Total time 0 50 D(0)

0 0
1000 1000
5 200 500 100 *°
Total time Total time 0 50 D(n)
~ 200 ~ 200
=l . =l
o 100 i o 100
a a
& 0 & 0
1000 200 1000

Total Ii5r[r)10e 00 Dl('og') Total ti5r$|0e 00 p(Ct)

Figure 1: Distribution of three keystroke features
of two users. The times and durations are given in
milliseconds. One user’s data is shown with the red
circles, and the other user’s with blue triangles.

Humans are imperfect typists and may create negative
timing features in a sequence of keystroke events. For exam-
ple, when typing the string “abc”, a user may create negative
press-to-release (PR) time by pressing ‘c’ before having re-
leased ‘b’. More formally, if we denote the state at i — 1 as
z;—1 = ‘b’, and that at i as x; = ‘c’, given that ‘c’ is pressed
before ‘b’ is released then PR(x;—1,2:) = ®ip — Ti—1,» < 0.
From our experimental data, we find that a large number of
users have negative press-to-release timings in their datasets.
Although an adversary can synthesize arbitrary keystroke
events, we find that it considerably more difficult to cre-
ate an intelligent bot which can inject keystroke events that
result in negative inter-key timings (See also Section 4).

Figure 2 illustrates the practical differences in the capa-
bilities between human and bots. Assuming that keystroke
events can be modeled accurately by a first-order Markov
chain, a human’s key event path would be a combination of
the dashed and solid lines shown in the figure. It is, however,
difficult for a bot to simulate certain events, as is the case
of negative timing features (paths including dashed lines in
Figure 2). When considering higher-order Markov chains,
it is even more challenging for the attackers to successfully
mimic typing patterns with negative timing; a person may,
for example, press ‘c’ before both ‘a’ and ‘b’ are released.
Using high-dimensional data leads to higher authentication
accuracy and stronger security guarantees. However, if the
complexity of the model is increased (e.g., to a second- or
third-order Markov chain) it is important to collect addi-
tional training instances as to avoid overfitting the data.

Figure 2: Comparisons between the typing abilities
of a person and a bot modeled by using a first-order
Markov chain. z;, and z;, denote the i-th letter
pressed and released, respectively. Linear combina-
tions of the f; elements represent timing features.

3.2 Classification

Once keystroke features are collected and processed, we
train and classify the data using support vector machines
(SVMs). The use of SVMs is appropriate as the technique
can be used to classify both linearly-separable (i.e., classes
which are separable into two or more groups using hyper-
planes) and non-linearly separable data [16, 20, 28]. To clas-
sify a set of data points in a linear model, support vector ma-
chines select a small number of critical boundary points from
each class, which are called the support vectors of the class.
Then, a linear function is built based on the support vectors
in order to separate the classes as much as possible; a maxi-
mum margin hyperplane (i.e., a high-dimensional generaliza-
tion of a plane) is used to separate the different classes. An
SVM model can classify non-linear data by transforming the
feature vectors into a high-dimensional feature space using
a kernel function (e.g., polynomial, sigmoid or radial basis
function (RBF)) and then performing the maximum-margin
separation. As a result, the separating function is able to
produce more complex boundaries and therefore yield better
classification performance. In our authentication system, we
use the WEKA [42] SVM implementation with a Gaussian
RBF kernel. We refer readers to data mining and machine
learning literature such as the book by Witten and Frank [42]
or Bishop [4] for detailed descriptions of SVM techniques.

3.3 Remote Collection of Keystroke

Events

Various key-logging methods for the GNU/Linux oper-
ating system exist; common implementations include user-
space programs which monitor privileged I/O ports [8],
kernel modules that hijack the sys_read and sys_write
functions [26], and kernel modules that hijack the key-
board driver’s interrupt handler [30]. However, most of the
currently-available keyloggers were not designed with the in-
tention to extract timing information from a user’s typing
pattern, and require superuser privileges to be installed or
used. Addressing these issues and the need for a platform-
independent utility, we implemented a keylogger for the X
Windows System using the XTrap extension [1].

The X Windows System (X or X11 for short) is a power-
ful graphical user interface composed of the X server and X
clients. The X server runs on the machine where the key-
board, mouse and screen are attached, while X clients are
common applications (e.g. Firefor, KPDF or XTerm) that
run on either the local machine or a remote machine, due to
the inherent network capabilities of X11 [29, 31].

The X server can be extended with modules, such as the
XTrap server extension used in the TUBA event collection.
One of the capabilities of the XTrap extension is to inter-
cepts the core input (keyboard, mouse) events and forward
them to XTrap client applications. As such, our keylog-
ger (client application) contains a callback function which
is executed whenever a KeyPress or KeyRelease event oc-
curs to record the event information. Some supplementary
data, such as the current location of the mouse pointer and
the name of the current window in focus, are obtained and
formatted to be easily parsed by the feature extractor.

The output is then parsed by the feature extractor, which
contains a small buffer of the last C' KeyPress and KeyRe-
lease events. Given a database of words (s;, : =1,..., M)
to monitor? and feature descriptions (i.e., keystroke dura-
tions, total time to type a word, press-to-press times, etc.)
of how the strings were typed, when the buffer contents of
the keyboard input matches a database word, the features
are extracted and again formatted to be easily parsed by the
classifier.

3.4 TUBA Integrity Service

To further improve the robustness of TUBA, in particular
to prevent attackers from tampering with TUBA and inject-
ing fake keystroke events into TUBA, we provide an integrity
service in TUBA. Our approach is based on lightweight cryp-
tographic functions and our key management leverages on-
chip TPM [24, 2].

The TPM is very useful in addressing kernel- and root-
level attacks. We, however, note that the TPM alone is not
sufficient in preventing the injection of fake key events, as
these type of attacks can originate from applications and
is thus beyond kernel-level security. For example, any X
application can inject events without any communication
with the keyboard driver. Our TUBA integrity service also
addresses these application-level attacks efficiently. An ex-
isting approach (as in SATEM [43]) to prevent application-
level attacks, e.g., substituting libraries with compromised
versions, is to have kernel libraries as part of the trusted sys-
tem that gets loaded and attested by TPM. In comparison to
the SATEM approach [43], our architecture is more specific
to key event integrity and thus is simpler. We only attest
the kernel and TUBA client and disable module (re-)loading
after boot. Our main idea is to have two communication
channels to the remote TUBA server, one from the appli-
cation and the other from a trust device that is part of the
kernel that is attested using the TPM. If an attacker tam-
pers with TUBA, the remote server can notice mismatches
in the information sent from the two channels. We present
the details of our architecture next.

Stronger Security Guarantees: With the TUBA in-
tegrity service, TUBA is robust against a whole host of ad-
vanced attacks including gaining root privilege on the com-
puter, collecting the owner’s keystroke information, fake key
event injections, tampering TUBA client, and rogue ker-
nel/libraries. The strong adversary defined in Section 2 is
prevented.

3.4.1 Implementation of TUBA Integrity Service

We implement the TUBA integrity service by expanding
the basic TUBA prototype in the following aspects. Our
prototype is implemented using the Intel Integrated TPM,

2C is adjusted to match the largest word in the database.

following TPM Interface Specifications 1.2 [38]. We write
code that realizes a trust agent in kernel and a trust client
in TUBA. The trust client is a simple-yet-essential program
that parses the non-encrypted messages and forwards them
accordingly between the kernel-level trust agent and remote
server. We provide cryptographic functions on key events,
including signing key events by the trust agent and verify-
ing key events by the remote TUBA server. We also pro-
vide the encryption and decryption functions on the packets
from the TUBA client to the remote server to prevent net-
work snooping of keystrokes. Last but not least, we provide
key management mechanism for the integrity service that
leverage TPM storage keys, as described in Section 3.4.2.

Using the integrity service we confirm that our synthetic
GuassianBot and NoiseBot (described in Section 4) that in-
ject X-layer fake events are recognized as rogue.

We describe the detailed procedure of starting and run-
ning TUBA integrity service between the client and the re-
mote server as follows. A schematic drawing of the TUBA
integrity service architecture is shown in Figure 3.

1. Trusted boot: A kernel module, which we call trust
agent, is loaded on boot or can compiled in the ker-
nel. The module creates a device /dev/cryptkbd. We
disable /dev/kmem and module loading after boot as
to prevent any tampering with the agent. A user-
space trust client opens device /dev/cryptkbd and
concurrently opens a socket to the trusted server, wait-
ing for communication. When the trust client opens
/dev/cryptkbd, the trust agent attests the trust client,
which also prevents any other program from opening
the device.

2. Initial authentication: When the remote server gets
a connection from a TUBA client, it requests the ini-
tial attestation. The trust client on the TUBA client
uses the write system call to request the required in-
formation from the agent. The trust agent forwards
the TPM platform configuration registers (PCRs), a
TPM quote (i.e., signed hash of the PCRs), and trust
client signature, all signed using the TPM signing key
(see Section 3.4.2). The trust client forwards the in-
formation to the TUBA server which verifies the infor-
mation.

3. Key exchange and monitoring: The trust agent
and the remote server set up a shared key through a
RSA key exchange protocol based on the TPM keys
(see Section 3.4.2 for details). When the TUBA server
requests a TUBA challenge, i.e., requiring the user
to type in a specific string, the trust agent forwards
the encrypted and signed keystroke events to the trust
client. The trust client then simply forwards the events
to remote server that verifies the integrity of events.
If signatures associated with events do not pass the
server’s verification, the trust agent is notified. The
TUBA server also performs timing-based authentica-
tion analysis as required.

Our aforementioned protocol describes a general approach
that can be used for the attestation of other devices. In
particular, it can be developed to prevent bots from injecting
fake events into other applications. One needs to expand
the TPM support for the applications to be protected, by
writing a trusted wrapper for the application to interface
with the trust client and verify the events. Due to space

Trusted-key event,
TPM quote or key exchange

Evaluation or key exchange

Evaluator

Client

SVM
models

Server

[eme! (EEEEED |
| Hardware |

\

Packet

encryption +
authentication

| Kernel |

Hardware |

Figure 3: Architecture of TUBA integrity service. Main operations include: trust agent and remote server
key exchange; trust agent signs keystroke events; client relays signed events to the server; remote server also

verifies kernel configuration.

limitations, we do not provide detailed descriptions on this
topic.

3.4.2 Key Management in TUBA Integrity Service

In this section, we present our key management mecha-
nism used in the TUBA integrity service. The TPM is used
to create three private/public RSA key pairs: a binding key,
a signing key and a storage key. The binding key is used
to securely store the symmetric keys used for signing and
encryption, the signing key is used to sign the TPM quote,
and the storage key is used to store the binding and signing
keys. Key exchange or quote signing follows the following
procedure.

1. The trust agent uses the TPM to generate two ran-
dom strings (ao,a1). The trust agent generates a TPM
quote and uses the signing key to sign it. The gener-
ated data in this step are encrypted using the server’s
public key.

. The server generates two random strings (bo, b1) and
encrypts them using the trust agent’s public key.

Server and trust agent exchange random strings and
XOR the received bits with the sent bits to use as
two symmetric keys (e.g., ao @ bo, a1 @ b1), using one
key for signing, and the other for encryption; this key
exchange protocol follows from [32]. Finally, the server
verifies the TPM quote.

When the trust agent disconnects, the binding key is used
to bind the symmetric keys and securely store them so the
key exchange is not required during the next connection; the
server requests a new key exchange when necessary (after a
certain number of messages are exchanged). The TPM quote
procedure is repeated periodically during each connection.
The secrecy of keys is guaranteed, as they are encrypted
(and stored on hard disk) with on-chip TPM key when not
used; additionally, when the keys are decrypted and loaded
into kernel memory, because /dev/kmem is disabled, reading
of the keys is also prevented. The latter is enforced by the
server’s verification of signed quotes representing machine
states.

Summary of TUBA integrity service: The solution de-
scribed in this section for ensuring the authentic origin of
keystroke events embodies our host-based provenance veri-
fication approach, that is, the source that generates a user
event is verified using lightweight cryptographic primitives.

4. Bot Simulation and Events In-

jection

With our TUBA integrity service enabled, fake key events
can be completely detected and removed. However, it im-
portant to evaluate the robustness of keystroke authentica-
tion under automatic bot attacks when TPM-based integrity
service is not available. We find that even if we allow for cer-
tain types of key event injection by bots, our classification
method is able to identify intruders.

To that end, we play the devil’s advocates and create
two series of bots, the algorithms of which are described
next. We assume that the goal of an adversary in our
model is to create keystroke events that pass our classifi-
cation tests. That is, the attacker attempts to create fake
keystroke events expecting them to be falsely classified as
the owner’s. Under our weak adversary model (defined in
Section 2), we assume that bots possess keystroke data of
some users except the owner’s 2.

We implement a program in C which injects keyboard
events with specific timing information in order to simu-
late forgeries. Our attack simulator has two components:
the data synthesizer and typing event injection. To sim-
ulate an (intelligent) bot’s attack, we write a program to
create fake keyboard events and inject them into the X
server core-event-stream (using the XTrap extension) as if
typed on the actual keyboard. From the application’s (or X
client’s) perspective, the fake keyboard events cannot be dis-
tinguished from actual key events (even though the keyboard
is not touched). To test the performance of a bot injecting
fake events we implemented two bots which simulate human
typing patterns according to the first-order Markov model
shown in Figure 2. That is, bots consider only keystroke
durations and positive inter-key timings (paths shown by
the solid lines in Figure 2).

In our simulations, the keystroke duration of the ith char-
acter in a word is modeled as a random variable X; > 0,
where X; is either

1. Gaussian with mean p; and variance Jf: X;

N(l”"u 01'2)7 or
2. constant with additive uniform noise (mean 0): X; ~
pi + U=, m:),
depending on the type of bot desired, GaussianBot or Noise-

~

31.e., replaying the owner’s keystroke sequence is prohibited
under the weak adversary model.

Bot. The parameter pu; is calculated as the mean key du-
ration of the i-th character from selected instances of the
user study. For example, to calculate p; for the first char-
acter (‘1’) in the string “lcalend4r” we take the 1calend4r
instances from the user study and calculate the sample mean
and variance of the keystroke durations for the character ‘1.
Similarly, the press-release inter-key timing feature between
the i-th and (¢ — 1)-th character was modeled as a random
variable X, whose parameters are also calculated from the
user study instances. Algorithm 1 below and Algorithm 2 in
Appendix show the pseudocode for the bots, which inject n
instances of the given string. The classification performance
of these bots against users are further explained in Section 5.

It is important to note that a more complex bot would
additionally consider negative inter-key timing and there-
fore a high-order Markov Model may be implemented. This
advanced bot would require considerably greater effort from
the bot designer, as the order of events would have to be
calculated a priori. For example, if the bot were to correctly
simulate the word “botnet” typed by a person, the probabil-
ity of injecting a KeyPress event for the character ‘o’ before
injecting a KeyRelease event of ‘b’ would have to be con-
sidered and therefore Algorithms 1 and 2 would need to be
modified dramatically.

Algorithm 1: GaussianBot simulation of a human

input: string={z1, z2,...,zn},
durations={(p1,01), (2,02), ..., (kn,0oN)},
inter-key

timing={(u2, 02), (3, 03), .. ., (b, oN)},
n=number of words to generate

1 forn<— 1 tondo

2 for i — 1 to N do

3 SimulateXEvent(KeyPress, z;);

4 Xi — N (i, 02); /* key duration */

5 if X; <0 then X; «— 0; /* adjust for large

variance */

6 Sleep(X;);

7 SimulateXEvent(KeyRelease, x;);

8 X] — N(u},0%); /* inter-key timing */
9 if X/ <0 then X « 0;
10 Sleep(Xj;);

5. TUBA Experimental Evalua-
tion

We carry out three types of TUBA-related experimental

evaluation on the overhead of TUBA integrity service, the

accuracy of classification, and user’s ability of recognizing
his/her own traffic, respectively.

5.1 Performance Evaluation of TUBA

Integrity Service
We evaluate the overhead incurred by the event signing
and encryption in TUBA integrity service. We compute the
average time over 1312 keystroke events with the TPM key
initiation amortized. Each key press and key release event is

GaussianBot NoiseBot
TP FP TP FP
www.amazon.com | 96.29% | 2.00% | 100.0% | 0.00%
icalend4r 93.74% | 3.43% | 97.71% | 1.43%
name2@gmail.com | 96.57% | 1.71% | 99.71% | 0.29%

String

Table 2: Human vs. bots SVM classification results.

in a separate packet of 384 bytes. The signing of a packet us-
ing SHA-1 with a 256-bit key takes 18.0 microseconds while
encrypting a packet using standard AES-CBC with a 256-
bit key takes 67.6 microseconds. To estimate the bandwidth
overhead, we assume that a fast typist enters 212 words
per minute [5] and in English average word has 4.5 char-
acters [34]. Each character has a press event and a release
event, respectively. Therefore, we obtain 12.2 KBps maxi-
mum bandwidth overhead as follows.

212 words « chars events
60 sec " word char

Overall, we find that the cryptographic operations intro-
duced by TUBA integrity service have low computational
and communicational overhead.

x 384B = 12.2KBps

5.2 Evaluation of Classification Accu-

racy
We collect keystroke timing data from 20 user sub-
jects, 10 females and 10 males on M = § differ-

ent strings. We implement a program with a graphic
user interface (GUI) as a wrapper to the keylogger that
records the keystroke dynamics of the participants. The
user is asked to type in the following strings, n =
35 times each: google.com, www.amazon.com, lcalend4r,
name1@gmail.com, name2@gmail.com *. The gender and age
of each participant are recorded, as well as their familiar-
ity (‘high’, ‘medium’, or ‘low’) with each string. This data
is later used for analyzing the correlation between demo-
graphic data and keystroke dynamics. We perform three sets
of experiments to test the feasibility and the performance of
TUBA in classifying keystroke timing features. We illustrate
the setup of the experiments in Table 1.

The goal of Experiment 1 is to confirm our ability to dis-
tinguish different individuals’ keystroke patterns with good
prediction results, as has been shown in the existing liter-
ature. We are able to achieve high accuracy in classifying
individual humans; the result of Experiment 1 are shown in
the Appendix.

Existing literature on keystroke authentication does not,
however, provide any analysis of attacks that are based on
statistical and synthetic keystroke timing; to our knowledge,
there are currently no bots which are able to perform the
attacks that we consider. Therefore, we design two sets of
experiments to simulate some sophisticated bot attacks.

Experiments 2 & 3 (Human vs. Bots) We evaluate
the robustness of keystroke analysis against artificially and
statistically created sequences of events. As auxiliary infor-
mation for the attacker, we give the adversary access to the
keystroke data of all 19 users excluding the owner’s data.
Results from Experiment 2 and 3 are presented below.

The SVM classification procedure for the bot experi-
ments is similar to that of Experiment 1 (see Appendix),

4Email addresses are anonymized for blind review.

Experiment series

Purpose

Tests on Gender

1 Human vs. Human

To distinguish between two users Yes

2 | Human vs. GaussianBot

To distinguish between a user
and a GaussianBot (Algorithm 1)

No

3 Human vs. NoiseBot

To distinguish between a user and
and a NoiseBot (Algorithm 2)

No

Table 1: The setup of three series of experiments.

We evaluate the following strings in all experiments:

Www.amazon.com, lcalend4r, name2@gmail.com. For human vs. human experiments, we also perform separate
analysis on different gender groups and also evaluate additional strings: google.com and namel@gmail.com.

however only 10 user cases and M = 3 strings are used,
with extended focus on tweaking the model parameters.
The chosen strings (s;, j = 1,...M) included a URL
(www.amazon.com), an email address (name2@gmail.com)
and a password (1calend4r). Similar to the results of Exper-
iment 1, gender classes only affect the results very slightly,
and therefore only the class containing both genders was
considered for Experiments 2 and 3. The detailed setup for
Experiment 2, for word s; of user u; was performed as fol-
lows:

e Label each of the user’s 35 instances as owner,

e For each character x;, ¢ =1,... N in string s;, calcu-
late the parameters u; and o;, and similarly the av-
erage and standard deviation of the press-to-release
times (p; and o}) using the remaining users’ (ux # u;)
instances,

e Using the parameters as arguments for GaussianBot,
Algorithm 1, generate n = 35 bot instances and label
them unknown

e Perform a 10-fold cross-validation for SVM classifica-
tion using the owner and unknown data sets,

e Calculate the average true positive (TP) and false pos-
itive (FP) rates.

The procedure for Experiment 3 is the same, using instead
Algorithm 2, NoiseBot, as further explained in Appendix.
Table 2 shows the results of Experiments 2 and 3.

In summary, the successes of the GaussianBot and Noise-
Bot in breaking the model are negligible, as indicated by the
extremely low (average 1.5%) FP rates. Furthermore, these
experiments support the results of Experiment 1 and con-
firm the robustness of keystroke authentication to statistical
attacks that are considered.

5.3 User’s Traffic Recognition Ability

In Step 3 of the TUBA use scenario described in Sec-
tion 2.1, after the keystroke authentication, a user is asked
whether she initiated the suspicious connection. The un-
derlying assumption is that a user knows the websites she
is currently visiting and thus can recognize malware-related
traffic to/from unfamiliar servers. To experimentally evalu-
ate whether a user is able to identify and distinguish her own
traffic from bot traffic, we deploy a small-scale user study.
Each of the seven participants is asked to freely surf online
for 10 minutes, during which we randomly access a list of
arbitrary (bot) servers. For each bot URL and user-visited
URL, we prompt a window asking whether or not the user
has just visited it.

From users’ responses, we compute false positive and false
negative rates of their performance. Here, a false negative
result indicates that the participant has misclassified bot

URLs for their own traffic. A false positive result, conversely,
indicates that the user misclassified legitimate user-initiated
traffic as bot HT'TP requests. The user study code is written
in Python using libpcap to sniff HTTP traffic in conjunction
with the Firefox tlogger extension [39].

We note that the analysis is further complicated with the
abundance of third-party content, such as advertisements
and multi-media content that are hosted by content delivery
providers instead of the main web server visited by the user.
Thus, third-party content is retrieved from URLs that may
seem arbitrary to the user, e.g., bearing no similarity to the
main website URL, impacting their classification decision.

Our experiments show the following results. (i) The false
negative rate is extremely low (< 1%) — injected bot URLs
are easily detected by users. (ii) The false positive rate is
high (40%) as the participants tend to classify unknown
URLs as malicious. (iii) On average, 78% of third-party
URLs are classified as bot traffic, which ultimately con-
tributed to the high false positive rate. In addition, among
the URLs that participants labeled as bot traffic, more than
90% of them were due to third-party content. This study
shows that it is feasible for TUBA to leverage a user’s per-
sonal knowledge on their web activities for bot detection, pro-
vided that traffic due to third-party contents can be traced
and tracked. Preventing exploits based on third-party con-
tent is beyond the scope of this paper and subject to our
future work.

6. Traffic Provenance Verifica-
tion For Rootkit Detection

TUBA explores the intrinsic differences between typing
patterns between humans and malware and TUBA integrity
service enforces the provenance (i.e., origin) of user inputs
by utilizing functions provided by the TPM. This design of
TUBA embodies a simple-yet-general host-based provenance
verification approach that we elaborate in Section 3.4. To
further illustrate the generality of such a host-based malware
detection approach, we describe the design and implemen-
tation of a lightweight rootkit detection method. We detect
stealthy outbound traffic of rootkits by enforcing a crypto-
graphic provenance verification scheme on outgoing network
packets. Rootkits that bypass normal user-mode network
functions to send traffic are detected, as they are unable to
provide their provenance proofs. We describe our experi-
mental evaluation with real-world rootkits and throughput
validation on upstream network traffic.

Rootkit is a mechanism that hides malware from detec-
tion; malware equipped with rootkits is extremely difficult
to detect. Most malware constantly communicates with the
outside world, with the intent of exporting sensitive data.

Our detection is, recurrently, based on the observation that
there are intrinsic differences between how a person and mal-
ware interacts with a computer. Legitimate outbound net-
work traffic initiated by humans passes through the entire
network stack in the host’s operating system. In compar-
ison, rootkit-based malware typically bypasses higher layer
inspections in the network stack by directly calling lower-
level network functions, as illustrated in Figure 4 ®. We
explore the network stack and packet properties of outgoing
traffic generated by humans and malware, and develop a ro-
bust cryptographic protocol for enforcing the proper packet
provenance on the network stack.

Architecture of Traffic Provenance Verification:
We assume a powerful type of malware that sends outbound
traffic and is capable of hiding its presence in user space
applications. We provide an add-on to the host’s network
stack. It consists of a Sign Module and a Verify Module, as
illustrated in Figure 4. The Sign Module is at the upper
edge of the transport layer while the Verify Module is at the
lower edge of the network layer. Thus, all legitimate network
packets initially pass through the Sign Module and then the
Verify Module. The Sign Module signs every packet and
sends signatures as packet provenance information to the
Verify Module which verifies them. If a packet’s signature
cannot be verified, it is labeled as suspicious, having by-
passed the Sign Module, and likely generated by stealthy
malware.

Key Management and System Integrity: The key
management mechanism and system integrity enforcement
are very similar to those of TUBA described in Section 3.4.
When the system starts up, the Sign Module and the Verify
Module generate their public/private key pairs and notify
each other of their respective public keys. Taking advan-
tage of public key cryptography, the two modules securely
exchange two symmetric keys; one is for signature gener-
ation and verification, while the other is used to encrypt
signatures from the Sign Module to the Verify Module.

To ensure that the integrity of the detection framework
and signing key secrecy, we utilize the on-chip TPM to gen-
erate the signing keys and to attest kernel and module in-
tegrity at boot. The approach is similar to TUBA integrity
service described in Section 3.4, where the attestation of ker-
nel and module integrity requires a remote trusted server.
Enlisting a remote server for integrity purpose was also pre-
viously used in [3]. Although more complex, under certain
assumptions of the secure storage and evaluation of attes-
tation values, it is also possible to realize the integrity ser-
vice on the same host (in a stand-alone architecture), de-
tails are omitted due to space limit. In comparison to the
virtualization-based traffic detection approach by Srivastava
and Giffin [36], our solution provides an effective crypto-
graphic alternative that leverages the available trusted com-
puting infrastructure.

Prototype Implementation: We implement our
rootkit detection technique in Windows XP. The Sign Mod-
ule is realized as a TDI filter device at the upper edge of
the transport layer in the Windows TCP/IP stack. All
legitimate network packets from the Winsock API is cap-
tured and signed by the Sign Module. The Verify Module
is an NDIS intermediate miniport driver at the lower edge

®Directly invoking data-link layer functions to send traffic
is considerably hard in practice. These functions are also
hardware-dependent.

Kernel Space
Sign
Module

Malware Traffic

Zl&gnatures

Verify
Module

“Tampering = >~
Prevention

TPM-based

Legitimate Traffic

Integrity Service

Figure 4: Schematic drawing of components in the
framework and their interactions with the host’s
network stack. Legitimate traffic origins from appli-
cation layer whereas rootkit traffic is injected into
the lower layers.

of the network layer. It intercepts and verifies all packets
just before they are sent to network interface card drivers.
In this prototype, the signature algorithm is UMAC (mes-
sage authentication code using universal hashing) which is
fast and lightweight [23]. Intuitively, the Verify Module at
the network layer has to reassemble Ethernet frames in or-
der to reconstruct the original transport layer data segments
and then compute signatures. Fortunately, because UMAC
computes signatures incrementally and outgoing Ethernet
frames in the network stack are sequential, the Verify Mod-
ule does not need to reassemble fragments. It updates the
corresponding signature for each fragment on-the-fly, which
significantly reduces the time and memory costs. It is im-
portant to note that the packet signature is not appended
to each packet as this would result in unnecessary checksum
recalculations and signature-stripping by the Verify Mod-
ule. Instead, the Sign Module sends encrypted signatures
directly to Verify Module as shown in Figure 4. Signatures
are kept in a hash table indexed by packet source address,
destination address and port for fast lookup.

Experimental Evaluation: We first test against a piece
of proof-of-concept malware that can bypass the transport
layer to send outgoing packets. Our experiments show that
the Verify Module detects such an attack. However, the mal-
ware can disable URL filtering functionality of Trend Micro
OfficeScan Client. An extended version of our detection im-
plementation is able to identify real-world rootkits (weaker
than our proof-of-concept malware), including Fu_Rootkit,
hxdef, and AFXRootkit, all of which hide process informa-
tion and opening ports.

Figure 5 shows the network throughput with and with-
out using our rootkit detection mechanism. With prove-
nance verification on each packet, the throughout decreases
in general. However, as the packet size grows (e.g., 64KB),
the costs of signing and verification are amortized and the
throughput approaches the ideal value. The observed per-
formance degradation is minimal and acceptable in practice,
since most (home) PCs have low upstream traffic even with
peer-to-peer (P2P) applications running.

Summary on traffic provenance verification: Our above-
described detection framework enforces the correct flow of

12 T T T T T L —

———+——withouttUMAC —#—

T with UMAC
10 | E

-]
2 sf / 1
= /
= 7
a 6 B
£ f
3 /
2 afy .
= /

2 4 E

0 L L L L L L
0 10 20 30 40 50 60 70

Packet Size (KB)

Figure 5: Performance comparison with or without
the provenance-verification based traffic detection.

outbound traffic through the host’s network stack. This fea-
ture can be used to realize other advanced traffic inspection
solutions at the transport-layer without worrying about mal-
ware bypassing the inspection checkpoint. Installing sophis-
ticated traffic inspection at the transport layer of a host
is desirable due to the ease of accessing user-space data.
We feel that this contribution is beyond the specific rootkit
problem studied.

7. Related Work

TUBA is orthogonal to existing traffic-based botnet de-
tection tools, which makes integration easy. The detection
results produced by other means may serve as triggers (see
more in Section 2.1) to invoke a remote authentication ses-
sion. For example, TUBA can start a verification test for
the user whenever BotSniffer or BotHunter identify suspi-
cious communication patterns. Note, however, that TUBA
does not rely on existing botnet detection solutions to work
because the verification tests may be launched periodically
or according to the trigger events defined by TUBA, as pre-
viously explained in Section 2.1.

It is worth mentioning that there exists a fundamental
difference between TUBA and CAPTCHA, which is a tech-
nique that attempts to differentiate between humans and
machines on visual ability [40]. TUBA’s challenges are per-
sonalized and individualized, whereas CAPTCHA challenges
are generic. TUBA is a fine-grained authentication and iden-
tification framework, where CAPTCHA is a coarse-grained
classification mechanism.

The work that is most related to ours is the recently-
proposed Not-A-Bot system [15]. As mentioned earlier, our
TUBA design also aims to distinguish among different users
which provides a more fine-grained classification. In addi-
tion, we only require key event signing and verification when
the user responds to a TUBA challenge, which makes TUBA
very efficient in practice.

Flicker is a recently-proposed trusted computing base for
allowing sensitive applications to run in isolation in an un-
trusted operating system [25]. In comparison, our trusted
computing architecture supports functions beyond applica-
tion integrity including enabling remote collection and veri-
fication of user input events, thus preventing fake keyboard
activities. Our design supports integrity service without re-
quiring the suspension of the operating system, which is re-
quired by Flicker [25].

Existing rootkit detection work largely focuses on operat-
ing system level detection, including identifying suspicious
system call execution patterns [7], discovering vulnerable
kernel hooks [41], exploring kernel invariants (e.g., Gibral-
tar [3]), or using virtual machine to enforce correct system
behaviors [10, 36]. For example, Christodorescu, Jha, and
Kruegel collected malware behaviors like system calls and
compared execution traces of malware against benign pro-
grams [7]. They proposed a language to specify malware be-
havior and an algorithm to mine malicious behaviors from
execution traces. A malware analysis technique was pro-
posed and described based on hardware virtualization that
hides itself from malware [10]. Wang et al. systematically
identified potential kernel hook points in Linux kernel [41].
Although existing OS level detection methods are quite ef-
fective, they typically require sophisticated and complex ex-
amination of kernel instruction executions. Additionally, to
enforce the integrity of the detection systems, a virtual ma-
chine monitor (VMM) is usually required, as in [36]. In com-
parison, we demonstrate a cryptographic provenance veri-
fication approach leveraging existing trusted computing in-
frastructure (the TPM is available on most commodity com-
puters) for detecting stealthy rootkit traffic.

Kirda et al. detected malicious Internet Explorer exten-
sions (used by spyware) by analyzing their behaviors [22].
Their approach is based on the fact that spyware usually first
gets sensitive information from the browser and then sends
the information to the outside. Our rootkit traffic detection
work has a different assumption on malware capabilities;
we enforce the legitimate traffic flow using a cryptographic
approach, whereas their work characterizes spyware-like be-
havior through dynamic and static analysis.

8. Conclusions and Future Work

We described a cryptographic provenance verification
technique for host-based malware detection. We illustrated
how this technique can be used to leverage human-malware
differences in the detection. Namely, two questions were ad-
dressed: how to select characteristic behavior features, and
how to prevent malware forgery. Our methods for keystroke-
based bot identification and rootkit traffic detection were
used to demonstrate the applications of the cryptographic
provenance verification technique.

We first presented our design and implementation of a
remote authentication framework called TUBA for monitor-
ing a user’s typing patterns and verifying their integrity. We
evaluated the robustness of TUBA through comprehensive
experimental evaluation including two series of simulated
bots. We then demonstrated our provenance verification
approach in realizing a lightweight framework for blocking
outbound rootkit-based malware traffic.

For future work, we plan to extend our cryptographic
provenance verification approach to develop advanced input-
traffic correlation and tracking analysis. In almost all client-
server or pull architectures (e.g., web applications), users
initiate the requests, which typically involve keyboard or
mouse events. Few exceptions such as web server refresh
operations can be labeled using whitelists. We will investi-
gate how to characterize and enforce normal traffic and input
correlations in applications such as web browsing and P2P
file sharing in the face of sophisticated malware exploits.

String Female Male Both
TP FP TP FP TP FP
google.com 93.68% | 5.56% | 92.00% | 5.50% | 91.86% | 4.53%
www.amazon.com | 94.00% | 4.46% | 94.71% | 4.62% | 91.71% | 2.89%
icalend4r 92.29% | 5.69% | 92.57% | 7.51% | 89.29% | 4.48%
namel@gmail.com | 96.26% | 2.90% | 95.14% | 3.17% | 94.00% | 2.26%
name2@gmail.com | 95.29% | 3.68% | 96.00% | 2.90% | 94.43% | 2.79%

Table 3: Human vs. human true positive(TP) and false positive (FP) SVM classification results. Real email

addresses are anonymized.

APPENDIX

Our Experiment 1 in TUBA evaluation is described first.
Then the NoiseBot algorithm is presented.

Experiment 1 (Human vs. Human) Among the 20
users, we set up a basic SVM test to see if our classifi-
cation algorithm can distinguish each user from the oth-

Algorithm 2: NoiseBot simulation of a human

input: string={z1,z2,...,zn},
durations={(p1,m), (2, m2), .- -, (L, nn)}
inter-key

timing={(p2,m3), (43, m5), - - -» (x>)}
n=number of words to generate

ers. Three different classification sets ¢;, ¢ = 1,2,3 for 1 for n — 1 to n do

each word were created according to the users’ gender: 2 for i« 1to N do

c1 = {all male instances}, co = {all female instances}, and 3 SimulateXEvent(KeyPress, z;);

c3 = ¢1 U ca. The class i experimental setup of word s; for 4 X — pi +U(=ni,m5); /* key duration */
user u; was then performed as follows: 5 if X; < 0then X; «— 0; /* adjust for large

e Label each of the user’s 35 instances as owner, noise */

e Pick 5 random instances for every user ux # u; whose 6 Skeep(Xi);
instances are in the set {c¢;} and label them as unknown, 7 SlinulatleXEvent (lKeyRelease, zi);

e Given the relabeled instances, perform a 10-fold cross- 8 Xl T + U(—Wn/ﬁi)§ /% 1nter—lFey timing */
validation for SVM classification (manually adjusting 9 lf X% <0then X; < 0; /x adjust negative
the model parameters). ;llmln%(;"/

e Calculate the average TP and FP rates. 10 L L eep(X;);

The classification analysis was repeated for all the user sub-
jects, words in the database and classification sets. Finally,
the average TP and FP rates for every word and class (1.
male, 2. female, and 3. both) were calculated and the results
are summarized in Table 3 — the average false positive rate
of 4.2% confirms the robustness of using keystroke dynamics
for authentication.

In general, the performance across the different classes had
little effect on the performance of the SVM classifier. We
note, however, that the familiarity and length do affect the
results. From Table 3 we can see that less familiar strings
such as 1calend4r, have a lower true positive rate than the
more familiar strings, like www.amazon.com. This is because
the user is still not very comfortable with the string and the
variance (which in this case may effectively be considered
noise) in the feature vectors is quite high.

On average, the true positive and false positive rates of the
longer strings (namel@gmail.com and name2@gmai1.com)6
perform better because the users have an additional “free-
dom” to demonstrate their unique typing style; since the
strings are very long some users pause (unconsciously) mid-
word, which is reflected by some of the inter-key timings.

The NoiseBot Algorithm Similar to Algorithm 1 pre-
sented in Section 4, a the pseudocode for a bot which gen-
erates noisy instances (i.e., mean + noise) is shown in Algo-
rithm 2. The parameters for Experiment 3 were calculated
as those for GaussianBot in Experiment2, with the noise
parameters 1; = 0;/2 and n; = 0} /2.

SReal email addresses are anonymized for blind review.

A. References
[1] D. Annicchiarico, R. Chesler, and A. Jamison. Xtrap

architecture. Digital Equipment Corporation, July,
1991.

[2] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A
secure and reliable bootstrap architecture. In In
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, pages 65—71. IEEE Computer Society,
1997.

[3] A. Baliga, V. Ganapathy, and L. Iftode. Automatic
inference and enforcement of kernel data structure
invariants. In 2/th Annual Computer Security
Applications Conference (ACSAC), 2008.

[4] C. Bishop. Pattern recognition and machine learning.
Springer, 2006.

[5] B. Blackburn and R. Ranger. Barbara Blackburn, the
World’s Fastest Typist, 1999.

[6] S. Bleha, C. Slivinsky, and B. Hussien.
Computer-access security systems using keystroke
dynamics. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 12(12):1217-1222, 1990.

[7] M. Christodorescu, S. Jha, and C. Kruegel. Mining
specifications of malicious behavior. In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the
FEuropean software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, pages 5—14, New York, NY,
USA, 2007. ACM.

[8] C. Comin. LKL linux keylogger.

[12]

[13]

[14]

[15]

[22]

[23]

http://sourceforge.net/projects/1kl/.

W. Cui, R. H. Katz, and W. tian Tan. Design and
implementation of an extrusion-based break-in
detector for personal computers. In ACSAC, pages
361-370. IEEE Computer Society, 2005.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization
extensions. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security,
pages 51-62, New York, NY, USA, 2008. ACM.

S. Gianvecchio, M. Xie, Z. Wu, and H. Wang.
Measurement and classification of humans and bots in
internet chat. In Proceedings of USENIX Security
Symposium, 2008.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proceedings
of the 17th USENIX Security Symposium, 2008.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and

W. Lee. Bothunter: Detecting malware infection
through IDS-driven dialog correlation. In Proceedings
of the 16th USENIX Security Symposium (Security),
2007.

G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting
botnet command and control channels in network
traffic. In Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS), 2008.
R. Gummadi, H. Balakrishnan, P. Maniatis, and

S. Ratnasamy. Not-a-Bot: Improving service
availability in the face of botnet attacks. In
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation
(NDSI), 20009.

T. Hastie and R. Tibshirani. Classification by pairwise
coupling. In M. I. Jordan, M. J. Kearns, and S. A.
Solla, editors, NIPS. The MIT Press, 1997.

N. Tanelli and A. Hackworth. Botnets as a vehicle for
online crime, 2005.
http://www.cert.org/archive/pdf/Botnets.pdf.

J. Tlonen. Keystroke dynamics. Advanced Topics in
Information Processing—Lecture, 2003.

A. Karasaridis, B. Rexroad, and D. Hoeflin.
Wide-scale botnet detection and characterization. In
HotBots’07: Proceedings of the first conference on
First Workshop on Hot Topics in Understanding
Botnets, pages 7-7, Berkeley, CA, USA, 2007.
USENIX Association.

S. Keerthi, S. Shevade, C. Bhattacharyya, and

K. Murthy. Improvements to Platt’s SMO algorithm
for SVM classifier design. Neural Computation,
13(3):637-649, 2001.

K. S. Killourhy and R. A. Maxion. The effect of clock
resolution on keystroke dynamics. In R. Lippmann,

E. Kirda, and A. Trachtenberg, editors, RAID, volume
5230 of Lecture Notes in Computer Science, pages
331-350. Springer, 2008.

E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A.
Kemmerer. Behavior-based spyware detection. In
USENIX-S5°06: Proceedings of the 15th conference on
USENIX Security Symposium, Berkeley, CA, USA,
2006. USENIX Association.

T. Krovetz. UMAC: Fast and Provably Secure Message

(24]

(25]

[26]

27]

(28]

29]
(30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]
(39]

(40]

(41]

42]

Authentication. http://fastcrypto.org/umac/.

B. Lampson, M. Burrows, and E. Wobber.
Authentication in distributed systems: Theory and
practice. ACM Transactions on Computer Systems,
10:265-310, 1992.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: an execution infrastructure for
tcb minimization. In Furosys ’08: Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, pages 315-328, New York,
NY, USA, 2008. ACM.

Kernel Based Keylogger.
http://packetstormsecurity.org/UNIX/security/.
F. Monrose and A. Rubin. Keystroke dynamics as a
biometric for authentication. FUTURE GENER
COMPUT SYST, 16(4):351-359, 2000.

J. Platt. Fast training of support vector machines
using sequential minimal optimization. In Advances in
Kernel Methods - Support Vector Learning,

chapter 12. 1998.

T. F. D. Project. FreeBSD Handbook, 2008.

rd. Writing linux kernel keylogger. Phrack magazine,
12(14), jul 2002.

R. Scheifler and J. Gettys. The X window system.
ACM Transactions on Graphics, 5(2):79-109, 1986.
B. Schneier and N. Ferguson. Practical cryptography,
2003.

R. Sekar. An efficient black-box technique for
defeating web application attacks. In ISOC Network
and Distributed Systems Symposium (NDSS),
February 2009.

C. Shannon. Prediction and entropy of printed
English. Bell System Technical Journal, 30(1):50-64,
1951.

D. Song, D. Wagner, and X. Tian. Timing analysis of
keystrokes and SSH timing attacks. Proceedings of the
10th USENIX Security Symposium, 2001.

A. Srivastava and J. Giffin. Tamper-resistant,
application-aware blocking of malicious network
connections. In RAID ’08: Proceedings of the 11th
international symposium on Recent Advances in
Intrusion Detection, pages 39-58, Berlin, Heidelberg,
2008. Springer-Verlag.

J. Stewart. Top spam botnets exposed, April 2008.
http://www.secureworks.com/research/threats/
topbotnets.

TCG PC Client Specific TPM Interface Specification
(TIS), Version 1.2. Trusted Computing Group.
http://wuw.trustedcomputinggroup.org/groups/
pc_client/.

tlogger. http://dubroy.com/tlogger/.

L. von Ahn, M. Blum, and J. Langford. Telling
humans and computers apart automatically. Commun.
ACM, 47(2):56-60, 2004.

Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering
persistent kernel rootkits through systematic hook
discovery. In RAID ’08: Proceedings of the 11th
international symposium on Recent Advances in
Intrusion Detection, pages 21-38, Berlin, Heidelberg,
2008. Springer-Verlag.

I. H. Witten and E. Frank. Data Mining: Practical

Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, 2 edition, 2005. WEKA
available at http://www.cs.waikato.ac.nz/ml/weka/.
G. Xu, C. Borcea, and L. Iftode. Satem: Trusted
service code execution across transactions. Reliable
Distributed Systems, IEEE Symposium on, 0:321-336,
2006.

E. Yu and S. Cho. Novelty detection approach for
keystroke dynamics identity verification. LNCS, pages
1016-1023, 2003.

