
Poster: CompareView - A Provenance Verification Framework for Detecting
Rootkit-Based Malware

Chehai Wu (Student)
Department of Computer Science

Rutgers University, New Brunswick
wuc@cs.rutgers.edu

Danfeng (Daphne) Yao (Faculty)
Department of Computer Science

Rutgers University, New Brunswick
denfeng@cs.rutgers.edu

Abstract

Using rootkit mechanisms to hide malware presence is
pervasive in today’s computer attacks. We propose the
CompareViewframework, a host-based solution to detect
stealthy outbound traffic generated by rootkit-based mal-
ware. Using a lightweight cryptographic protocol, our
CompareView framework compares the views of outbound
network packets at different layers of the host network stack
and verify theprovenanceinformation of each packet. Com-
pareView identifies and blocks suspicious network traffic
that is not accompanied with proper digital signature stat-
ing its origin. The prototype is implemented in Windows
XP and leverages on-chip TPM to enforce its own integrity.
Our evaluation results show that our provenance verifica-
tion approach is effective and efficient.

1. Introduction
Rootkit is a mechanism that hides malware from detection.
Malware equipped with rootkit is extremely difficult to de-
tect. Existing work has been mainly focused on operating
system level detection, including identifying suspicioussys-
tem call execution patterns[1], discovering vulnerable ker-
nel hooks[5], or using virtual machine to enforce correct
system behaviors[2][3]. Existing OS level detection meth-
ods are quite effective, but typically require sophisticated
and complex examination of kernel instruction executions.
To enforce the integrity of the detection systems, virtual ma-
chine monitor (VMM) is usually required such as in [3].
Although powerful, widely deploying VMMs for protect-
ing average user’ PCs has not yet become a reality.

Most malware constantly communicates with the outside
world, for the purpose of exporting sensitive data. Our de-
tection is based on the observation that there are intrinsic
differences between how a person and malware interacts
with a computer. Legitimate outbound network traffic initi-
ated by humans passes through the entire network stack in
the host’s operating system. In comparison, rootkit-based
malware typically bypasses higher layer inspections in the

network stack by directly calling lower-level network func-
tions.

We explore the network stack and packet properties of
outgoing traffic generated by humans and malware, and
develop a robust cryptographic protocol for enforcing the
properpacket provenance on the network stack. We de-
scribe the design and implementation of ourCompareView
framework. The goal of CompareView is to identify and
block suspicious network activities that belong to malware.
Our framework defends against rootkit-based malware by
comparing the views of outgoing network packets at differ-
ent layers of the network stack and verifying packet prove-
nance information. We also utilize on-chip Trusted Plat-
form Module (TPM), which is available for most commod-
ity computers, for key generation and integrity protection.

2 Overview of CompareView
We assume a powerful type of malware that sends outbound
traffic and is capable of hiding its presence in the user space
of the operating system.
Architecture . CompareView is an add-on to the host’s net-
work stack. It consists of a Sign Module and a Verify Mod-
ule shown in Figure 1. Sign Module is at the upper edge
of the transport layer while Verify Module is at the lower
edge of the network layer. All legitimate network pack-
ets pass through Sign Module first and then Verify Mod-
ule. Sign Module signs every packet and sends signatures
as packet provenance information to Verify Module which
verifies them. If packets’ signatures cannot be verified, then
they should be labeled suspicious as they bypass Sign Mod-
ule and are likely generated by stealthy malware.
Key Management and System Integrity. When the sys-
tem starts up, Sign Module and Verify Module generate
their public/private key pairs and notify public keys to each
other. Using the public/private key scheme, the two mod-
ules securely exchange two symmetric keys. One is for sig-
nature generation and verification; the other is used to se-
cure signature transfer from Sign Module to Verify Module.
To ensure that the integrity of CompareView framework

A p p l i c a t i o nU s e r L e v e l

K e r n e l L e v e l

Roo tk i t T ra f f i c

L e g i t i m a t e T r a f f i c

T r a n s p o r t

N e t w o r k

D a t a L i n k

P h y s i c a l

C o m p a r e V i e w

T a m p e r i n g P r e v e n t i o n

N e t w o r k S t a c k

S i g n M o d u l e

V e r f i y M o d u l e

S i g n a t u r e s

T P M - b a s e d I n t e g r i t y S e r v i c e

Figure 1. Schematic drawing of components
in CompareView and their interactions with
the host’s network stack. Legitimate traffic
origins from application layer whereas rootkit
traffic is injected into the lower layers.

and signing key secrecy, CompareView leverages on-chip
TPM to derive signing keys and to attest kernel integrity at
boot along with CompareView modules, details of which
are omitted due to space limit.
Prototype Implementation. We implement CompareView
in Windows XP. Sign Module is realized as a TDI filter de-
vice at the upper edge of the transport layer in the Win-
dows TCP/IP stack. All legitimate network packets from
Winsock APIs is captured and signed by Sign Module. Ver-
ify Module is an NDIS intermediate miniport driver at the
lower edge of the network layer. It intercepts and verifies all
packets just before they are sent to network interface card
drivers. The signature algorithm is UMAC which is fast
and lightweight. Intuitively, Verify Module at the network
layer has to reassemble ethernet frames in order to recon-
struct the original transport layer data segments and then
compute signatures. However, because UMAC computes
signatures incrementally and outgoing ethernet frames in
the network stack are in order, Verify Module does not need
to reassemble fragments. It updates the corresponding sig-
nature for each fragment on-the-fly, which significantly re-
duces the time and memory costs. It is important to note
that packet signature is not appended to each packet. Other-
wise the removal of signature of a packet in Verify Module
would lead to recalculation of checksums, which is ineffi-
cient. To solve this problem, in CompareView Sign Mod-
ule sends encrypted signatures directly to Verify Module as
shown in Figure 1. Signatures are kept in a hash table in-
dexed by packet source and destination addresses and ports
for fast lookup.

3. Experimental Evaluation
We first test against a piece of proof-of-concept malware
that can bypass the transport layer to send outgoing packets.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
 (M

B/
s)

Packet Size (KB)

without UMAC
with UMAC

Figure 2. Performance comparison with or
without CompareView.

Our experiments show that CompareView’s Verify Mod-
ule detects such an attack. However, the malware can dis-
able URL filtering functionality of Trend Micro OfficeScan
Client. An extended version of CompareView implemen-
tation is able to identify real-world rootkits (weaker than
our proof-of-concept malware), includingFu_Rootkit,
hxdef, andAFXRootkit, all of which hide process in-
formation and opening ports.

Figure 2 shows the network throughput with and without
using CompareView. With CompareView, the throughout
is lower in general. Yet, as the size of packet grows, the
throughput is close to the ideal value. The observed perfor-
mance degradation is minimal and acceptable in practice,
because typically PCs have low upstream traffic even with
P2P applications running.

4. Work-In-Progress
Our CompareView framework provides a very flexible and
trustworthy setup for performing advanced host-based traf-
fic inspection. We are currently working on a complex
input-traffic correlation analysis method for malware traffic
detection. We trace the user inputs in their online activities
and match the events with outgoing traffic. We use a trusted
computing platform as in TUBA [4] to prevent the injection
of fake user input events. We will use advanced certifica-
tion and visual analytic techniques to distinguish third-party
contents in web from malware traffic.
References
[1] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifica-

tions of malicious behavior. InESEC-FSE, 2007.
[2] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware

analysis via hardware virtualization extensions. InCCS, 2008.
[3] A. Srivastava and J. Giffin. Tamper-resistant, application-

aware blocking of malicious network connections. InRAID,
2008.

[4] D. Stefan and D. Yao. Keystroke dynamics authenticationand
human-behavior driven bot detection. Technical report, Rut-
gers University, 2008.

[5] Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering per-
sistent kernel rootkits through systematic hook discovery. In
RAID, 2008.

