
Predictive Anonymization: Utility-Preserving Publishin g of
Sparse Recommendation Data

Chih-Cheng Chang
Department of Computer

Science, Rutgers University
Piscataway, NJ, USA

geniusc@cs.rutgers.edu

Brian Thompson
Department of Computer

Science, Rutgers University
Piscataway, NJ, USA

bthom@cs.rutgers.edu

Hui (Wendy) Wang
Department of Computer

Science, Stevens Institute of
Technology

Hoboken, NJ, USA

hwang@cs.stevens.edu

Danfeng Yao
Department of Computer

Science, Rutgers University
Piscataway, NJ, USA

danfeng@cs.rutgers.edu

ABSTRACT
Recently, recommender systems have been introduced to
predict user preferences for products or services. In order
to seek better prediction techniques, data owners of recom-
mender systems such as Netflix sometimes make their cus-
tomers’ reviews available to the public, which raises serious
privacy concerns. With only a small amount of knowledge
about individuals and their ratings to some items in a recom-
mender system, an adversary may easily identify the users
and breach their privacy. Unfortunately, most of the exist-
ing privacy models (e.g., k-anonymity) cannot be directly
applied to recommender systems.

In this paper, we study the problem of privacy-preserving
publishing of recommendation datasets. We represent rec-
ommendation data as a bipartite graph, and define several
attacks on the graph that can re-identify users and deter-
mine their rated items and ratings. To deal with these at-
tacks, we give formal privacy definitions in recommender
systems. We develop a robust and efficient anonymization
algorithm, Predictive Anonymization, to achieve the pri-
vacy goals. Our experimental results show that Predictive
Anonymization can prevent the attacks with very little im-
pact to prediction accuracy.

1. INTRODUCTION
To help consumers make intelligent buying decisions,

many websites provide recommender systems [28] that give
users a list of items that are potentially interesting to them.
It also predicts user preferences for products or services by
learning from past user-item relationships. Recent years
have witnessed the rapid increase in online recommender

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

systems. The recommender systems collect users’ inputs
(e.g., reviews, ratings, etc.), compare the collected data to
others, and calculate a list of recommended items for the
user. It has been proven to be effective at delivering the
user more intelligent and proactive recommendations [29].

To support advanced data mining and prediction algo-
rithms, data owners sometimes publicly release their rec-
ommendation datasets. The released datasets may include
information that is legally protected, or otherwise private
or sensitive data, such as buying records and movie-viewing
histories. For example, Netflix, the world’s largest online
DVD rental service, recently announced a one million dollars
Netflix Prize for improving their movie recommendation al-
gorithm. To aid contestants, Netflix released a Netflix Prize
dataset containing around 100 million movie ratings, cre-
ated by around 500 thousands Netflix subscribers between
December 1999 and December 2005. As the dataset con-
tains users’ private preferences to the movies, Netflix re-
moves customers’ names to protect their privacy. However,
this naively anonymized data suffers from re-identification
attacks as recently demonstrated [23].

1.1 Motivation Examples

With some additional knowledge on a user’s review his-
tory, the adversary may be able to uniquely identify the
user and consequently learn additional information about
the user. For example, the adversary knows her co-worker
Alice watched the movie Pretty in Pink, a movie from the
eighties which has not been reviewed by many people in re-
cent years. By matching with the released dataset in Figure
1 (a), the adversary can identify that ID 0004 corresponds
to Alice. Consequently the adversary learns all movies that
Alice has reviewed and her preferences to these movies (e.g.,
she likes the movie Star Wars). This example shows that
removing user names is not sufficient to protect users’ pri-
vacy; with certain auxiliary knowledge of users’ reviews, the
adversary is still able to intrude privacy. Such background
knowledge can be easily obtained from personal blogs, 1 pub-
lic bulletin board systems (BBS), and other related recom-
1An example of an individual’s Netflix review on AOL blog:

4

(a) (b)

Godfather

0004 Pretty in pink

English patient

Star Wars0001

0002

0003
4.5

4.5

Godfather

0004 Pretty in pink

English patient

Star Wars0001

0002

0003

4

5

3

4

3.5
3.55

4

4.5

4.5

5 5

1 1 1

5

4 4

Figure 1: An example: (a) The original graph with user names replaced with IDs, (b) The k-anonymized
graph where k = 2. The rectangle boxes represent anonymization groups. Dotted lines represent fake edges
added for anonymization purpose. New ratings are computed as the average of non-zero ratings in the
anonymization group.

mender systems (e.g., the IMDB website). Narayanan et al.
showed that only a little bit of knowledge about an indi-
vidual subscriber can easily identify his/her record if it is
present in the dataset [23]. For instance, 84% of subscribers
can be uniquely identified if the adversary knows 6 out of 8
movies outside the top 500 popular movies. The sparsity of
the Netflix Prize data [23] also contributes to the ease of at-
tacks, i.e., there are a very small number of non-null ratings
in the dataset. Sparsity is a common property for recom-
mendation data. The intuition is that unpopular movies are
rarely rated by users; thus, by rating unpopular movies the
user distinguishes herself from the crowd.

We believe that releasing anonymized data to the public
for research is an unavoidable trend and has the potential
to provide society with substantial benefits in many fields,
including healthcare, medical sciences, and social sciences.
Conceivably, there is a tradeoff between the utilities and
privacy of anonymized data. For example, in recommender
systems, as the anonymized data deviates from its original
in attempts to preserve privacy, the predictions based on
the anonymized data may become less accurate. Sparsity in
recommendation data significantly increases the difficulty
of such anonymization tasks in real-world datasets, which
is explained/addressed later. In this paper, we take on the
task of developing a utility-preserving and efficient approach
for anonymizing large-scale real-world datasets.

1.2 Challenges
Although privacy preservation in data publishing has

been studied extensively with several privacy models (e.g.,
k-anonymity [32] and l-diversity [21]) and proposed algo-
rithms, most of them can only deal with relational datasets.
There have also been several studies on privacy-preserving
publishing of graphs (e.g., [36], [11], [16], [34]). Unlike our
work, their graphs are not labeled, while we consider labeled
bipartite review graphs in recommender systems, where the
labels can be used as part of privacy attacks.

Most importantly, none of existing anonymization work
(on relational databases or graphs) have studied the ef-
fect that sparsity has on privacy. Real-world recommender
system datasets are quite sparse, that is, each individ-
ual rating record contains values only for a small fraction
of attributes (i.e., the items) [23]. This problem, com-
monly referred to as the sparsity problem, has a major neg-

http://journals.aol.com/slowmotionlife/slowmotionlife/entries/
2005/01/08/december-netflix-reviews/619

ative impact on anonymization: it increases the probabil-
ity that de-anonymization succeeds, and increases the diffi-
culty of designing anonymization schemes that provide ac-
ceptable predication accuracy. Unfortunately, the existing
anonymization algorithms are not effective when applied to
the sparse datasets. In comparison, we develop a general
and efficient approach, called predictive anonymization, that
preserves both user privacy and data utility.

In addition, most of the existing privacy methods are built
around the assumption that there are two non-overlapping
value sets: sensitive values, which need to be kept private,
and quasi-identifier values, which can be used by the ad-
versary to identify individuals. In recommender systems,
these two sets are not disjoint; all information in a recom-
mendation dataset is sensitive, and can also potentially be
used as quasi-identifiers. Due to this additional challenge,
the existing privacy models cannot be directly applied to
recommender systems.

An elegant correlation-aware anonymization approach was
proposed to handle sparse high-dimensional graph with no
edge labels by capturing underlying data correlation [12]. In
comparison, Netflix data contains non-binary edge labels,
which demand different privacy and attack models and new
anonymization approaches.

1.3 Contributions
In this paper, we study how to publish sparse recom-

mender data with a sufficient amount of privacy and util-
ity. Our anonymization goal is to group and average similar
user profiles together. However, in a sparse dataset, find-
ing similar users is extremely challenging and inaccurate be-
cause of insufficient evidence to work with. That is, a user
only has a small number of non-null ratings, which render
even powerful similarity measures ineffective. Our idea is
that before anonymization, we pad the null entries to reduce
data sparsity by performing a round of prediction. This type
of predict-then-anonymize sequence is able to uncover and
leverage the latent interests of users that would otherwise
be lost without the pre-processing. We call our approach
predictive anonymization, which is a powerful and general
approach for publishing all types of recommender data. We
summarize our contributions as follows.

• We formalize the privacy and attack models in recom-
mender data. We model the review data as a labeled
bipartite graph, where nodes are divided into two dis-

joint sets, one for users and one for items. We for-
mally define two types of adversary attacks, namely
structure-based attack and label-based attack. We give
the k-anonymity and l-diversity privacy definitions for
the bipartite graphs.

• To combat sparsity and preserve data utility, we de-
velop a novel predictive anonymization technique to
pad, cluster, and anonymize the recommendation data.
As mentioned earlier, the uniqueness of our approach
lies in the padding phase where we aim to discover
the underlying and latent information of the original
dataset in order to group similar users together. As a
desirable side effect, the padding step adds fake edges,
which are noise data that ultimately help us achieve
our privacy goal. For anonymization, k users of sim-
ilar preferences are grouped together. We achieve k-
anonymity by adding fake edges so that every user
will review the same set of items as the other k − 1
users in his/her group. We analyze the privacy guar-
antee of the predictive anonymization approach. We
also discuss how to extend our approach to a more
strict privacy model, l-diversity.

• We carry out a non-trivial set of experiments to test
the effectiveness and efficiency of our anonymization
method with a large dataset. We experiment with the
entire Netflix Prize dataset in our evaluation, which
contains 480,189 users and 17,770 movies, i.e., we per-
form the padding, clustering, and homogenization for
all users and all movies in the Netflix Prize data. We
experiment with different sizes of anonymous groups
and data publishing mechanisms. We also characterize
the data sparsity and various user-similarity metrics.

Our experiment results show that (1) naive
anonymization methods incur high information
loss and destroy data patterns even with a small k
value, and (2) our predictive anonymization approach
is extremely effective in reducing data sparsity while
preserving data utility during anonymization. Our
experiment results highlight promising new directions
for the database, data mining, and security commu-
nities in pursuing data anonymization for publishing
large-scale sensitive data.

2. RECOMMENDER SYSTEMS
Recommender systems produce automatic predictions

about the interests of users by collecting preference infor-
mation from many users. A recommender system consists
of:

• A set of users U = {u1, . . . , um}

• A set of items O = {o1, . . . , on}

• An ordered set of possible rating values S

• A set of user ratings {(u, o, r)} where u ∈ U , o ∈ O,
and r ∈ S is the rating value assigned by the user u to
an item o (only if u has rated o).

Given a recommender system, the ratings can be repre-
sented as an m × n matrix R. Each cell ri,j is either a real
number r, which corresponds to the triplet (ui, oj , r), or 0
if user ui has not rated item oj . This leads to a natural

representation of the system as a bipartite graph. We refer
to the vertices that represent users, denoted by VU , as user
nodes. Vertices representing the items, denoted by VO, are
called item nodes.

Definition 2.1. [Bipartite Review Graph] A rec-
ommender system (U, O, R) corresponds to a bipartite re-
view graph G = (VU ∪ VO, E, L), where each user ui ∈ U
corresponds to a node vui

∈ VU , each item oj ∈ O corre-
sponds to a node voj

∈ VO, and each non-zero entry ri,j in
the rating matrix corresponds to the edge (vui

, voj
) ∈ E.

L : E → S is the label function, which assigns to each edge
(vui

, voj
) ∈ E the label ri,j ∈ S, one of the possible rating

values. Thus the rating (ui, oj , r) corresponds to the edge
e = (vui

, voj
) ∈ E being labeled with L(e) = r.

Furthermore, the review graph of user u is the subgraph
Gu = ({vu} ∪ N(vu), Eu, Lu), where N(vu) ⊆ VO is the
neighborhood of vu, i.e. N(vu) = {vo | (vu, vo) ∈ E}, and
Eu ⊆ E and Lu ⊆ L are the corresponding edges and labels
in the subgraph induced by {vu} ∪ N(vu).

An example of a bipartite review graph is shown in Figure
1 (a). In this graph, the review graph of user 0001 consists
of his/her user node, two movie nodes, Star wars and God-
father, and two labeled edges connecting the user node with
the two movie nodes. Note that bipartite graphs can be ap-
plied to not only review data but also other applications, for
example, network tracing, web browsing and search history,
etc.

The task of recommender systems is to predict the rating
r associated with a user u ∈ U and an item o ∈ O, i.e., the
rating r that u would give to o. This predicted rating must
be within the same range S as the other ratings.

Much research has been done to improve the quality of
prediction. This task is called collaborative filtering. Most
approaches to this task, described so far in the literature, are
variations of k-nearest neighbors (e.g., [2], [13]) or singular
value decomposition (SVD) (e.g., [14]). We refer the readers
to [7] for a good survey of collaborative filtering algorithms.

3. PRIVACY MODEL
In this section, we define our privacy model.

3.1 Privacy Goals, Adversary Knowledge, and
Attacks

In released recommendation data, e.g., Netflix, usernames
are replaced with unique integer IDs. Item names and rat-
ings are released publicly for data analysis purposes. In this
paper, we formalize two privacy goals in anonymizing rec-
ommendation data.

• Node identification privacy: after being removed, the
identification of individuals is considered sensitive.

• Link existence privacy: the knowledge of which items
are reviewed by specific users is considered to be pri-
vate information of the users.

We assume that from external data resources, the adver-
sary knows a subset of items that a specific user has re-
viewed. Using this information, the adversary can try to
uniquely identify a user by matching the background knowl-
edge with the released dataset. Based on this, we define the
structure-based attack.

Figure 2: Adversary Graphs

Definition 3.1. [Structure-based Attack] Given a
released bipartite review graph G∗ = (VU ∪ VO, E∗, L∗), let
GA

u = ({vu} ∪ NA(vu), EA
u , ∅) be the subgraph representing

the adversary knowledge for a user u. If there are k user
nodes, each of which vu′ ∈ VU has GA

u ⊆ G∗
u′ , then we say

the user u is identified by the structure-based attack with
probability 1/k.

Figure 2 (a) shows an example of the adversary knowledge
for a structure-based attack. The adversary knows that Ben
has watched the movies Godfather and English Patient. By
matching the background knowledge to the released data in
Figure 1 (a), the attacker uniquely identifies Ben as user
0002.

In addition to the structure-based attack that is based on
knowledge of which items have been reviewed by a user, the
attacker may also know the ratings of these items. Such ad-
ditional adversary knowledge enables the label-based attack.

Definition 3.2. [Label-based Attack] Given a re-
leased bipartite review graph G∗ = (VU ∪ VO, E∗, L∗), let
GA

u = ({vu} ∪ NA(vu), EA
u , LA

u) be the subgraph represent-
ing the adversary knowledge for a user u. If there are k
nodes, each of which vu′ ∈ VU has GA

u ⊆ G∗
u′ , then we say

the user u is identified by the label-based attack with proba-
bility 1/k.

Figure 2 (b) shows an example of adversary knowledge
for the rating-based attack. The adversary knows that Tim
has given a low rating to the movie English Patient. By
matching this knowledge to the released data (Figure 1 (a)),
the adversary uniquely identifies Tim as user 0003, since the
other user who reviewed English Patient gave a high rating.

The label-based attack is a stronger model than the
structure-based attack. Thus by giving privacy guarantees
against the label-based attack, we are protecting against the
structure-based attack as well. In the following, we mainly
focus on the label-based attack.

3.2 Privacy Principle
In practice, it is hard to predict the amount of background

knowledge that an adversary has gained. Therefore, we aim
to provide protection against the strongest adversary that
we have considered, the label-based attack. To achieve this
goal, we adapt the definition of k-anonymity [31, 32] to our
model. The conventional k-anonymity model defines quasi-
identifier values (i.e., the non-ID values that can be used to
identify individuals) and sensitive values. These two set of
values normally do not overlap. In our problem, the nodes,
edges, and labels in the released review graph are both quasi-
identifiers and sensitive values. To address this problem, we
define k-anonymity in recommender systems as follows:

Definition 3.3. [k-anonymity] Given a bipartite re-
view graph G = (VU ∪VO, E,L), let G∗ = (VU ∪VO, E∗, L∗)
be the review graph of the released dataset. We say G∗ sat-
isfies k-anonymity if for every user u ∈ U , there are at least
k−1 other users ui ∈ U, i ∈ I such that G∗

u is isomorphic to
G∗

ui
. We say that {u} ∪ {ui}i∈I is the anonymization group

of u.

Intuitively, Definition 3.3 requires that for each user node
u, there are at least k - 1 other user nodes that have iden-
tical review graphs to u in terms of both structure and la-
bels. Thus the k-anonymity model is effective for defending
against the label-based attack.

4. PREDICTIVE ANONYMIZATION
METHOD

In general, data owners publish their recommendation
data to seek improved recommendation algorithms. Thus
it is desirable that the released data strives to preserve the
utility of the data as much as possible. To achieve this goal,
we design a utility-preserving anonymization method, Pre-
dictive Anonymization, to produce an anonymized dataset
that not only satisfies k-anonymity but also yields a small
amount of utility loss.

The key step in our method is a predictive padding pro-
cedure that aims at amplifying the original data features
without introducing much noise. Note that one can easily
pad the data with random or arbitrary values. However, if
not done carefully, padding may destroy original data pat-
terns and cause information loss. As it will soon become
clear, our predictive padding approach can strategically re-
place null entries with meaningful values.

In this section, we describe the details of our predic-
tive anonymization procedure, which is to be performed
by the data owner before publishing sensitive recommender
data. Our anonymization procedure consists of three ma-
jor steps: (1) strategically pad the data to reduce spar-
sity, (2) construct the anonymization groups from the pre-
processed data, and (3) apply homogenization operations on
each group.

4.1 Step 1: Predictive Padding
Recommender systems are typically sparse [29, 15, 30],

that is, the number of items reviewed by an average user
is small compared to the entire set of items. Sparsity in-
creases the probability that re-identification succeeds and
decreases the amount of auxiliary information needed for
re-identification [23]. Most importantly, it hampers the ef-
fectiveness of anonymization that is based on grouping users
with similar ratings – due to data sparsity, the pair-wise user
similarities are low in general as two users may have very
few overlaps in what they recommend. Thus, anonymiza-
tion on the original data may not effectively group similar
users, which impairs the accuracy of prediction.

We take a novel approach to anonymization by utiliz-
ing the SVD technique as a pre-processing method before
performing anonymization. Singular Value Decomposition
(SVD) is a well-known matrix factorization technique. Reg-
ularized SVD, a technique inspired by effective methods
from the domain of natural language processing, was pro-
posed for collaborative filtering by Simon Funk (Brandyn
Webb) [35]. In particular, in regularized SVD, the original
review matrix is decomposed into two matrices, the movie

500 Bins

0

2

4

6

8

10

12

0 200 400 600 800 1000

Bin Size

F
re

q
u

e
n

c
y

d500

v551

100 Bins

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Bin Size

F
re

q
u

e
n

c
y

d100

v101

Figure 3: Real User vs. Virtual Center Points

aspect matrix and the user preference matrix. The predic-
tion of user i’s rating for movie j is made in the following
way:

¯ri,j = ~uT
i ~oj

where ~ui and ~oj are the user and movie feature vectors for
user i and item j, respectively. The purpose of using SVD
is to find those two matrices which minimize the resulting
approximation error.

We first perform a round of SVD prediction to obtain
padded data, which effectively eliminates the sparsity prob-
lem. (Note that our predictive padding is a general approach
that supports any prediction techniques beyond SVD.) This
predictive padding does not affect the original data, which
may still be used to construct the final released anonymized
dataset. Yet, the padded data significantly helps us in im-
proving clustering accuracy, which is explained next.

4.2 Step 2: Clustering and Construction of
Anonymization Groups

Given the recommender dataset, the key to anonymiza-
tion is to determine a partition of its users, so that each
user u is included in a single partition which includes at least
k − 1 other users. We call the partition the anonymization
group of the user u. Note that the anonymization groups are
disjoint, i.e., each user belongs to only one group. We delin-
eate several goals for the partitioning step: (1) all partitions
must be of at least size k, (2) the partitioning technique
must be able to deal with large datasets, e.g., the Netflix
dataset, and (3) the partition must respect the utility goal
of prediction accuracy. In the following, we explain how
our anonymization group construction procedure addresses
these issues.

The essence of our group construction is clustering. The
main differences between our following method and existing
clustering-based anonymization work (e.g., [1] are (1) we
compute and utilize pair-wise similarity values for clustering
weighted bipartite graphs (2) our method based on sampling
and bin-assigning is scalable to large datasets. At the end
of the procedure, each cluster has at least k users who have
similar movie preferences. The clustering procedure works
as follows:
Step 2.1: Sampling To deal with large recommendation
datasets, instead of clustering the whole dataset at once,
which is computationally demanding, we randomly pick a
sample out of the preprocessed dataset. By choosing a large
enough random sample, we get a sample that closely repre-
sents the trends of the original dataset with high probability.
Step 2.2: Cluster on Sample We apply clustering on

the sample to find t center points. The task of clustering
data has been studied in great depth. One classic clustering
technique is known as the k-means algorithm [20, 22]. To
avoid confusion with the k in k-anonymity, we use the term
t-means throughout the paper. The t-means algorithm takes
an input parameter, t, and partitions a set of n objects into t
clusters so that the resulting intra-cluster similarity is high.

In practice, however, it has been observed that classic
clustering algorithms frequently produce clusters whose sizes
are of skewed distribution (i.e., some clusters are huge while
some are small or even empty), especially when clustering
high-dimensional datasets [6]. In contrast, a balanced distri-
bution of cluster sizes is desired to ease computation for sub-
sequent steps. To achieve this, we use the bounded t-means
algorithm from [34], which guarantees that the sizes of all t
clusters are no smaller than a pre-defined lower bound. By
choosing an appropriate value of t, we can ensure that there
will not exist unwieldily large clusters.

We apply the bounded t-means algorithm to the sample
to cluster the users into t groups, based on their similarities.
To reduce the complexity of the entire clustering procedure,
we choose the value t =

√
n. More details of why we pick

this value are explained in Section 6.1.
Similarity Metric To perform bounded t-means clus-

tering, we must first define our user similarity metric. Let
MaxDiff be the difference of the highest and the lowest
possible ratings in the dataset, i.e. MaxDiff = max(S) −
min(S). Then given two users u1 and u2 and their cor-
responding rating vectors (x1, . . . , xn) and (y1, . . . , yn), we
define di = |xi−yi|/MaxDiff for 1 ≤ i ≤ n. The similarity
between u1 and u2 is then defined to be

sim(u1, u2) = 1 −
P

1≤i≤n(1 − di)
2

n

It is straightforward to verify that sim(u1, u2) = 0 only
when u1 and u2 match exactly on every common entry, and
sim(u1, u2) = 1 only when u1 and u2 have opposite min-
imum and maximum ratings for each item. This method
essentially gives a squared penalty for large differences in
movie preferences between two users. We studied the effec-
tiveness of this metric against other similarity metrics. More
details can be found in Section 7.4.

After the users in the sample are clustered into groups
by the bounded t-means algorithm, we compute the center
points of the clusters. The bounded t-means algorithm in
[34] uses virtual centers. We adapt this method to our prob-
lem. In particular, consider a cluster C of users {u1, . . . , uk},
each ui assigned with a rating vector 〈ri,1, . . . , ri,n〉 to the
items o1, . . . , on. Then the virtual center c is a vector of

ratings 〈r̂1, . . . , r̂n〉 such that

r̂j =
k
X

i=1

¯ri,j/n.

Note that here we are using the padded user rating vectors,
which have no empty ratings.

Our experimental results demonstrate the effectiveness
of using virtual centers as opposed to real users as center
points; the sizes of clusters with virtual centers are of less
skewed distribution. For example, Figure 3 (a) shows that
the sizes of the clusters with real user centers vary from 50
to 2000, while the sizes of the clusters with virtual centers
vary from around 200 to 900. Since clusters of balanced sizes
facilitate easy data handling in later anonymization steps,
we are encouraged to return t virtual centers as the result
of Step 2.2.
Step 2.3: Construction of Anonymization Groups
Let {a1, . . . , at} be the t cluster centers resulting from Step
2.2. We now partition all users in the dataset into t bins,
where bin Bi contains all the users whose closest center
point is ai. Finally, we partition the users in each bin
into anonymization groups of size k. In particular, for
each bin Bi, we apply the bounded t-means algorithm with
t = |Bi|/k. Thus all clusters returned by Step 2.3 are guar-
anteed to contain at least k users. By grouping similar users
into the same bin, we incur little information loss by first
using our sampling procedure, compared to if we had clus-
tered all the users at once. However, our procedure yields a
significant speed-up in run-time for the clustering step, es-
pecially when performed on large datasets. See Section 6.1
for details.

4.3 Step 3: Homogenization
To defend against both the structure-based attack and

label-based attack, our final step is to homogenize the k
users in each anonymization group so that they have iden-
tical review graphs, including the ratings in the graph. A
straightforward way to do this is to apply the popularly used
generalization and suppression techniques [31, 32]. However,
as pointed out by [23], generalization and suppression may
completely destroy the utility of the data for collaborative
filtering. Thus we take a different approach, homogeniza-
tion, which consists of adding fake edges and labels so that
all k users in the same anonymization group are connected
to the same set of item nodes with the same ratings.

Formally, the homogenization of the anonymization group
corresponding to cluster C of users {u1, . . . , uk} has the fol-
lowing operations: union, complete, and average. First, we
construct the union of the review graphs of all users in C.
Let the union result be GC = (C ∪ N(C), EC , LC). Sec-
ond, we add fake edges between users and items to create
G∗

C , a complete bipartite subgraph; i.e., E∗
C = C × N(C).

For instance, in Figure 1 (b), user 0001 and 0002 are in the
same anonymization group. A fake edge is added between
user 0001 and movie English Patient, so that both user 0001
and 0002 review the same set of movies in the review graph.
Third, we re-label all the edges in G∗

C , including the fake
ones, with the appropriate average rating:

(∀ui ∈ C, oj ∈ N(C)) L∗
C(ui, oj) = r̂j =

X

ui∈C,ri,j 6=0

ri,j/k′,

where k′ is the number of users in C who have rated item oj .

Note that all users in C are assigned the same homogenized
rating r̂j for each movie oj .

5. EXTENSIONS

5.1 Achievingl-diversity
The l-diversity model provides complementary privacy

protection to k-anonymity. In relational data, l-diversity re-
quires that sensitive attributes should have diversity by hav-
ing at least l distinct values in each k-anonymous class [21].
However, the definition and security implications of l-
diversity in recommender databases are unclear. Therefore,
we give the first formal definition of l-diversity for labeled
bipartite review graphs, and an algorithm to realize both
k-anonymity and l-diversity in recommender systems.

To appreciate the need for l-diversity in recommendation
data, we need to first understand a subtle attack against link
privacy. Once the anonymization group of a target victim
is identified via a structure-based or label-based attack, it
becomes easier to target that user for more sophisticated at-
tacks. Although the adversary cannot explicitly identify any
user, more can be deduced from the anonymized data than
what we want to allow. For example, suppose an adversary
only has the background knowledge to perform a structure-
based attack. After identifying the correct anonymization
group, since the k users in that group have identical re-
view profiles, the adversary can easily learn new information
about the ratings that the target user gave to those items.

This problem is further exascerbated by the fact that some
items are rarely reviewed. Exploring rare items to re-identify
users in Netflix data was recently studied [23], and facilitates
the easy identification of a user’s anonymization group, leav-
ing the target susceptible to the above attacks. We refer to
these attacks as homogeneity attacks following [21]. The
threat of these homogeneity attacks motivates the need for
l-diversity.

Definition 5.1. [Homogeneity Attack in Bipartite
Graphs] Given a released bipartite review graph G∗ =
(VU ∪VO , E∗, L∗), let GA

u = ({vu}∪NA(vu), EA
u , LA

u) be the
subgraph representing the adversary knowledge for a user
u. Let {vu′} denote the set of nodes, including vu, each of
which vu′ ∈ VU has GA

u ⊆ G∗
u′ . If all the nodes in {u′} are

identical, then we say the review profile of user u is uniquely
identified by the homogeneity attack.

Unlike relational data, our k-anonymization algorithm
alone provides some degree of privacy even in the face of
a homogeneity attack (See Theorem 6.3). Because we add
fake edges during anonymization to average the k users, a
rating in the anonymized data does not necessarily mean
that the target user has rated that item, or if so, that the
anonymized rating accurately reflects the true rating of that
user. However, as explained above, homogeneity attacks can
be effective in some scenarios.

First, we formally define (1, l)-diversity. We present an ex-
tension to the Predictive Anonymization algorithm that real-
izes both k-anonymity and (1, l)-diversity. In (1, l)-diversity,
the number 1 represents that the adversary’s prior knowl-
edge is at most one item that is reviewed by the user. Intu-
itively, (1, l)-diversity requires that every single item must
be included in at least l different anonymization groups.

Definition 5.2. [(1, l)-diversity] Given a bipartite re-
view graph G = (VU ∪VO, E, L), let G∗ = (VU ∪VO, E∗, L∗)
be the corresponding k-anonymized review graph with

anonymization groups
·
S

Ci = U . We say G∗ satisfies (1, l)-
diversity if for every item o ∈ O, there are at least l distinct
anonymization groups Ci such that vo ∈ N(Ci).

(1, l)-diversity can be generalized to (b, l)-diversity in or-
der to allow a stronger adversarial model, where the adver-
sary’s has background knowledge of at most b items that a
user has reviewed.

Definition 5.3. [(b, l)-diversity] Given a bipartite re-
view graph G = (VU ∪VO, E, L), let G∗ = (VU ∪VO, E∗, L∗)
be the corresponding k-anonymized review graph with

anonymization groups
·
S

Ci = U . We say G∗ satisfies (b, l)-
diversity if for every set of b items B = {o1, . . . , ob} ⊂ O
that have been rated by a user, there are at least l distinct
anonymization groups Ci such that B ⊂ N(Ci).

To achieve (1, l)-diversity, we modify our algorithm as fol-
lows: After Step 2 in Section 4, i.e., the anonymization
groups have been constructed, for each item o, we check
whether it has been covered by l groups. If it is not, we
pick anonymization groups C such that o 6∈ C, and add fake
edges between item o and all user nodes in C, so that ev-
ery item o is connected to at least l groups. The labels on
these fake edges are computed using the padded values for
the corresponding users. The above method can be easily
generalized to realize (b, l)-diversity, the details of which are
omitted here.

5.2 Padded Anonymization
When calculating the average ratings r̂o in the homoge-

nization step (see Section 4.3), there are two choices for ri,j :
we can use either the ratings in the original dataset or the
ones in the padded dataset. We observe that using original
ratings may bring privacy leakage, which gave us motiva-
tion for looking to the l-diversity model; on the other hand,
if we average on padded data that contains both the real
and predicted ratings, actual ratings become more obscured,
providing stronger privacy protection against homogeneity
attacks. We call this variant of the predictive anonymization
algorithm Padded Anonymization.

By homogenizing over the padded data, sparsity will be
completely eliminated from the released data. Although it
may initially seem that the released data does not preserve
the characteristics of the original dataset, and thus would re-
duce the utility of the released dataset, we argue that such
variation is necessary for the purpose of privacy protection.
As shown by [23], sparsity increases the likelihood that re-
identification succeeds and decreases the amount of auxil-
iary information needed for re-identification. Thus reduc-
ing sparsity will strengthen the robustness of the released
dataset against attack. Furthermore, as it will be shown
in Section 7, homogenizing over padded data does not de-
crease the utility of the released dataset. On the contrary,
our padded anonymization algorithm produces very accurate
prediction results even with a large k value. As a result, our
predictive anonymization approach is effective for preserving
both privacy and utility.

6. ANALYSIS

6.1 Complexity Analysis
The pseudo code of the our Predictive Anonymization al-

gorithm is given in Algorithm 1. Let m be the number
of users, and let n be the number of items (m = 480, 189
and n = 17, 700 in the Netflix dataset). Using recent tech-
niques for optimization of SVD, Line 1 can be performed in
O(mn) time. Line 2 takes O(s) time, where s is the size
of the sample. Line 3 has complexity O(st1n). Line 4 runs
in O(mt1n) time. For Line 5, clustering on each bin takes
time O(|Bi|tn) = O((|Bi| ∗ |Bi|/k)n), where |Bi| is linear in
m/t1. Thus the complexity is O(m2n/(t21k)). There are t1
bins overall, so the total complexity is O(m2n/(t1k)). To re-
duce the quadratic complexity in m, we set t1 =

√
m, which

results in the complexity of this step being O(m3/2n/k).

Note that the complexity of Line 4 then becomes O(m3/2n).
For Line 6, homogenization of each cluster C takes com-
plexity O(|C|n) = O(kn). There are m/k clusters, thus the
total complexity is O(mn). Based on the above, the com-

plexity of the entire algorithm is O(mn + s
√

mn + m3/2n +

m3/2n/k+mn). Since s ≪ m, the complexity of Algorithm 1

is O(m3/2n).

Algorithm 1 Algorithm: Padded Predictive Anonymiza-
tion
1: Pre-process the data by using SVD. All 0s in the matrix

will be replaced with a predicted rating after SVD.
2: Pick a random sample of size s from the pre-processed

dataset.
3: Apply the bounded t-means algorithm on the sample to

find t1 virtual center points a1, ..., at1 , where t1 =
√

m
(where m is the number of users in the original dataset).

4: Use the t1 center points from the sample to partition
the whole dataset into t1 bins, with bin Bi containing
all points in the dataset whose closest center point is ai.

5: Cluster each bin Bi using the bounded t-means algo-
rithm with t = |Bi|/k. Each cluster will correspond
to an anonymization group. Thus the final set of
anonymization groups is the union of all clusters from
all bins.

6: In each cluster, homogenize all ratings to be the average
of user ratings in the pre-processed dataset.

6.2 Privacy Analysis
In this section, we analyze the guarantee that our Pre-

dictive Anonymization algorithm can provide for both node
re-identification privacy and link existence privacy defined
in Section 3.1.

First, analogous to the correctness of the k-anonymity
model on relational databases, we have:

Theorem 6.1. (Node Re-identification Privacy) :
Let G be the bipartite review graph for a recommender
dataset, and let G∗ be the corresponding released review
graph. If G∗ is k-anonymous, then any user vertex in G
cannot be re-identified in G∗ with confidence probability
larger than 1/k.

Second, as shown in Section 4.3, fake edges are added
between user vertices and item vertices during the homoge-
nization step, which prevents the adversary from explicitly
determining which edges exist in the original dataset (or

furthermore their labels). We formalize this notion in the
following theorems.

Assume that all (user, item) ratings are independent, both
the existence and the values of the ratings. Furthermore, as-
sume the adversary has no prior knowledge about the like-
lihoods that users have rated items. Then the confidence
with which the adversary can learn the existence of a link is
at most 1/k. This claim is stated concisely as follows.

Theorem 6.2. (Link Existence Privacy) : Thm
4.2: Assume all ratings are independent. Then an adversary
with no prior knowledge employing a label-based attack can
not predict the existence of an edge (vu, vo) with confidence
greater than 1

k
.

Proof Suppose an adversary, using a label-based attack, is
able to identify the anonymization group containing user u.
Based on the existence of a link to item o in the released
review graph, the adversary would like to infer whether user
u gave a rating for o in the original dataset. However, the
existence of the link in the anonymized graph only implies
that at least one user in that anonymization group had rated
o. With no prior knowledge, the adversary can only infer
that user u had rated o with probability at least 1

k
.

Now suppose an adversary has prior knowledge that the
probability a user has rated item o is p. This is often fea-
sible in practice by learning aggregate information about
the database. For example, in the Internet Movie Database
(IMDB), 2 the most frequently rated movie is ”The Shaw-
shank Redemption,” which has been rated by 2.4% of regis-
tered users. Assume that p ≤ 1/k (a reasonable assumption
due to the sparsity of recommender datasets). We claim
that even with this additional prior knowledge, the adver-
sary can not significantly improve his confidence that a user
has rated item o.

Theorem 6.3. (Link Existence Privacy With Prior
Knowledge) : Thm 4.3: Assume all ratings are indepen-
dent. Then an adversary with prior knowledge p ≤ 1

k
for

item o employing a label-based attack can not predict the
existence of an edge (vu, vo) with confidence greater than
1

k
+ p

2−kp
.

Proof See Appendix.

Note that the greatest confidence gain occurs when p =
1/k, at which point the adversary has a 2/k confidence prob-
ability. Therefore, assuming that p ≤ 1/k, the maximum
confidence in predicting the existence of a link is bounded
by 2/k. Furthermore, recommendation data is typically very
sparse, so it is of note that the adversary confidence tends
to 1/k as p → 0.

Note: While it may be difficult to learn the existence of a
link, learning the non-existence of links is easy with a label-
based attack. However, we claim that due to the sparsity
of the data and the practical significance of a link, it is
reasonable to assume that only positive link existence should
be considered sensitive.

7. EXPERIMENTS
We have done a set of experiments to evaluate both the ef-

fectiveness and efficiency of our k-anonymization algorithm
Algorithm 1 (without l-diversity). Specifically, we want

2The Internet Movie Database, http://www.imdb.com/

to evaluate the impacts of padding and anonymization on
the utility and structure of the anonymized data, and the
amount of information change introduced by the anonymiza-
tion. In this section, we describe our experiment design and
results.

7.1 Setup
We ran our experiments parallelized on 6 different ma-

chines. Four of the machines are equipped with eight In-
tel(R) Xeon(R) CPU 3.00GHz, 16GB memory and CentOS
5.2 Linux, and the other two machines are equipped with
two Intel(R) Core(TM)2 Duo CPU at 3.00GHz, 3GB mem-
ory and Fedora 8 Linux. We implemented our algorithm in
C++, Java, and Perl.

We use the entire Netflix dataset for our experiment. The
original data contains a total of 480,189 users’ ratings on
17,770 movies. The ratings range from 1 to 5, with 0 mean-
ing a rating does not exist. The Netflix challenge set (a.k.a.
probe set) is used to evaluate the performance of a pre-
diction algorithm. It contains 459,178 users and 1,425,333
user-movie pairs to be predicted. The users are a subset
of the original Netflix dataset. In our experiments, we use
the challenge set to evaluate the utility and information loss
in the anonymized data, by comparing to a fixed prediction
algorithm, namely SVD. (We do not aim to develop a new
collaborative filtering mechanism.) Briefly, the challenge set
is used as follows. For each user-movie pair in the challenge
set, one needs to predict the corresponding ratings based on
the dataset D̂, where D̂ is the Netflix Prize set excluding
the challenged entries.

We use the open-source SVD implementation in the Net-
flix Recommender Framework [37] for padding, and also for
prediction in some experiments, which is described in more
detail later. After running SVD padding, the size of the
(padded) dataset is about 36GB. All data is written into
hard disk in binary format, and accessed using the mmap
system call. Due to the file size limit for mmap and in Linux,
we split the padded dataset into 40 binary files.

After prediction (using SVD or user-based filtering), we
measure the root mean squared error (RMSE) of the pre-
diction result on the Netflix challenge dataset. Predicted
ratings are between one and five. The actual user ratings
can be found in the original Netflix dataset. In order to
clearly quantify the amount of information loss caused by
the anonymization process, we modify the conventional er-
ror computation by calculating the RMSE for users before
and after their anonymization. This new error quantification
approach for anonymized recommender data is called target
deviation and is defined as follows: For user u in the chal-
lenge set, we (the data owner) identify u′, the anonymized
version of u, among other anonymized users, and then out-
put the predicted ratings of u′ as our predictions for u. The
advantage of target deviation is the direct and simple quan-
tification of differences before and after the anonymization
by leveraging the background knowledge of the data owner 3

Existing utility models of relational microdata (e.g., the
ratio of nodes in the generalization taxonomy trees ([18, 33]),
the distance of distributions of the original and anonymized
datasets [19], and the estimation errors of aggregate query
answers [27]) cannot be applied to the recommender system,

3The data owner is able to uniquely identify u′ from u by
keeping track of the anonymization process, whereas the
public cannot.

whose targeting utility is the prediction accuracy of recom-
mendations. Our target deviation method allows us to eas-
ily compare the original data values and their anonymized
ones, which is a general approach for computing the amount
of information change during anonymization.

7.2 Evaluation of the Utility of Anonymized
Data

We design several sets of anonymization experiments that
are described in Table 1.

Experiment Series RMSE∗

Original Data 0.951849
Padded Anonymization (k = 5) 0.95970
Padded Anonymization (k = 50) 0.95871
Simple Anonymization (k = 5) 2.36947
Simple Anonymization (k = 50) 2.3771

Table 1: The setup of experiments. *The tar-
get deviation RMSEs are reported in both padded
anonymization and simple anonymization experi-
ments (See Section 7.2).

Both the simple anonymization and padded anonymiza-
tion experiments follow the 3-step padding-clustering-
homogenization sequence described in Section 4. The only
difference is in the homogenization step (Step 3). In the for-
mer, we compute and publish the averaged ratings on the
original data, whereas in the latter we compute and pub-
lish the averaged ratings on the padded SVD data. The
RMSE results of both experiments under different k values
are shown in Table 1.

The high RMSE values (2.36947 and 2.3771) for the sim-
ple anonymization is due to both the limited data size and
the sparsity of the anonymized data. With k = 50, there
are only 9,294 anonymized users (i.e., groups) in the pub-
lic released data. Among them, 80% of the ratings are null
if the averaging is done on the original data (as in simple
anonymization), as opposed to no null ratings in the padded
data (used for padded anonymization).

7.3 Data Characterization and Clustering
Evaluation

We characterize the data sparsity and compare the spar-
sity before and after our padding procedure. We simply
count the number of ratings that fall within a range. The
results are shown in Table 2. It is clear that padding sig-
nificantly changes the distribution of ratings in the dataset,
in particular, null ratings. Padding data with SVD tremen-
dously reduces the data sparsity, and provides a rich context
for identifying similar users, as the pair-wise user similarity
computation is more accurate and meaningful.

We characterize the various user similarity metrics that
may be used in the clustering algorithm. We evaluate
four metrics: closeness-0.5, closeness-1.0, weighted similar-
ity, and our weighted-squared similarity measure described
in Section 4.2. Closeness-a is a simple similarity measure
on two vectors V1 and V2 by counting two corresponding
vector entries similar if their difference is within threshold
a. Weighted similarity assigns a weight to various ranges to
penalize discrepancies. All similarity values are normalized
to within [0,1], and are categorized into 20 disjoint ranges,
namely: [0, 0.05), [0.05, 0.1), . . . , [0.95, 1.0). Figure 4 (a)

Rating Range No. of Ratings No. of Ratings
in Original Dataset After Padding

[0] 98.84%* 0
[1] 0.053% 0.79%
[2] 0.117% 14.12%
[3] 0.334% 46.71%
[4] 0.390% 33.49%
[5] 0.267% 4.89%

Table 2: The rating histograms before and after
SVD padding. *This value is the number of zero
entries.

shows the distribution of pair-wise similarities for 5000 users
under the four measures before clustering (after padding),
and (b) shows the distribution of similarities between users
within one single cluster. The shift in distribution to the
left indicates that the clustering algorithm is able to group
similar users. However, if a similarity measure is too relaxed
(e.g., closeness-1.0), then the similarity values are artificially
inflated, which does not provide a good indicator in cluster-
ing. In comparison, a more strict similarity measure such
as ours (described in Section 4.2) has a more fine-grained
ability to distinguish similarities in user profiles.

(a)

(b)

Distributions of Pairwise Distances: All Users

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Close (0.5)

Close (1.0)

Weighted

WeightedSq

Distributions of Pairwise Distances: Single Cluster

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Close (0.5)

Close (1.0)

Weighted

WeightedSq

Figure 4: Comparison of four distance metrics in
user-user similarity computation. WeightedSq de-
notes our similarity measure used in this work.

7.4 RMSE By Similar-User Deviation
Target deviation is more accurate in reflecting the infor-

mation loss incurred during anonymization. It implicitly
assumes that the anonymized user is the most similar to
herself before the anonymization, as the RMSE is computed
by directly comparing the ratings of a user before and after
anonymization. To eliminate the assumption in target de-
viation, we define a similar-user deviation, which is a more
realistic method for computing the utility of anonymized
data. It is based on user-based collaborative filtering. For
a user u in the challenge set, we find the anonymized user
v (in the anonymized dataset) that is most similar to u ac-
cording to a similarity measure. We apply v’s ratings as

our prediction for u, and then compute the RMSE for the
entire challenge set. The experimental results are shown in
Figure 3.

To evaluate the differences between the two deviation met-
rics, we define self-rank of a user u in the challenge set as the
rank of her anonymized version u′ among other anonymized
users in terms of similarity to u. Specifically, compute and
sort the similarities between u and all the anonymized users;
identify the rank of u′. (Note that the data owner perform-
ing the anonymization is able to uniquely identify u′ from
u, whereas the public cannot.)

In target deviation, the self-ranks are assumed to be one
for all users in the challenge set. With similar-user devi-
ation, most self-ranks values are quite low, indicating that
target deviation is a good approximation in the error com-
putation. We categorize the self-rank values in Figure 5.

Experiments With Similar-User Deviation RMSE
Padded Anonymization (k = 50) 1.00563
Simple Anonymization (k = 50) 1.17525

Table 3: RMSEs computed based on our similar-
user deviation definition are reported for both
padded anonymization and predictive anonymiza-
tion experiments with k = 50.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 ~ 1% 1 ~ 5% 5 ~ 10%

Ranking of similarity to self

N
u
m
b
e
r
o
f
u
se
rs

Users

Figure 5: Number of users whose self-rank (See Sec-
tion 7.4) is within a certain percentage.

Experiment summary Our approach of strategically re-
placing null entries with padded values has positive impacts
on the utility of anonymized data. Namely, we perform a
round of prediction before anonymization to reduce data
sparsity of the original recommendation data. The experi-
ments show that padded anonymization is extremely effec-
tive in preserving the data quality with low prediction errors.
Our privacy analysis also shows that the padded data im-
proves user privacy as a positive side effect. Surprisingly, the
value of k does not have a significant impact on prediction
accuracy. From the experiments, we conclude that homog-
enization on SVD-padded data (as in our padded predictive
anonymization algorithm) is a feasible and utility-preserving
approach for anonymizing recommendation data.

We also quantify and compare the information loss in dif-
ferent experiment setups, in particular when the original
data is released as opposed to the padded data. Homoge-
nization on the original data as in the simple anonymization
method gives much higher RMSE than the homogenization
on the padded data, indicating naive anonymization method
incurs high information loss and destroys data patterns even

with a small k value. This negative finding validates earlier
predictions by others [23].

Although preserving prediction accuracy, the padded
anonymization method loses authentic data properties and
the released data cannot support statistical queries. For ex-
ample, one is unable to find out what percentage of users
have rated a movie. This underlines an intrinsic tradeoff
between user privacy and data utility. To mitigate these
issues, the padding procedure can be adjusted to more care-
fully control the degree of boosting, i.e., to what extent the
sparsity in the original data is reduced. This study is subject
to our future work.

8. RELATED WORK
Our data anonymization problem is related to privacy-

preserving relational data, social network data, collabora-
tive filtering, and recommendation systems in general. We
described some of the related works in these areas in the
following.

Privacy preserving relational databases It has been
extensively studied recently. Most of the work considers the
attack model as re-identification of individuals by joining
the published table with some external tables modeling the
background knowledge of users. To defend against this type
of attacks, the mechanism of k-anonymity was proposed in
[31, 32]. Specifically, a dataset is said to be k-anonymous
if every group of tuples that are of the same values on the
quasi-identifier attributes (i.e., the minimal set of attributes
in the table that can be joined with external information
to re-identify individual records) consists of at least k tu-
ples. The larger the value of k, the better the privacy is
protected. As the improvement of k-anonymity, new no-
tions (e.g., l-diversity [21]) have been proposed to provide
stronger privacy. We adapt the concepts of k-anonymity and
l-diversity to our problem since they are the most essential
and most applicable privacy models. However, as discussed
in Section 1, due to various difference of relational databases
from recommender system datasets, the k-anonymity tech-
niques for relational cases cannot be applied to recommender
systems.

Byun et al. came up with a clustering idea for anonymiz-
ing relational databases [8]. They presented a solution for
database records that are in the form of vectors, where each
dimension is a numerical value or a label in a fixed hierarchy.
Again, their work is for relational databases, and does not
have a direct application to data in the form of a graph.

Cormode et al. studied the problem of privacy-preserving
anonymization of bipartite graphs [11]. Similar to our work,
their privacy goal is to protect the association between the
nodes in two partitions in the graph. Their work con-
cerned unlabeled graphs, whereas we consider labeled bi-
partite graphs, with the possibility of labels being used as
part of the adversary knowledge. We also have different tar-
get utility goals, as they aimed to preserve the accuracy of
SQL aggregate queries on the released dataset.

Privacy preserving social networks Recommender
systems enclose information of social connections. In fact, as
in social networks, the data in recommender systems can be
represented as graphs as well. Thus the problem of publish-
ing recommender system with preserved privacy is related to
the problem of preserving privacy of social network graphs.
Privacy-preserving publishing of social network graphs have
attracted much attention recently [16, 3, 36]. The identity

of the nodes can be de-anonymized by the structure related
to the node [16, 36]. Furthermore, [3] pointed out the adver-
sary can even have active attack by joining the social net-
works, creating a small number of new user accounts with
edges to the targeted users, and consequently creating a pat-
tern of links among the new accounts so that it will stand
out in the anonymized graph structure. To address the de-
identification issue of publishing general social network data,
Hay, Miklau, et al. were the first to formally define and
quantify the privacy risks. Their k-candidate anonymity re-
quires that there are at least k candidate nodes that have the
same structure as any node in the original data [16]. They
used a generalization approach for anonymizing social net-
work data, and demonstrated the success of it in preserving
the utility of anonymized network data. Unlike recommen-
dation data, social network is not believed to be sparse. On
the contrary, the small world effect and six-degree of sepa-
ration are commonly observed in social networks. Further,
unlike our work, these work do not include the labels on
the graph as part of the attack. These characteristics make
generalization or randomization approach possible. In com-
parison, for sparse recommendation data, suppression and
generalization are conjectured to be ineffective in preserv-
ing the utility of anonymized data [23]. Therefore, our ap-
proach is based on strategically inserting fake ratings with
calculated values.

Zhou et al. requires that every node must have at least k-1
nodes that have the same neighbors in the anonymized graph
[36]. Compared with social network graphs, recommender
system differs in a few aspects. First, unlike in the released
social network graphs that every node is de-identified, rec-
ommendation graphs contain considerable amounts of nodes
whose identifications are revealed (e.g., the name of movies,
music, books, etc.). These nodes make the adversary easier
to infer private information and consequently more challeng-
ing to publish a privacy-preserved review graph. Second, un-
like social network graphs which are normally dense, most
real-world recommender system datasets are very sparse
[23]. Sparsity increases the difficulty of finding similar indi-
viduals for privacy concern. It may also degrade the utility
of the anonymized recommendation data. Therefore, the
anonymization techniques on social network graphs cannot
be directly applied to recommendation data.

Privacy preserving collaborative filtering Canny
proposes two schemes for privacy-preserving collaborative
filtering [9, 10]. These schemes consider that a community
of users compute a public aggregate of their ratings without
exposing any individual users’ rating. Therefore the rat-
ings are encrypted by homomorphic encryption mechanism.
These two schemes are built on peer-to-peer systems. With
the similar fashion, the work by [17] also considers encryp-
tion on ratings. Polat et al. considers the similar problem
in a centralized framework [25], in which users send their
data to a central server that will conduct the CF. Instead
of encryption, Polar et al. proposed to use randomized per-
turbation techniques to disguise private ratings before they
are sent to a central place (the data collector), such that
the data collector cannot derive the truthful ratings while
he/she still be able to conduct collaborative filtering from
the disguised data. They also proposed the randomization-
based approach for SVD-based collaborative filtering[26].
The privacy concern of all the above work is the real value
of the ratings, while we consider identification of users as

well as their ratings as private. By our attack model, even
though the ratings may be encrypted/randomized by the
above work, the adversary still can re-identify the users by
knowing which items are rated. Baraglia et al. considers a
different privacy attack model that is applied on the class-
fication in Web Usage Mining (WUM) system [4]. It is or-
thogonal to our work.

9. CONCLUSIONS
In this paper, we showed that utility-preserving

anonymization for recommendation data is feasible, if care-
ful padding is performed to reduce data sparsity. We gave
SVD as a concrete padding technique before anonymization.
Our approach is called predictive anonymization, as a round
of prediction is sufficient for the padding step. We also for-
mally defined the model and developed a practical and effi-
cient anonymization algorithm called Predictive Anonymiza-
tion. Our empirical studies using the Netflix dataset demon-
strate the effectiveness of our Predictive Anonymization al-
gorithm in preserving utility of the anonymized data.

10. ADDITIONAL AUTHORS

11. REFERENCES
[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R.

Panigrahy, D. Thomas, and A. Zhu, “Achieving
Anonymity via Clustering,” in Proc. of ACM PODS,
2006, pp. 153-162.

[2] K. Ali and W. van Stam, ”Tivo: making show
recommendations using a distributed collaborative
filtering architecture”, KDD, 2004.

[3] L. Backstrom, C. Dwork, J. Kleinberg, “Wherefore art
thou r3579x?: anonymized social networks, hidden
patterns, and structural steganography”, WWW 2007.

[4] R. Baraglia, C. Lucchese, S. Orlando, M. Serrano, F.
Silvestri, ”A Privacy Preserving Web Recommender
System”, SIGAPP, 2006.

[5] R. M. Bell, Y. Koren, C. Volinsky, “The BellKor
Solution to the Netflix Prize”,
http://www.research.att.com/ volin-
sky/netflix/ProgressPrize2007BellKorSolution.pdf.

[6] P.S. Bradley, K.P Bennett, A Demiriz, ”Constrained
K-Means Clustering”, Microsoft research technical
report, MSR-TR-2000-65, 2000.

[7] J. S. Breese, D. Heckerman, C. Kadie, “Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering”, Technical report MSR-TR-98-12, Microsoft
Research, 1998.

[8] Ji-Won Byun, Ashish Kamra, Elisa Bertino, Ninghui
Li, “Efficient k-anonymization Using Clustering
Techniques”, DASFAA 2007.

[9] J. Canny, “Collaborative Filtering with Privacy”,
IEEE Symposium on Security and Privacy, May 2002.

[10] J. Canny, “Collaborative filtering with privacy via
factor analysis”, SIGIR, August 2002.

[11] G. Cormode, D. Srivastava, T. Yu, Q. Zhang,
”Anonymizing Bipartite Graph Data Using Safe
Groupings”, VLDB, 2008.

[12] G. Ghinita, Y. Tao, P. Kalnis. “On the
Anonymization of Sparse High-Dimensional Data”,
ICDE, 2008, pp. 715-724.

[13] D. Goldberg, D. Nichols, B. M. Oki, D. Terry, “Using
collaborative filtering to weave an information
tapestry”, Communications of the ACM, vol. 35, No.
12, pp. 61-70, 1992.

[14] K. Y. Goldberg, T. Roeder, D. Gupta, C. Perkins,
”Eigentaste: A constant time collaborative filtering
algorithm”, Journal of information retrieval,
4(2):133-151, 2001.

[15] N. Good, B. Schafer, J. Konstan, A. Borchers, B.
Sarwar, J. Herlocker, J. Riedl. ”Combining
Collaborative Filtering With Personal Agents for
Better Recommendations”. AAAI’99.

[16] M. Hay, G. Miklau, D. Jensen, D. Towsley, P. Weis,
“Resisting Structural Identification in Anonymized
Social Networks”, VLDB, 2008.

[17] C. Hsieh, J. Zhan, D. Zeng, F. Wang, ”Preserving
Privacy in Joining Recommender Systems”,
International Conference of Information Security and
Assurance (ISA), 2008.

[18] V. S. Iyengar, “Transforming Data to Satisfy Privacy
Constraints”, SIGKDD, pp 279-288, 2002.

[19] D. Kifer, J. Gehrke, “Injecting Utility into
Anonymized Datasets”, SIGMOD 2006.

[20] S. Lloyd, ”Least Squares Quantization in PCM”,
IEEE Transactions on Information Theory, 1982.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, M.
Venkitasubramaniam. “l-Diversity: Privacy Beyond
k-anonymity”, ICDE 2006.

[22] J. MacQueen, ”Some Methods for Classification and
Analysis of Multivariate Observation”, In 5th Berkeley
Symposium on Mathematical Statistics and
Probability, 1967.

[23] A. Narayanan, V. Shmatikov, “How To Break
Anonymity of the Netflix Prize Dataset”, S&P, 2008.

[24] M. Nergiz, C. Clifton, ”Thoughts on
k-anonymization”, Data Knowl. Eng., 63(3):622–645,
2007.

[25] H. Polat, W. Du, “Privacy-Preserving Collaborative
Filtering Using Randomized Perturbation
Techniques”, ICDM, 2003.

[26] H. Polat, W. Du, ”SVD-based Collaborative Filtering
with Privacy”, SAC, 2005.

[27] V. Rastogi, D. Suciu, S. Hong, “The Boundary
Between Privacy and Utility in Data Publishing”,
VLDB 2007.

[28] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J.
Riedl, “GroupLens: An Open Architecture for
Collaborative Filtering of Netnews”, Proceedings of
ACM Conference on Computer Supported
Cooperative Work, pp. 175-186, 1994.

[29] B. Sarwar, M., Konstan, J. A., Borchers, A.,
Herlocker, J., Miller, B., and Riedl, J.. Using Filtering
Agents to Improve Prediction Quality in the
GroupLens Research Collaborative Filtering System.
CSCW, 1998.

[30] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl,
”Application of Dimensionality Reduction in
Recommender System - A Case Study”’, ACM
WebKDD 2000 Workshop.

[31] P. Samarati, Latanya Sweeney, “Generalizing data to
provide anonymity when disclosing information”,

PODS, 1998.

[32] L. Sweeney, “k-anonymity: a model for protecting
privacy”, International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems,
10(5):557570, 2002.

[33] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, A. Fu,
“Utility-Based Anonymization Using Local Recoding”,
SIGKDD, 2006.

[34] B. Thompson, D. Yao, ”Union-Split Clustering
Algorithm and Social Network Anonymization”,
AsiaCCS, 2009.

[35] B. Webb. Netflix update: Try this at home.
http://sifter.org/∼simon/journal/20061211.html,
2006.

[36] B. Zhou, J. Pei, “Preserving Privacy in Social
Networks Against Neighborhood Attacks”, ICDE,
2008.

[37] Netflix Recommender Framework. http://benjamin-
meyer.blogspot.com/2006/10/netflix-prize-
contest.html?program=NetflixRecommenderFramework.

APPENDIX
Proof of Theorem 6.3

Suppose an adversary, using a label-based attack, is able
to identify the anonymization group containing user u.
Based on the existence of a link to item o in the released
review graph, the adversary would like to infer whether user
u gave a rating for o in the original dataset. Let Pr(u, o) de-
note the probability that user u rated item o in the original
dataset, and let Pr(C, o) be the unconditional probability
that at least one user in anonymization group C rated o.
We wish to calculate Pr((u, o)|(C, o)), the probability that
user u rated item o, given that the edge exists in the released
anonymized review graph.

By Bayes’ Rule, we have that Pr((u, o)|(C, o)) =
Pr((C, o)|(u, o)) ∗ Pr(u, o)/Pr(C, o). First note that
Pr((C, o)|(u, o)) = 1 directly from our anonymization pro-
cedure, and we also have that Pr(u, o) = p. Furthermore,
since we have assumed that each user has rated item o in-
dependently with probability p, we can find a bound on
Pr(C, o) as follows:

Pr(C, o) = 1 − (1 − p)k

= 1 − (1 − kp +

k

2

!

p2 − o(p3))

= kp −

k

2

!

p2 + o(p3) ≥ kp −

k

2

!

p2

Combining these results, we get that

Pr((u, o)|(C, o)) ≤ 1 · p
kp −

`

k
2

´

p2

=
1

k

kp

kp −
`

k
2

´

p2
+

−
`

k
2

´

p2

kp −
`

k
2

´

p2

!

+
1

k

`

k
2

´

p2

kp −
`

k
2

´

p2

!

=
1

k
+

1

k

1

2
k(k − 1)p2

kp − 1

2
k(k − 1)p2

!

=
1

k
+

1

k

„

(k − 1)p

2 − (k − 1)p

«

≤ 1

k
+

p

2 − kp

