
Role-based Cascaded Delegation: Model and Implementation

Danfeng Yao∗ Roberto Tamassia∗ William H. Winsborough††

Abstract

We propose role-based cascaded delegation, a model for delegation of authority in decentralized trust

management systems. We show that role-based cascaded delegation combines the advantages of role-

based trust management with those of cascaded delegation. We also present an efficient and scalable im-

plementation of role-based cascaded delegation using Hierarchical Certificate-Based Encryption (HCBE),

where the authentication information for an arbitrarily long role-based delegation chain is captured by

one short signature of constant size. This implementation also provides strong privacy protection for

delegation participants.

1 Introduction

Decentralized trust management (TM) systems are access control systems that allow initially unknown enti-

ties from different administrative domains to interact and establish trust with each other through mutually

trusted entities. Several trust management systems have been proposed in recent years to address autho-

rization issues in decentralized environments, e.g., PolicyMaker [8], KeyNote [6, 7], SPKI/SDSI [1, 13], and

the RT framework [20].

The notion of delegation is essential in transferring trust and authorization in TM systems. Delega-

tion chains connect entities trusted by the resource owner with unknown users, and play a major role in

decentralized authorization. Namely, discovering and verifying delegation chains are key issues in trust

management.

The problem of delegation chain discovery (also called credential chain discovery) [21] consists of deter-

mining whether a delegation a chain exists between two entities and, if so, finding it. The credential chain

verification problem is to verify the discovered credentials associated with a delegation chain. In the next

two sections, we discuss these problems in more details.

1.1 Delegation chain discovery

Most of the existing work addressing the discovery problem [1, 6, 7, 8, 13] assumes that all the potentially

relevant credentials are available in one central storage. Li et al. [21] are the first to present goal-directed

credential chain discovery algorithms for distributed storage. The algorithms dynamically search for relevant

credentials from remote directories to build a proof graph.

A flexible delegation model is given in RT [20]. However, its delegation chain discovery algorithms may

incur heavy communication overhead between delegation participants in distributed settings. For example,

∗Computer Science Department, Brown University, Box 1910, Providence, RI, 02912, {dyao,rt}@cs.brown.edu
†Center for Secure Information Systems, Mail Stop 4A4, George Mason University, Fairfax, VA, 22030-4444,

wwinsbor@gmu.edu

1

Figure 1: A schematic drawing of the delegation
relationships described in Section 1.1. Arrows rep-
resent the direction of the delegation action. Dot-
ted lines represent other possible delegations.

Bob

Consultant

Consultant

Guest

Consultant

Consultant

Professor of biology

Guest

P P

H
H

P

U

Professor of biology

A B

1
2

Bob at university U is a professor of biology , and he has a corresponding role credential issued by U . The

role professor of biology at U is delegated the role consultant by two pharmaceutical companies PA and PB ,

respectively. Each of them issues the university U a delegation credential, which is kept on U ’s credential

server. The role consultant of company PA is delegated the role guest by the hospital H1. Similarly,

consultant of company PB is delegated role guest by hospital H2. Companies PA and PB keep the delegation

credentials on their servers, respectively. The delegation relationships are shown in Figure 1.

In order for Bob to use his delegated role guest of H1, he needs to discover all the roles he is a member of.

In the forward search algorithm [21] two messages are exchanged for each edge of the graph in Figure 1, one for

requesting credentials and the other for returning credentials. Therefore, the number of messages exchanged

to discover a single delegation path is proportional to the number of edges of the entire proof graph. The

potential high communication costs incurred in discovering delegation chains in delegation networks is also

reported by Aura [3].

Distributed credential discovery algorithms also have the following two characteristics. First, they require

entities or their responders (directories) involved on the delegation chain to be available and participate in

the computation. Second, each node has to return to its parent node all the members of a role, or all the

roles that it belongs to in the search algorithms. Most of the computed results contain private information

and are irrelevant to the parent node and the delegation chain to be discovered.

Our proposed role-based cascaded delegation protocol introduced in Section 1.3 borrows the idea of

cascaded delegation from proxy authentication [28, 29, 25, 15] and provides an alternative mechanism for

the role-based delegation of privileges that avoids the distributed credential chain discovery.

1.2 Delegation chain verification

The verification of a role-based delegation chain may be quite complex in the existing decentralized role-

based delegation models. Members of a role may delegate the role to others. The delegation credential is

issued and signed by an individual. This requires the verification of not only the delegation credentials, but

also the role credentials of intermediate delegators on the delegation chain to ensure that the delegators

have the required roles to make delegations. Therefore, even if an entity is neither the requester nor the

verifier, it has to participate in the verification process and prove its role membership. Alternatively, an

intermediate delegator can pass down its role credential to the delegated entity to avoid participation in the

2

chain verification. However, the delegator may consider the signature on his role credential sensitive and

does not want to disclose it to the delegatee.

The third-party participation requirement can be avoided in our role-based cascaded delegation model.

The sensitive signature problem is solved in our implementation of role-based cascaded delegation using

Hierarchical Certificate-based Encryption (HCBE) [18] scheme in Section 4.

1.3 Role-based cascaded delegation

We propose an alternative model for the delegation of authority in role-based decentralized trust manage-

ment systems, called role-based cascaded delegation. This model combines the advantages of role-based trust

management [20] with those of cascaded delegation in distributed systems [28, 29, 25, 15, 23]. The dis-

tributed cascaded delegation problem is essentially to design a delegation mechanism that efficiently verifies

a hierarchical delegation chain. In such cascaded delegation mechanisms, delegation credentials are typically

passed along with each stage of the cascade and digitally signed at each transition. Therefore, the delegation

chain is stored in delegation credentials and does not have to be discovered. However, previous cascaded

delegation protocols do not support the use of roles in the delegation, and therefore do not have the benefits

of the scalability and efficiency provided by role-based access control [27, 30, 17, 26].

Our role-based cascaded delegation inherits the basic delegation mechanism of cascaded delegation, which

eliminates the need for distributed delegation chain discovery. Furthermore, delegations can be issued to

roles of administratively different domains and a delegator can issue delegations to a role without knowing

the members of that role. A role r is delegated a privilege by receiving a delegation credential that explicitly

authorizes the privilege to role r. To cascade the delegation to another role r′, a member D of the role r

uses his delegation credential C to generate a delegation credential C ′, which includes information about

preceding delegations and the role membership of the delegator D. The verifier can make authorization

decision based on delegation credential C ′ and the role credential of the requester.

The definition of delegation chain in our model is slightly different from the delegation chain in some

role-based trust-management systems [21, 13]. Namely, in our model, a delegation chain is privilege-oriented,

and represents the path on which a delegated privilege is transferred among roles and entities. The length

of a delegation chain is defined as the number of delegations on the chain.

Our role-based cascaded delegation model can be used to facilitate large scale dynamic sharing of resources

in decentralized pervasive collaborative environment. It is suitable for collaborative tasks where roles from

administratively independent domains are dynamically joined according to the needs of the tasks.

1.4 Efficient implementation

A main concern regarding the usability of our role-based cascaded delegation is the size and number of

credentials an individual has to store, or transmit for delegation and verification. In existing cascaded

delegation protocols, delegation credentials are lengthy because verification of a delegation chain requires

linear number signatures in the number of entities on the chain. Conventional signature schemes, such

as RSA and DSA, produce relatively long signatures compared to the provided security. For a 1024-bit

modulus (security level), RSA signatures are 1024 bits long and standard DSA signatures are 320 bits long.

The number of signatures required to authenticate a role-based delegation chain of length n is more than

n, including signatures for proving role memberships of intermediate delegators and each of the delegation

3

operations. Among the signatures associated with a delegation chain, the signature on a role credential is

generated by the administrator of that role independently from the rest of the signatures.

Unfortunately, how to aggregate individually generated signatures from different signers on different mes-

sages are not known in conventional cryptosystems, such as RSA [11]. This means that the entire set of

signatures has to be stored by delegated entities, and transmitted across networks at each delegation and ver-

ification. Because intermediate delegators in our model may be individuals who have limited computational

power and communication bandwidth, implementation of role-based cascaded delegation using conventional

credentials is inefficient. Another potential issue in implementing role-based cascaded delegation is privacy

protection. The protocol should handle the case where the delegator considers signatures on credentials

sensitive and does not want to disclose them to the delegatee. Traditional credential systems cannot provide

this privacy protection.

We overcome these problems by implementing the role-based cascaded delegation using the Hierarchical

Certificate-based Encryption (HCBE) [18] scheme. Using HCBE allows that the authentication information

of the entire role-based delegation chain is captured by one short signature of constant size (about 170 bits),

which makes the role-based cascaded delegation practical and efficient. This is possible by the underlining

short signature [12] and aggregate signature [10] techniques. Sensitive signatures are also protected in this

implementation, because individual signature, once aggregated, can be verified without being disclosed.

One may argue that users do not have to carry any of the credentials, as long as they know where to

find them by keeping a reference rather than the credentials themselves. However, this approach essentially

boils down to a centralized credential storage, which is not feasible for decentralized trust management [21].

1.5 Our contributions

In this paper we formalize the role-based cascaded delegation model, which combines the role-based trust

management and the cascaded delegation. Role-based cascaded delegation model supports flexible and

scalable decentralized role-based delegations, where delegations may be issued without the participation of

the administrator of a domain. The use of cascaded delegation conveniently eliminates the need for dynamic

distributed delegation chain discovery, and thus significantly reduces the communication and computation

costs. User privacy is better protected in this model, because only minimum number of delegation credentials

are revealed.

We present an implementation of role-based cascaded delegation protocol using the Hierarchical Certificate-

based Encryption scheme. The novel use of HCBE scheme in role-based delegation allows the authentication

information of the entire role-based delegation chain to be captured by one short signature of constant size,

and makes the role-based cascaded delegation practical and efficient. This protocol also offers strong privacy

protection, because individual signatures can be verified without being disclosed.

1.6 Organization of the paper

We introduced the concept of role-based cascaded delegation approach above. The rest of the paper is

organized as follows. Discussions about roles and their delegation scopes are in Section 2. Descriptions

about the HCBE scheme, terms, and our language model are given in Section 3. The definitions of the

role-based cascaded delegation and our implementation are described in Section 4. In Section 5, delegation

revocation, privacy, security, scalability, and efficiency issues are discussed. We discuss and compare some

4

of the existing decentralized trust management models in Section 6. The detailed descriptions of algorithms

in the HCBE scheme are in Appendix A.

2 Roles and their scopes

In our model, we define the administrator of a role as the organization that creates and manages the role. If

a role credential of an entity D is signed and issued by the administrator of a role, that role is the affiliated

role1 of D. Otherwise, if the role credential is issued through delegation and signed by entities other than

the administrator, the role is the delegated role of an entity. For example, Bob has a professor role credential

signed by the university U , so professor at U is an affiliated role of Bob. Alice, whose affiliated role is not

professor at U , is delegated the role by Bob, so the role is a delegated role of Alice.

The affiliated role and the delegated role are defined to have different access scopes. Delegations to a

role r of an organization only apply to those who have r as the affiliated role. In the above example, if the

role professor at the university U is delegated a privilege, Bob is entitled to this delegation, whereas Alice is

not. She can only access resources at university U using the delegated role professor . This is different from

the conventional delegation models, where delegations to a role automatically propagate to all the entities

that are delegated the role. If a hospital H delegates the right of reading a patient’s medical record to the

role professor at U , Alice would be entitled to this privilege. However, for sensitive data such as medical

records, this automatic propagation of delegations to unknown roles may not always be desired by resource

owner. In particular, an attacker may use the delegation to construct a valid delegation chain, which gives

him the authorization that the resource owner is not aware of [29].

To support flexible decentralized delegation, we give both types of a role the capability to delegate the

role to others. Both Bob and Alice are able to delegate professor at U to other roles.

3 Preliminaries

In this section, we describe the Hierarchical Certificate-based Encryption (HCBE) schemes. Then terms and

our language model are defined.

3.1 HCBE schemes

Hierarchical Certificate-based Encryption (HCBE) scheme [18] is essentially a public key cryptosystem, where

messages are encrypted with public keys and decrypted with corresponding private keys. What is unique

about HCBE is that it makes the decryption ability of a keyholder contingent on that keyholder’s acquisition

of a hierarchy of signatures from certificate authorities. To decrypt a message, a keyholder needs both his

private key and the public key certificates (signatures) that are respectively signed by a chain of CAs. As

usual, the CA hierarchy consists of a root CA and lower-level CAs. Higher-leve CA certifies the public key

of the next-level CAs, and the CAs at the bottom (leaf positions) of the hierarchy certify the public keys of

individual users. The HCBE scheme [18] is based on the aggregate signature scheme [10, 12], which supports

aggregation of multiple signatures on distinct messages from distinct users into one short signature. The

HCBE scheme [18] has six algorithms, Setup, Certification of CA, Certification of Bob, Aggrega-

tion, Encryption, and Decryption. The second and the third algorithms are essentially the same, one for

1This type of role is usually obtained through affiliation with an organization, and thus the name.

5

certifying the public keys of CAs, and the other for an individual. The detailed descriptions of the algorithms

are in Appendix A.

3.2 Terminology

As the RT framework [21], we refer entities as the organization or an individual. An entity may issue

credentials and make requests. An entity may have one or more affiliated roles or delegated roles. The roles

are proved by role credentials. Affiliated role credential is the credential for an affiliated role, and is signed

by the administrator of the role. Similarly, delegated role credential is the credential for proving a delegated

role. A privilege can be a role assignment, or an action on a resource.

An extension signature is a single signature signed by the delegator at each delegation, for authenticating

the delegation transaction. A role signature of an entity is the signature on an affiliated role credential of

the entity. The identity signature of an entity is a signature computed by the entity using his private key. A

complete delegation credential includes the identity signature of the requester, extension signatures, and role

signatures. A partial delegation credential is the delegation credential issued to a role. It cannot be used by

an individual for proving authorization, as it misses the identity and role signatures of the requester.

3.3 Language model

A role r in entity A is denoted as A.r. A is the administrator of the role A.r. A role defines a group of entities

who are members of this role. If an entity D has an affiliated role A.r, his role credential is represented as

A
A.r
−−→ D, which is read as D is assigned the role A.r by the role administrator A. Entity A delegates a role

A.r to a role B0.r by issuing a delegation credential, which is represented as A
A.r
−−→ B0.r. Any member D

of the role B0.r can further delegate the role A.r to the role B1.r, which is represented as D
A.r
−−→ B1.r.

4 Role-based Cascaded Delegation Protocol

We first define the role-based cascaded delegation protocol, then describe our implementation using the

HCBE scheme [18]. In order to make notations less complex, in what follows, the role r represents only

affiliated role unless specified.

4.1 Definitions of the protocol

A role-based cascaded delegation protocol defines four operations: initiate, extend, prove, and verify.

• initiate(PD0
, D0.priv, A1.r1):

This operation is run by the administrator D0 of a privilege D0.priv to delegate to an affiliated role

A1.r1. This operation initiates a delegation chain of the privilege D0.priv. Inputs are the public key

PD0
of entity D0, the delegated privilege D0.priv, and the role A1.r1. The output of this operation is

a partial delegation credential C1 for the role A1.r1, represented as D0

D0.priv
−−−−−→ A1.r1.

• extend (PDn
, D0.priv, Cn, RDn

, An+1.rn+1):

This operation is run by an entity Dn who is a member of an affiliated role An.rn. Dn has a partial

delegation credential Cn, and wants to further delegate the privilege D0.priv associated with Cn to

another role An+1.rn+1. The inputs are the public key PDn
of the entity Dn, the privilege D0.priv, the

credential Cn of the role An.rn, the role credential RDn
of the entity Dn, and the role An+1.rn+1. The

credential Cn is represented as a delegation chain below, where PD0
is the public key of the resource

6

owner D0, and Ai.ri is the role that is delegated the privilege D0.priv by an entity Di−1 who has the

affiliated role Ai−1.ri−1, for i ∈ [1, n].

(PD0

D0.priv
−−−−−→ A1.r1),

(A1

A1.r1−−−→ PD1
), (PD1

D0.priv
−−−−−→ A2.r2), . . .

(An−1

An−1.rn−1

−−−−−−−→ PDn−1
), (PDn−1

D0.priv
−−−−−→ An.rn)

The extend operation uses Cn to output a credential Cn+1, which is a function of the credential

Cn, the role credential RDn
representing An

An.rn−−−−→ PDn
, and the delegation PDn

D0.priv
−−−−−→ An+1.rn+1.

Such a credential Cn+1 may simply be delegation credential Cn plus the two individual credentials.

Alternatively, Dn can compute a delegation credential for the role An+1.rn+1 as in existing cascaded

delegation protocols [25, 15], and also passes down his role credential to members of the role An+1.rn+1.

In comparison, our implementation using HCBE [18] scheme provides a more efficient approach.

• prove(PDn
, D0.priv, RDn

, Cn):

This operation is performed by the requester Dn who wants to exercise privilege D0.priv. Dn is a

member of the affiliated role An.rn. The entity Dn uses his delegation credential Cn and the affiliated

role credential RDn
, which represents An

An.rn−−−−→ Dn, to prove to the verifier that he is authorized

D0.priv. The inputs are the public key PDn
of the requester Dn, privilege D0.priv, the affiliated role

credential RDn
of the requester, and the delegation credential Cn. The operation produces a proof F .

• verify([D0.priv, PD0
, A1.r1, PD1

, A2.r2, . . . , PDn−1
, An.rn, PDn

], F):

This operation is performed by the verifier D0 to verify that the proof F produced by the requester

Dn correctly authenticates the delegation chain of privilege D0.priv. Dn is a member of the role

An.rn. The inputs are a string tuple [D0.priv, PD0
, A1.r1, PD1

, . . . , PDn−1
, An.rn, PDn

] representing

the delegation chain for the requester Dn, and a proof F that is computed by the requester Dn. In the

string tuple, D0.priv is the delegated privilege, PDi
for i ∈ [0, n− 1] is the public key for the delegator

Di, Ai.ri for i ∈ [1, n] is the role that receives the delegation from Di−1, and PDn
is the public key of

the requester. The tuple may also contain public keys of role administrators A1, . . . , An. The verifier

checks whether F correctly authenticates the delegation chain. This includes authentication of each

delegation extension PDi−1

D0.priv
−−−−−→ Ai.ri, and entity Di’s affiliate role membership Ai

Ai.ri−−−→ Di, for

all i ∈ [1, n]. The requester Dn also needs to prove the possession of the private key corresponding to

the public key PDn
. Dn is granted D0.priv if the verification is successful, and denied if otherwise.

Affiliated role credentials can be issued using initiate operation by the administrator of a role. Extend

operation is used to issue delegated role credentials. The delegation chain of a privilege grows at each

delegation extension.

4.2 Implementation of role-based cascaded delegation protocol

We present an implementation of role-based cascaded delegation using the Hierarchical Certificate-based

Encryption (HCBE) [18] scheme. Each entity has a public/private key pair generated on his own. A member

of an affiliated role has an affiliated role credential, which contains a signature signed by the administrator

of the role. The delegation credential in this protocol consists of an aggregate signature and a string tuple.

Our role-based cascaded delegation protocol has five operations, which make use of the algorithms in the

HCBE scheme [18] defined in Appendix A.

7

setup: This operation is to setup system parameters, public/private keys, role credentials that would be

used in the system.

• The root of the system calls the Setup algorithm in the HCBE scheme [18], and obtains a set of public

parameters denoted as params. Among other parameters in params, there are two collision-resistant

hash functions H and H ′, a special constant π, and bilinear map [9] function ê.

• As in HCBE [18] scheme, each entity (organization or individual) D chooses a secret sD as his private

key, and computes the product sDπ as its public key PD.

• An organization A with the private key sA certifies the members who have A.r as their affiliated role.

For each entity D who has the affiliated role A.r and the public key PD, organization A computes a

role signature RD by running Certification of CA(sA, PD‖A.r) of HCBE (see Appendix A), where

‖ denotes string concatenation. The output signature represents the role credential A
A.r
−−→ D, and is

given to entity D for proving the affiliated role membership.

initiate: Resource owner D0 delegates the privilege D0.priv to the members of an affiliated role A1.r1. The

private key sD0
corresponds to the public key PD0

of entity D0. Entity D0 does the following.

• Set the string info1 = PD0
‖D0.priv‖A1.r1‖PA1

, where PA1
is the public key of the role administrator

A1. Run Certification of CA(sD0
, info1) in HCBE, which outputs an extension signature X1. Define

a string tuple chain1 as [D0.priv, PD0
, A1.r1, PA1

]. Set the partial delegation credential C1 for the

role A1.r1 as (X1, chain1). Credential C1 is put on a directory server.

extend: An entity Di, whose role is Ai.ri, further delegates D0.priv to role Ai+1.ri+1. Di uses his private

key sDi
, his role signature RDi

, and the delegation credential Ci for the role Ai.ri to compute a partial

delegation credential Ci+1. Entity Di does the following.

• Parse the credential Ci as (SAgg , chain i), where SAgg is the aggregate signature of credential Ci and

chain i is the corresponding string tuple. Set the string infoi+1 = PD0
‖D0.priv‖Ai+1.ri+1‖PAi+1

, where

PD0
is the public key of the resource owner and PAi+1

is the public key of the role administrator Ai+1.

Run Aggregate(sDi
, infoi+1, RDi

, SAgg) in HCBE, which outputs an aggregate signature S ′

Agg.

• The string tuple chain i+1 of credential Ci+1 is the string tuple chain i appended with public key PDi
,

the role Ai+1.ri+1, and the public key PAi+1
. Set credential Ci+1 = (S′

Agg , chain i+1). The delegation

credential Ci+1 for the role Ai+1.ri+1 is put on a directory server.

prove: The requester Dn with the role signature Rn and delegation credential Ci wants to use the delegated

role D0.priv. Dn is given a randomized statement T by the verifier D0. The statement T contains some

random information to prevent a replay attack. Dn does the following.

• Parse the credential Cn as (SAgg , chainn), where SAgg is the aggregate signature of Cn and chainn is

the string tuple. Run Aggregate(sDn
, T, RDn

, SAgg) in HCBE, which outputs an aggregate signature

S′

Agg. Set the string tuple chain ′

n to chainn appended with the public key PDn
. Set the proof F to be

(S′

Agg , chain
′

n, T). Send the proof F to the verifier D0.

verify: The verifier D0 verifies the proof F submitted by the requester Dn as follows.

• Parse F as (S′

Agg , chain
′

n, T), where S′

Agg is an aggregate signature, chain ′

n is a string tuple, and T is

a statement. Parse the string tuple chain ′

n as [D0.priv, PD0
, A1.r1, PA1

, . . ., An.rn, PAn
, PDn

], where

8

for i ∈ [0, n − 1] PDi
is the public key of delegator Di, Ai+1.ri+1 is the role receiving the delegation

from Di, PAi+1
is the public key of role administrator Ai+1, and PDn

is the public key of the requester.

• Encrypt a message M as follows. Choose a random number r. Set the ciphertext Ciphertext = [rπ, V],

where π is one of the public parameters, V = M ⊕ H ′(gr), and

g = ê(PDn
, H(T))Πn−1

i=0 ê(PDi
, H(PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
))Πn

i=1ê(PAi
, H(PDi

‖Ai.ri))

The value g is the product of multiple bilinear map [9] functions whose inputs are the public key of a

signer and the hash digest of the signed message. H ′ is another hash function in the system parameters

params. ⊕ denotes bit-wise XOR operation. T is the message that Dn signs.

• Run Decryption(Ciphertext, S ′

Agg) in HCBE to decrypt ciphertext Ciphertext using S ′

Agg . Compare

the output M ′ of the decryption with the original message M . The request is granted if M = M ′,

denied if otherwise. The correctness of the verification is in Appendix B.

Delegation to intersection of roles [20], for example A1.r1 ∩ A2.r2, may be realized by extending one

delegation to a string that represents an intersection of roles, rather than one role. To extend or prove such

a delegation, an entity needs to aggregate two, rather than one, role signatures into a delegation credential.

Additional fields can be added by the delegator to a delegation credential to increase the expressiveness, one

of them being the expiration date of a delegation.

5 Discussion

Revocation of delegations can be handled by having each resource owner maintaining a revocation server,

using known techniques such as authenticated dictionary techniques [19, 24] and authenticated third-party

publication techniques [22].

5.1 Privacy and security

In our role-based cascaded delegation model, only the credentials that are necessary for the verification of

delegation chain are revealed. Unrelated credentials are not discovered or touched. This is a significant

improvement in the privacy protection compared to other delegation models. Furthermore, our implementa-

tion provides strong protection of sensitive signatures, because individual signatures can be verified without

being disclosed. This is not achievable in conventional signature schemes, such as RSA signature scheme.

The security of HCBE guarantees that an attacker cannot forge a valid aggregate signature consisting n

individual signatures, even if he possesses n − 1 of the required private keys [10].

5.2 Scalability

The abstraction of roles in our model greatly reduces the potential large number of delegation credentials, and

makes the model scalable. Because the partial delegation credentials issued by delegator cannot be directly

used for accessing resources, they may be stored at public directory servers. Members of a role can query

the directory to retrieve the partial credential. The implementation scales under large number of credential

receivers. The delegation is decentralized. Individuals, who have qualified roles, can make delegations

of the roles without the assistant of administrators. In collaboration environment where coalitions form

dynamically, this feature gives great flexibility to the resource sharing.

9

An entity in the system is not required to store all possible delegation chains in the proof graph that

connects the original issuer with him. For a given privilege, only one delegation credential is suffice. So the

total number of delegation credentials in the role-based cascaded delegation is bounded by O(NM), where

N is the total number of entities, and M is the total number of delegated privileges.

5.3 Efficiency comparisons

We compare our implementation with the implementation using the RSA signature scheme 2. We consider

1024-bit modulus RSA scheme, in which the size of the public key is slightly more than 1024-bit and the

size of a signature is 1024-bit.

5.3.1 Prove and extend

For the same level of security as 1024-bit modulus in RSA, the signature in our implementation is about

170-bit long, and so are all the public keys [12]. For a delegation chain of length n, i.e. having n delegations

on the chain, the string tuple on a complete delegation credential in both implementations contains the

delegated privilege, public keys of n delegators and n role administrators, n roles receiving the delegations,

and the public key of the requester. Suppose the length of a role name is 100 bits, and the delegated privilege

has the same size as a role name. The total size of the credential in our implementation is 170 + 170(2n +

1)+100(n+1) = 440n+440 bits. For RSA signature scheme, such a delegation credential contains 2n more

signatures, and the total size is more than 1024(2n + 1) + 1024(2n + 1) + 100(n + 1) = 4196n + 2148 bits.

For a delegation chain of length 20, the size of delegation credential in RSA is more than 86 Kbits, and in

our implementation is 9.2 Kbits. Smart cards with the microprocessor typically have 32 KBytes (256 Kbits)

EEPROM storage [14, 2]. Our saving in the credential size clearly shows the advantage in the number of

credentials that can be stored by computational devices with small storages.

For 20 Kbits per second connection and a delegation chain of length 20, the time for transmitting the

entire RSA credentials to the verifier in the prove operation takes (4196×20+2148)/20000 = 4.30 seconds.

The time in our implementation takes (440 × 20 + 440)/20000 = 0.46 seconds. For small mobile devices

with limited communication bandwidth, the saving in the credential size in our implementation allows the

credentials to be transmitted faster.

The above analysis also applies to the extend operation. In addition, generating a signature in our

implementation requires only 3.57 ms to compute on a Pentium III 1 GHz, and is faster than generating

a signature in RSA scheme, which requires 7.90 ms for 1007 bits private key on the same machine [5].

For extend and prove operations, individual users just need to store the hash function H in the system

parameters params in HCBE scheme [9].

5.3.2 Verify

The running time for verifying an aggregate signature associated with a delegation chain is linear in the

number of single signatures aggregated, i.e. the length of the chain. Verification of one single signature

in HCBE scheme is slow (about 50 ms on PIII 1 GHz), compared to RSA signature verification (0.40

2To prevent substitution attacks [29], this should be a nested RSA signature scheme, where a delegator signs on not only a
delegation statement but also the signature obtained from his parent entity on the chain. We simplify it here, as the analysis
is the same.

10

ms on the same machine) [5]. Nevertheless, in our implementation only the servers of resource owner,

which are typically powerful, have to performs delegation chain verification. Therefore, the slowdown in the

running time would be less noticeable, and does not affect the individual users who may have less powerful

computational devices.

6 Related Work

In Table 1, several properties of our delegation model and existing delegation models that address delegation

chain problems are compared.

Properties Ours RT framework [21] KeyNote [7] SPKI [1] Hier. Token [15]

Cascaded Yes No No No Yes
Storage Distributed Distributed Centralized Centralized Distributed

Chain discovery Not required Required Required Required Not required
Third-party Not required Required N/A N/A Not required
Role-based Yes Yes No No No

Cred. pass-down Not required N/A N/A N/A Required
Size of cred. O(l) O(1) O(1) O(l) O(l)
Num of sig. O(1) O(l) O(l) O(l) O(l)

Privacy Strong Weak Weak Weak Weak
Cryptographic op. Pairing [5] N/A N/A N/A Exponentiation

Table 1: Comparisons of parameters in delegation systems that address the delegation chain issue. Hier.
Token refers the hierarchical delegation protocol [15]. We denote with l is the number of entities on a
delegation chain. Third-party means whether the delegation chain verification algorithms require third-party
(intermediate entities) participation. Cred. pass-down refers to whether the delegation credential of the
delegator has to be passed down to the delegatee. Size of cred. refers to the size of a delegation credential.
Num of sig. means the number of signatures to be verified for a delegation credential chain. Privacy
represents the degree of user privacy protection offered. Cryptographic op. is the cryptographic operation in
the delegation and verification algorithms.

The RT framework is a family of Role-based Trust management languages for representing policies and

credentials in decentralized authorization [20]. We have already compared our design with the credential

chain discovery algorithms in RT framework at various places in the paper. The PolicyMaker [8] and

KeyNote [7] trust management systems authorize decentralized access by checking the proof of compliance.

SPKI/SDSI (Simple Public Key Infrastructure/Simple Distributed Security Infrastructure) is a public-key

infrastructure emphasizing decentralized name space and flexible authorization [13, 1, 16, 4]. As noted earlier,

KeyNote and SPKI/SDSI do not define explicit role abstractions, and assume that all of the certificates are

available to the discovery algorithms.

There are several cascaded delegation [28] schemes for the proxy authentication and authorization, in-

cluding nested signature schemes [29], delegation keys [25], and a combined approach [15]. These schemes

do not consider delegations to roles, and the delegation credentials are not as compact as ours. The security

framework for Java-based computing environment by Nagaratnam and Lea uses roles in chained delegations

to simplify management of privileges, however, their delegations are made to individuals rather than to roles.

Their term of cascaded delegation has different meanings from ours, and refers to delegations where all the

privileges of each of the preceding entities on the chain are inherited by the delegatee.

11

References

[1] Ó. Cánovas and A. F. Gómez. A distributed credential management system for SPKI-based delegation

systems, 2002. http://www.cs.dartmouth.edu/~pki02/Canovas/paper.pdf.

[2] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed System. Wiley, 2001.

[3] T. Aura. Comparison of graph-search algorithms for authorization verification in delegation networks.

In 2nd Nordic Workshop on Secure Computer Systems NORDSEC’97, November 1997.

[4] T. Aura. Distributed access-right management with delegation certificates. In Secure Internet Program-

ming, 1999.

[5] P. S. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems.

In Proceedings of Crypto 2002, volume 2442 of Lectures in Computer Science, pages 354–368. Springer-

Verlag, 2002.

[6] M. Blaze, J. Feigenbaum, and J. Ioannidis. The KeyNote trust-management system. Version 2. http:

//www.cis.upenn.edu/~keynote/Papers/rfc2704.txt.

[7] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote: Trust management for public-key infrastruc-

tures. In Proceedings of Security Protocols International Workshop, 1998.

[8] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceedings of IEEE

Conference on Privacy and Security, 1996.

[9] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In Advances in Cryptology

– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science. Springer, 2001.

[10] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from

bilinear maps. In EUROCRYPT 2003, pages 416–432, 2003.

[11] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two signature aggregation techniques.

CryptoBytes, 6(2), 2003.

[12] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In Proceedings of Asiacrypt

2001, volume 2248 of Lectures in Computer Science, pages 514–532. Springer-Verlag, 2001.

[13] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate chain discovery

in SPKI/SDSI. Journal of Computer Security, 9(4), 2001.

[14] DATAKEY. The model 330J smart card white paper. http://www.datakey.com/resource/

whitePapers/Model330JWhitePaperV1.pdf.

[15] Y. Ding, P. Horster, and H. Petersen. A new approach for delegation using hierarchical delegation

tokens. In 2nd Int. Conference on Computer and Communications Security, pages 128 – 143. Chapman

and Hall, 1996.

[16] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Yloenen. Simple public key certificate.

http://www.ietf.org/rfc/rfc2693.txt.

[17] D. Ferraiolo and R. Kuhn. Role-based access control. In 15th National Computer Security Conference,

1992.

[18] C. Gentry. Certificate-based encryption and the certificate revocation problem. In EUROCRYPT 2003,

pages 272–293, 2003.

[19] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary with

12

skip lists and commutative hashing. In Proceedings of DARPA Information Survivability Conference

and Exposition – DISCEX ’01, volume 2. IEEE Press, 2001.

[20] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-management framework.

In Proceedings of IEEE Symposium on Security and Privacy, 2002.

[21] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in trust manage-

ment. Journal of Computer Security, 11(1):35–86, February 2003.

[22] C. Martel, G. Nuckolls, M. Gertz, P. Devanbu, A. Kwong, and S. G. Stubblebine. A general model for

authentic data publication. In UC Davis Student Workshop on Computing, 2001.

[23] N. Nagaratnam and D. Lea. Secure delegation for distributed object environments. In Proceedings of

the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS), April 1998.

[24] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proceedings of the 7th USENIX

Security Symposium, 1998.

[25] B. C. Neuman. Proxy-based authentication and accounting for distributed systems. In International

Conference on Distributed Computing Systems, pages 283–291, 1993.

[26] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access control towards a unified

standard. In Proceedings of the ACM Workshop on Role-Based Access Control, 2000.

[27] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models. IEEE

Computer, 29, Number 2, 1996.

[28] K. R. Sollins. Cascaded authentication. In Proceedings of 1988 IEEE Symposium on Research in Security

and Privacy, pages 156–163, 1988.

[29] V. Varadharajan, P. Allen, and S. Black. An analysis of the proxy problem in distributed systems. In

Proceedings of 1991 IEEE Symposium on Research in Security and Privacy, pages 255–275, 1991.

[30] N. Yialelis, E. Lupu, and M. Sloman. Role-based security for distributed object systems. In 5th

International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises – WET

ICE’96, 1996.

13

A Hierarchical Certificate-based Encryption

The Hierarchical Certificate-based Encryption (HCBE) scheme by Gentry [18] has six algorithms, Setup,

Certification of CA, Certification of Bob, Aggregation, Encryption, and Decryption.

Setup(): A set of system parameters params is generated, and will be used in all the operations of the

scheme. Among other parameters, params contain two cryptographic hash functions H and H ′, a bilinear

map ê, and a constant π with certain properties. A bilinear map [9] is a mapping function ê(x, y) that takes

two inputs x and y, and outputs a value.

An entity D chooses his private key sD, which is a positive integer. Entity D computes and publishes

his public key sDπ by multiplying sD with the parameter π. In what follows, public key is expressed in the

form of a product. The key pair may be used for signing and secure email purposes. In the following, we

suppose Bob is at level n, that his public key is snπ and private key is sn, and that the CAs above him have

public keys siπ and private keys si for 1 ≤ i ≤ n − 1.

Certification of CA(siπ, infoi+1): CA at i-th level certifies the public key of the CA at at level i + 1 by

computing a signature. The first input is the public key of CAi, and the second input is a string infoi+1 that

contains the public key si+1π of CAi+1. The string infoi+1 may also contain information such as expiration

date, etc. CAi first computes a hash digest H(siπ‖infoi+1), and then multiplies the digest with his private

key si. Recall H is one of the hash function in the system parameters params. The output signature

siH(siπ‖infoi+1) is given to CAi+1.

Certification of Bob(sn−1π, infon): Bob asks his parent CA, CAn−1, to certify his public key by computing

a signature. The first input is the public key of CAn−1, and the second input is a string infon that contains the

public key snπ of Bob. CAn−1 computes the signature as sn−1H(sn−1π‖infon), which is the multiplication

of CAn−1’s private key sn−1 with the hash digest of the signer’s public key and infon. The output signature

is given to Bob.

Aggregation(sn, infon, sig2, . . . , sign): Bob uses his private key sn and the public key certificates on his

chain to compute an aggregate signature, which will be used as his decryption key. The inputs to this

algorithm are Bob’s private key 3 sn, the string infon that is used for certifying Bob’s public key, and a

number of signatures 4 that contains the public key certificate signatures associated with his chain. Recall

that the public key certificate signature sigi for the entity at level i is of the form si−1H(si−1π‖infoi), for

2 ≤ i ≤ n. Bob first computes a signature on the string infon, snH(infon). He then aggregates this signature

with all the input signatures simply by adding them together, SAgg = snH(infon) +
∑n

i=2
sigi. The output

SAgg is Bob’s decryption key.

Encryption(M, info1, . . . , infon): Alice computes an encrypted message to send to Bob. The inputs are a

message M , string infoi of the entity at level i on Bob’s chain for 1 ≤ i ≤ n. Recall that infoi contains

the public key siπ of CAi for 1 ≤ i ≤ n − 1, and infon contains the public key snπ of Bob. Alice encrypts

a message M using the public keys and a random number r. The ciphertext C consists of two values,

C = [rπ, V]. The first component is the product of the random number r and public parameter π. The

second component is computed as V = M ⊕H ′(gr), where g = ê(snπ, H(infon))Πn−1

i=1 ê(siπ, H(siπ‖infoi+1)),

⊕ denotes bit-wise XOR operation, H ′ is the other cryptographic hash function in the system parameters

3This algorithm is run by Bob, so the private key is safe.
4Aggregate algorithm can take any number of signatures.

14

params, and ê is the bilinear map in params. g is the product of n bilinear map computations, whose inputs

are a public key and a hash digest. The output ciphertext C is sent to Bob.

Decryption(C, SAgg): Bob decrypts the ciphertext C to retrieve the message using his aggregate signature

SAgg . Bob first parses the ciphertext C as two values (U, V). He then computes the message M = V ⊕

H ′(ê(U, SAgg)). The bilinear map ê takes two inputs: one is the first component U of the ciphertext C, and

the other is Bob’s aggregate signature SAgg . The output is a message M .

The correctness of the decryption is shown in the Appendix A.1.

A.1 Correctness of HCBE

Bob’s aggregate signature is SAgg = snH(infon) +
∑n−1

i=1
siH(siπ, infoi+1). The bilinear map computation

in the Decryption is as follows.

ê(U, SAgg) = ê(rπ, snH(infon) +

n−1∑

i=1

siH(siπ, infoi+1))

= ê(rπ, snH(infon))Πn−1

i=1 ê(rπ, siH(siπ, infoi+1))

= ê(snπ, H(infon))rΠn−1

i=1 ê(siπ, H(siπ, infoi+1))
r

= gr

where g = ê(snπ, H(infon))Πn−1

i=1 ê(siπ, H(siπ, infoi+1)). Therefore, V ⊕ H ′(ê(U, SAgg)) = V ⊕ H ′(gr) = M .

B Correctness of our implementation

The bilinear map computation in the Decryption is as follows.

ê(U, SAgg) = ê(rπ, sDn
H(T) +

n−1∑

i=0

sDi
H(PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
) +

n∑

i=1

sAi
H(PDi

‖Ai.ri))

= ê(rπ, sDn
H(T))Πn−1

i=0 ê(rπ, sDi
H(PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
))Πn

i=1ê(rπ, sAi
H(PDi

‖Ai.ri))

= ê(sDn
π, H(T))rΠn−1

i=0 ê(sDi
π, H(PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
))rΠn

i=1ê(sAi
π, H(PDi

‖Ai.ri))
r

= gr

where g = ê(PDn
, H(T))Πn−1

i=0 ê(PDi
, H(PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
))Πn

i=1 ê(PAi
, H(PDi

‖Ai.ri)). There-

fore, V ⊕ H ′(ê(U, SAgg)) = V ⊕ H ′(gr) = M .

15

