Detecting the Onset of Infection for Secure Hosts

Kui Xu!, Qiang Ma?, and Danfeng (Daphne) Yao!

! Department of Computer Science, Virginia Tech
xmenxk ,danfeng@cs.vt.edu
2 Department of Computer Science, Rutgers University
gma@cs.rutgers.edu

Abstract. Software flaws in applications such as a browser may be ex-
ploited by attackers to launch drive-by-download (DBD), which has be-
come the major vector of malware infection. We describe a host-based
detection approach against DBDs by correlating the behaviors of human-
user related to file systems. Our approach involves capturing keyboard
and mouse inputs of a user, and correlating these input events to file-
downloading events. We describe a real-time monitoring system called
DeWare that is capable of accurately detecting the onset of malware
infection by identifying the illegal download-and-execute patterns.

Analysis based on the arrival methods of top 100 malware infecting the most
number of systems discovered that 53% of infections are through download [1]. In
another study, 450,000 out of 4.5 millions URLs were found to contain drive-by-
download exploits that may be due to advertisement, third-party contents, and
user-contributed contents [2]. Drive-by-download (DBD) attacks exploit the vul-
nerabilities in a browser or its external components to stealthily fetch malicious
executables from remote malware-hosting server without proper permission of
the user.

We present DeWare — a host-based security tool for detecting the onset of
malware infection at real time, especially drive-by-download attacks. Deware
is application independent, thus it is capable of performing host-wide moni-
toring beyond the browser. DeWare’s detection is based on observing stealthy
download-and-execute pattern, which is a behavior virtually all active malware
exibits at its onset.

However, the main technical challenge to successful DBD detection is to tell
DBDs apart from legal downloads. Our solution is based on monitoring relevant
file-system events and correlating them with user inputs at the kernel level. In
contrast to DBDs, legitimate user download activities are triggered by explicit
user requests. Also, browser itself may automatically fetch and create temporary
files which are not directly associated with user actions. To that end, we grant
browser access to limited folders with additional restrictions.

Security and attack models We assume that the browser and its com-
ponents are not secure and may have software vulnerabilities. The operating
system is assumed to be trusted and secure, and thus the kernel-level monitor-
ing of file-system events and user inputs yields trusted information. The integrity



of file systems defined in our model refers to the enforcement of user-intended or
user-authorized file-system activities; the detection and prevention of malware-
initiated tampering.

DeWare Archietecture Overview The DeWare monitoring system is de-
signed to utilize a combination of three techniques, including input logger, system
monitor, and execution monitor. Following are the main components.

— Input logger that intercepts user inputs at the kernel level with timestamp
and process information (i.e., to which process the inputs go to). User in-
puts are viewed as trusted seeds in our analysis, which are used to identify
legitimate system behaviors.

— System logger which intercepts system calls for file creations, and probes
kernel data structures to gather process information. Timestamps can be
obtained from input logger at runtime to perform temporal correlation.

— Access control framework that specifies (1)accessible area: where an applica-
tion is allowed to make file creations, (2)downloadable area: places a user can
download files into via an application.

— FExecution monitor which gives additional inspection to areas where access
is granted to an application or user downloads.

Capturing all file-creation events related to processes generates an overwhelm-
ingly large number of false alarms. The purpose of our access control framework
is to reduce the white noise, by granting a process access to certain folders, which
are defined as accessible area. For example, Temporary Internet Files folder is
modifiable by IE — in contrast, system folder is not. Ezecution monitor is to
prevent malware executables from being run at accessible area.

Prototype Implementation in Windows Our implementation and exper-
iments are built with Minispy, a kernel driver for Windows operating systems.
It is able to monitor all events where system is requesting to open a handle
to a file object or device object, and further find out the file creations. Logged
activities are reported to user mode where the access control policy, input cor-
relation, file extension check are performed. We record user inputs at the kernel
level through hooks SetWindowsHookex provided by Windows OS. The execution
monitor is realized with Microsoft PsTools and the process tracking in local secu-
rity settings. We have carried out a study with 22 users to collect real-world user
download behavior data. We will also use DeWare to evaluate a large number of
both legitimate and malware-hosting websites for testing its detection accuracy.

References

1. Macky Cruz. Most Abused Infection Vector. http://blog.trendmicro.com/most-
abused-infection-vector/

2. N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The ghost
in the browser analysis of web-based malware. In Hot-Bots’07: Proceedings of the
first conference on First Workshop on Hot Topics in Understanding Botnets, Berke-
ley, CA, USA, 2007. USENIX Association.



