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ABSTRACT
Many Android vulnerabilities share a root cause of malicious
unauthorized applications executing without user’s consent.
In this paper, we propose the use of a technique called pro-
cess authentication for Android applications to overcome
the shortcomings of current Android security practices. We
demonstrate the process authentication model for Android
by designing and implementing our runtime authentication
and detection system referred to as DroidBarrier. Our mal-
ware analysis shows that DroidBarrier is capable of detecting
real Android malware at the time of creating independent
processes. A performance evaluation of DroidBarrier unveils
its low performance penalties.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Authentication, Access controls

Keywords
Android system security, authentication, malicious pro-
cesses, Android malware

1. INTRODUCTION
An important feature of the Android operating system

is that it relies on mature technologies such as the Linux
kernel. In particular, Android’s Dalvik runtime system relies
on Linux process creation when launching an application or
a service, making the runtime system as the parent process
of all user application processes in Android.

With the assistance of the Linux kernel, Android im-
plements a fundamental security feature called application
sandboxes. Android’s approach is to install each application
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with an isolated sandbox to protect its data from unautho-
rized accesses by other applications, by means of file system
permissions and creating independent processes for each ap-
plication at runtime. Similar to other Linux-base systems,
Android suffers from numerous vulnerabilities that cause the
Android’s application sandboxes to fail. For example, the
Gingerbreak exploit affected the popular Android 2.3 en-
abled a malicious application to gain root privileges and
completely bypass Android’s application sandboxes. This
privilege escalation is used to establish attacks on various
system and user resources. Malicious applications can then
exploit other vulnerabilities above the Linux kernel level
such as the ones in Android’s inter-component communi-
cations [6, 12]. A malicious application may launch attacks
to misuse system resources with the goal of spying on users,
stealing private user data, and causing financial loss [13].

To combat the security vulnerabilities in Android, cur-
rent state of the art focuses on a wide range of approaches.
For example, previous work such as SELinux for Android [5]
provide a runtime protection mechanism to disable exploits
by leveraging a rich policy specification framework originally
developed as part of SELinux. Further, FlaskDroid [24], in-
spired by SELinux also provides a comprehensive framework
for specifying access control for policies in Android. There
have been proposals for behavioral analysis of malware [27],
the use of virtual layers to separate execution domains [3],
data-provenance verification [28], using control-flow to limit
access to data [10], and protecting inter-component commu-
nications in Android’s Binder [8]. Despite Android’s heavy
reliance on its Linux-based security sandboxes, with a few
exceptions (e.g., [19]), existing security solutions barely at-
tempt to enhance the security capabilities of the Linux ker-
nel in Android. Prior work specifically targeting traditional
Linux-based systems (e.g., [2, 17, 22]) are not directly ap-
plicable to Android. This limitation of security solutions for
Linux-based systems is because of major differences in the
system architecture, application and security models used in
Android, despite the reliance on a modified Linux kernel.

In this paper, we present a technique, referred to as process
authentication for Android applications, that complements
the Android’s sandbox mechanism and provides strong pro-
tection for system resources against malicious and unau-
thorized applications. The concept of authentication has
been previously applied and used by (i) Quire [8] for provid-
ing provenance proof on inter-component communications in
Android, (ii) A2 [2, 1] for authenticating native Linux appli-
cations, and (iii) the authenticated system calls [21] for pre-
venting misuse of system calls. However, developing an au-



thentication model for Android applications imposes unique
technical challenges since the Android framework primar-
ily runs Java applications running in virtual machines and
makes use of features such as application services that run
in background. These and other Android features require
rethinking application and process authentication, which is
the subject of our work.

Our key observation is that critical vulnerabilities in An-
droid share a root cause: malicious applications that are in-
stalled and executed without the user’s consent. Our process
authentication model addresses the problem by regarding
application processes as individuals that must be authenti-
cated before using system resources. In this model, legit-
imate applications are given credentials that are used for
authentication at runtime. When enforcing process authen-
tication, unauthorized processes that do not possess creden-
tials fail to authenticate. This failure results in denying
access to critical system services provided by the kernel.

The main property of our process authentication model is
enabling the detection of unauthorized processes at runtime.
To demonstrate this property, we design and implement
DroidBarrier, a runtime system, that enforces a mandatory
authentication on all processes for any application in An-
droid. Using this mandatory authentication enforcement,
DroidBarrier guarantees the detection of processes that fail
to authenticate and prevents their subsequent attacks. Our
technical contributions are summarized below.

1. Process authentication model. We present a process
authentication model and discuss the security require-
ments and guarantees of our model. We discuss a gen-
eral set of operations needed to implement our model
at runtime.

2. Runtime system. We design a runtime system called
DroidBarrier that is capable of detecting unauthorized
processes. Our runtime system mediates the authen-
tication between a process and the kernel. Our design
does not require modification of existing applications
or Android’s Dalvik runtime system.

3. Implementation. We implemented and tested Droid-
Barrier for a physical Android device. Our implemen-
tation consists of patches to the kernel, a set of tools for
process monitoring, authentication, and a lightweight
access control system in the kernel.

Per our evaluation, DroidBarrier detects and stops mali-
cious processes of three major Android malware categories
with hundreds of instances. According to our performance
experiments on a physical Android tablet, DroidBarrier has
negligible performance penalties in process creation. It also
shows a maximum and a minimum I/O performance penalty
of 12.92% and 3.76%, respectively.

The rest of this paper is organized as follows. In Section 2,
we present a motivating example, followed by our security
analysis and the description of the process authentication
model. Section 3 describes the details of DroidBarrier and
its functions. We describe the implementation of DroidBar-
rier and our experiments in Sections 4 and 5, respectively.
Finally, we discuss the related work in Section 6 and con-
clude in Section 7.

2. OVERVIEW
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Figure 2.1: A remote attack sequence to bypass An-
droid’s sandbox and install malicious applications
without user’s permissions.

We address the problem of preventing stealthy installation
and execution of malicious applications in Android-enabled
devices. This is a root cause of many malicious attacks that
exploit other vulnerabilities in Android, with attack goals
such as stealing private data and incurring financial loss.

Motivating example attack. We conducted a runtime
analysis of three sets of Android malware DroidKungFu,
BaseBridge, and AnserverBot. Each of these malware sets
have a number of variants with nearly identical malicious
activities with differences in their user interface elements.
According to our findings, and the results in [29] and [30],
these malware sets rely on malicious shell scripts (running
in independent processes) to perform a privilege escalation
exploit. In Section 5.1, we discuss that our runtime system,
DroidBarrier, is capable of detecting and stopping these ap-
plications at the time of creating processes that fail to au-
thenticate.

To demonstrate the problem, we construct an example at-
tack scenario that is common to these (and other) malware
categories. As depicted in Figure 2.1, the remote attack
exploits two vulnerabilities that result in execution of mali-
cious applications without the user’s permission. In the first
phase of the attack, a vulnerable client is exploited to exe-
cute a payload that downloads a native malicious executable.
In the second phase, the downloaded native binary exploits
a vulnerability in a system task (e.g., Android debugging
bridge daemon) to gain root privileges. Having root priv-
ileges, the native binary bypasses Android’s sandbox and
installs applications on the file system without asking for
the user’s permission.

Once the malicious application is installed with all the
requested permissions defined in its manifest file, it can con-
duct further attacks. The key element to this attack strat-
egy is the ability to install applications without the user’s
explicit authorization. DroidBarrier does not directly detect
the payload that is downloaded to install malicious applica-
tions. However, DroidBarrier is designed to prevent such
installations by means of detecting their unauthenticated
processes, thereby foiling this form of attack.

Challenges and Goals. To develop a solution for protecting
the system from execution of unauthorized malicious appli-
cations, we face two technical challenges:

• The kernel only enforces file system permissions, and



provides memory isolation for processes. In Android,
the kernel lacks advanced capabilities to detect possi-
ble misuse of root privileges.

• Because Android application processes execute in vir-
tual machines and are managed by the Android run-
time, monitoring application processes inside the ker-
nel, without modifying the runtime, faces a semantic
gap.

To address these challenges and develop a mechanism that
can detect installation and execution of unauthorized appli-
cations, this work

• provides a mechanism for the kernel to authenticate
processes and unveil the existence of malicious appli-
cations, and

• aims to detect malicious processes at runtime with high
confidence about their origins. In our detection, we
reconstruct the semantics between the kernel and An-
droid’s runtime by monitoring process forks and the
runtime’s subsequent loading of application class files
into the newly created processes.

2.1 Security Model
Security assumptions and trust model. We trust the ker-

nel’s code and the isolation of memory provided by the ker-
nel used in Android. We assume that the integrity and con-
fidentiality of kernel’s memory are preserved. Further, we
assume that Android’s system software and processes do not
intentionally contain malicious functionality.

Attack model. We target the following methods of attacks.
We first categorize the attacks according to their installation
approach.

• Remote attacks. As shown in the example attack
in Figure 2.1, remote exploitation attacks start by re-
motely exploiting a vulnerability in an application.
For example, attackers can exploit the many vulner-
abilities in Android’s WebView API (that applica-
tions use to show specific web pages) to trigger drive-
by-downloads [18] and install malicious applications.
These attacks can download the application and use
system vulnerabilities to bypass user’s permission for
installing the application.

• Physical attacks. Using a physical communication
channel such as Android Debug Bridge (adb) daemon
to install malicious applications [26]. In this case, the
attacker has physical access to the device and the at-
tack goal is to install malicious applications without
the user’s knowledge. These attacks either require that
the device is not password protected or existence of a
system vulnerability to bypass the password protec-
tion.

According to their execution dependencies attacks are fur-
ther categorized into two main classes:

• Dependent attacks. The malicious code runs in a
compromised application’s processes. Thus, the mali-
cious code depends on another legitimate application
to continue execution. For example, the malicious code
may run within a hijacked trusted process.

• Independent attacks. The malicious code needs to
run in at least one independent process that is created
by a native code or a Dalvik application.

In this paper, we specifically target independent (physical
or remote) attacks that require installation of independent
malicious applications with full capabilities.

3. SYSTEM DETAILS
In this section we first describe an abstract process authen-

tication model followed by the design of our runtime system
DroidBarrier.

3.1 Process Authentication Model
To achieve our goals for protecting Android from malicious

applications that could be installed without the user’s con-
sent, we develop a process authentication model that can de-
tect malicious application executions. Our process authenti-
cation model (also referred to as authentication model in this
paper) regards application processes as individual principals
that must be authenticated at runtime. Our mandatory
authentication provides legitimate applications with valid
application credentials, and, detects malicious applications
that lack such credentials. We define an application creden-
tial as follows:

Definition 1. A secure application credential (SAC) is
a unique secret issued to an application by a trusted process.
Each SAC is associated with exactly one installed Dalvik or
native application. A SAC is computationally hard to regen-
erate and must not be accessible by any unauthorized user
process.

To perform authentication using application credentials
as proofs of applications’ identities, we define two special
processes:

Definition 2. The verifier process π is a trusted process
that has the authority of authenticating other processes.

Definition 3. The registrar process ρ is authorized to
perform the registration of an application by associating an
application bundle with a unique SAC. The registration of
the application is performed at install time with explicit user
permission.

The operating system is responsible for using application
credentials to authenticate processes. The rationale behind
our authentication model is determined by the following
Process Authentication (PA) properties:

1. User processes (other than π and ρ) may not create
or modify credentials, or, assign credentials to other
processes and applications.

2. If a process fails to authenticate itself with a valid se-
cure application credential, then the process is poten-
tially malicious.

3. A process may not be authenticated with more than
one credential.

4. A process may not inherit its authentication status
from parent processes or any other process. Sibling
processes are authenticated with a shared application
credential.



5. A Dalvik application process is always a child of the
zygote process. Native processes must either be a
child of an Android system process or a Dalvik ap-
plication process.

The PA properties ensure that processes are bound to proper
application credentials such that a malicious process (under
our attack model in Section 2.1) does not bypass the au-
thentication, or, spoof other legitimate processes.

Operations. Our authentication model has three core op-
erations (discussed in Section 3.2.1): credential registration,
process authentication, and runtime detection. These op-
erations ensure proper authentication of all processes and
detection of unauthorized ones. In the following section, we
present the design of DroidBarrier that implements these
operations in the Android operating system.

3.2 Design of DroidBarrier
We design DroidBarrier to realize our process authenti-

cation model. In the following sections, we present the core
components of DroidBarrier and discuss some of the alter-
native design approaches.

We follow a proactive approach in DroidBarrier by reg-
istering the applications that the user desires to run. This
registration enables the user to control which applications
are legitimate and allowed to run. Also, we include a de-
tection capability in DroidBarrier to monitor process cre-
ations and activities and authenticate processes at runtime.
In the following sections, we present the core components
of DroidBarrier for implementing the operations of our au-
thentication model described in Section 3.

3.2.1 Credential Registration and Protection
To perform the registration of credentials, DroidBarrier

includes a component referred to as the credential registrar
(also referred to as the registrar in this paper). As depicted
in Figure 3.1, credential registrar’s task is to generate cre-
dentials for applications that the user designates as legiti-
mate.

Establishing the trustworthiness of applications is an im-
portant procedure that can be executed before registering an
application with a valid credential. To establish this trust-
worthiness, there exists a number of classification techniques
using static analysis [9, 11, 14], dynamic analysis [29] of the
application, or based on experts’ knowledge. In this work,
we do not explicitly address this problem.

Credential generation. The registrar generates a creden-
tial that is computationally hard to guess. Among many
ways to generate a credential, the registrar can use a strong
pseudo random number generator.

There are two alternative approaches to our authentica-
tion mechanism based on secret credentials. First, regis-
tering a public checksum (e.g., a hash of application’s class
file) of an application bundle, and, recomputing the check-
sum at runtime to establish the authenticity and integrity of
the application. Our approach is to use a secret credential,
which eliminates the need for recomputing the checksum.
Although by checking the checksum one can determine if
the application bundle’s integrity was violated, we choose
to protect application bundles (as described below) for ver-
ifying and preserving their integrity and disabling possible
denial of service. The second alternative approach is to use
developer signatures to establish trust. In fact, Android uses
developer signatures, but without an actual verification of
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Figure 3.1: DroidBarrier performs three operations:
credential storage and protection, runtime monitor-
ing, and authentication of processes. Applications
with valid credentials are allowed normal execution.

the signature. Our design eliminates the need for third party
certifications and verifications of public keys yet delivers the
required level of trust.

To correctly establish the authenticity of an application,
the registrar uses a two-way registration method. First, the
registrar generates and stores a credential γ in A’s bundle,
forming a new application bundle A∗. We refer to an appli-
cation bundle with an embedded credential, as a protected
application bundle. This design choice is important to bind
processes to specific executables in our runtime detection
system, and, to protect the credential γ from attacks (de-
scribed below). Second, the registrar stores a copy of γ in
a SAC database. The SAC database implements the unique
set Γ, which is the set of reference for validating any creden-
tial. Maintaining a copy of γ in the SAC database prevents
forgery and replay attacks on the credentials. Note that an
application’s credential γ is invalidated if γ is removed from
Γ and if the application is reinstalled or deleted.

Credential protection. To fulfill the specification of cre-
dentials (Section 3) and the PA properties (Section 3.1),
our design must fully protect the credentials generated by
the registrar to preserve their integrity, without relying on
file system permissions. Our approach to this problem is
to enforce access restrictions on the protected application
bundles and the SAC database. To maintain integrity and
confidentiality, we disable any process, other than the ver-
ifier process and the registrar, from read/write access to
protected application bundles and the SAC database. We
enforce this protection using DroidBarrier’s kernel-side com-
ponents by intercepting all open system calls and preventing
unauthorized access to the SAC database (Section 4).

3.2.2 Runtime System
DroidBarrier includes a process monitor (Figure 3.1) to

track the creation of processes by the Android’s runtime.
The process monitor relies on the authentication decision
by DroidBarrier’s authenticator. To maintain compatibil-
ity, we design these components as part of the Linux kernel
without modifying Android’s runtime. Our design strategy
is to detect process creations, bind them to specific appli-
cation bundles, and authenticate the processes according to
registered credentials.

Process Monitoring and Runtime detection. The process
monitor’s policy is to regard every new process as unautho-
rized until it is authenticated. The detection strategy of



the process monitor is to check the authentication status of
applications at the time of creation. A process’s status is
either authenticated or unauthenticated.

The technical challenge in the design of DroidBarrier’s
runtime system is the semantic gap between the kernel and
Dalvik virtual machine, which runs Android applications.
Android’s runtime system process, zygote, forks a new pro-
cess when the user wants to run an application. At this
point, it is not clear to the kernel which application is loaded
in the newly created process. To reconstruct the seman-
tics, in addition to monitoring process creations, the process
monitor keeps track of file accesses by zygote to bind the
loaded class file of the application to the newly forked pro-
cess. When the newly forked process is bound to a Dalvik
class file, the process monitor’s runtime detection is com-
plete and the process’s identifier (PID) is sent for authenti-
cator to proceed with the authentication.

Process authentication. DroidBarrier needs a reliable
mechanism for authentication to prevent stealing creden-
tials and spoofing legitimate processes. We follow a design
choice to mediate the authentication between DroidBarrier
and user applications. Using our authentication mediation
strategy, DroidBarrier performs the process authentication
operation in three stages:

1. Kernel-side checking. As shown in Figure 3.1, a kernel-
side component, authenticator (denote as AT ), re-
ceives an authentication request from process monitor
(denote as PM) for a process P . AT maintains a sta-
tus list L, which records the authentication status for
each process, authenticated, or, unauthenticated. If P ’s
status is unauthenticated, AT sends an authentication
verification request to the verifier process π. The for-
mat of the request is (P.PID, P.path), where P.PID
is P ’s process ID and P.path is the file path for the
Dalvik class file that created P .

2. Verification of credentials. π loads the credential
c from the protected application bundle on P.path
and the corresponding credential c′ from the SAC
database. If c = c′, then π sends a success response
message back to AT .

3. Status update. When AT receives the response mes-
sage from π, AT updates P ’s authentication status in
L, accordingly.

3.3 Security Analysis
Security guarantees. DroidBarrier guarantees that all

processes are authenticated. This property ensures that
stealthy applications that were installed without the user’s
consent are detected. Independent remote or physical at-
tacks described in Section 2.1 are detected as soon as
a process with no valid credential is created. However,
DroidBarrier does not guarantee the isolation of hijacked
processes described under dependent attacks in Section 2.1.

Security of credentials. To secure application credentials,
we study various attacks that can occur on the credentials
and provide solutions accordingly. An important attack on
DroidBarrier is to steal or corrupt application credentials.
DroidBarrier protects the credentials from being exposed to
attackers by denying access to application bundles at the
user processes level. In order to prevent fake credentials,
DroidBarrier registers all valid credentials and checks this
validity at runtime.

Protecting DroidBarrier code and data. DroidBarrier’s
process monitor and authenticator execute in kernel mode.
This guarantees the isolation of process monitor and authen-
ticator data from user space attacks under the reasonable
assumption of a trusted Linux kernel (Section 2.1).

Limitations of DroidBarrier. DroidBarrier specifically
targets processes that are created by malicious applications.
This is a critical category of attacks that is used by modern
Android malware [30]. However, embedded attacks that run
entirely within the boundaries of a legitimate process cannot
be detected by our current mechanism. In general, any mali-
cious application that possesses valid credentials (by hijack-
ing legitimate applications, or granted by mistake) bypasses
our security guarantees.

DroidBarrier’s code and data may be subject to kernel-
based attacks either by rootkits or malicious kernel mod-
ules. In principle, rootkit attacks (such as return-oriented
rootkits [16] and system call obfuscation [25]) can cause
kernel integrity and confidentiality violations. Although
DroidBarrier is not designed to specially prevent rootkits,
assuming that the kernel is initially free of malicious code,
DroidBarrier prevents further malicious code executions.

4. IMPLEMENTATION
We describe a prototype of DroidBarrier implemented in C

using Android’s native APIs. Our implementation involves
an extension to the Linux kernel for process monitor and
authenticator (described in Section 3.2.2). We use Android
Honeycomb 3.2 with the Linux kernel version 2.6.36.4 for
our implementation platform.

Credential registrar. We implemented a credential regis-
trar that installs application credentials for an Android ap-
plication bundle. The registrar uses a random number gen-
eration function to generate a credential and labels the ap-
plication bundle (with the apk extension) with the newly cre-
ated credential. The registrar also records the new credential
in a sequential database of keys and application names for
reference at authentication time. Our labeling of the apk

bundle does not alter the functionality of the application in
any way. The label only includes an additional header and
the credential in a format that DroidBarrier can recognize.

Credential protection. We protect credentials (Sec-
tion 3.2.1) by implementing a light-weight access control sys-
tem in the kernel. We place checkpoints in the beginning of
do_sys_open, which enables us to intercept all open system
calls. Before returning a file descriptor fd to the request-
ing process, we check for two conditions. First, we check if
the requested file path is a protected application bundle, by
reconstructing the full file path from the process’s current
directory. Then, we verify if the requested file path is an
executable. If the condition is true, we check if the request-
ing process is the registrar, the credential verifier or zygote.
According to our policies (Section 3.1), DroidBarrier denies
access to executables for all other processes. Second, we
check the file path against our credential database. For the
credential database, we only return an fd, if the calling pro-
cess is either the credential verifier or the registrar.

Process monitor. We implement the process monitor by
inserting check points in specific kernel functions. To main-
tain performance, we avoid using existing Linux APIs to
trace kernel functions (such as kprobe or ptrace). To mon-
itor the creation of processes by the Android’s runtime, we
insert check points in do_fork, for Android’s Dalvik applica-



tions, and do_execve, for native applications loaded directly
by the kernel. The zygote process calls fork() to create a
new process and load a Dalvik class in it. We record the gen-
erated pid in do_fork and track zygote’s subsequent system
calls so that we bind the new pid to its application bundle.

DroidBarrier tracks the loading of Dalvik class files
through our check point in the do_sys_open function. When
the process pid (that must be the child of zygote) loads
a class file from the file system, the authentication oper-
ation can proceed to verify pid’s credentials. Since the
authentication is asynchronous and waits for the open sys-
tem call, DroidBarrier maintains a dynamic pool of await-
ing authentication processes (an array requests of type
struct auth_request) to perform the authentication.

5. EVALUATION
We evaluate DroidBarrier by testing its detection capa-

bilities against Android malware samples. Also, we present
experiments for evaluating the performance of DroidBarrier.

5.1 Detection of Malicious Applications
According to Android’s application model, every applica-

tion bundle must run in at least one process independent
of other applications. Thus, to detect malicious Android
applications, we design DroidBarrier to detect malicious ap-
plications based on their process creations. According to the
analysis performed in [30], about 36.7% of the applications
(in a collection of 1260 malware instances) contained embed-
ded privilege escalation exploits that execute through hidden
shell scripts requiring their own independent processes.

We analyzed three chosen sets of Android malware
DroidKungFu, BaseBridge, and AnserverBot. These mal-
ware (provided by Android genome project1) have 96, 122,
and 187 variants, respectively. Our chosen malware cate-
gories use sophisticated social engineering, root vulnerability
exploitation, and financial attacks, found in many other sim-
ilar malware sets [30]. Nevertheless, our malware analysis is
not limited to the chosen sets and is applicable to all malware
with privilege escalation attacks as described in [30]. The
three analyzed malicious applications share a core function-
ality that results in their detection by DroidBarrier. That
is, they try to gain escalated privileges by running an exploit
and subsequently calling the su utility. The su utility is not
included in Android by default, but the malicious applica-
tion can install it after gaining installation privileges that
bypass user’s permissions.

DroidBarrier successfully detected all the samples that we
tested from these three sets. All the samples tried to run
su, which resulted in processes that failed to authenticate.
DroidKungFu tried to run other unknown executables that
were also immediately detected at the time of process cre-
ation.

5.2 Performance Evaluation
We evaluate the performance of our implementation pro-

totype described in Section 4. Our performance evaluation
investigates the effect of DroidBarrier on I/O performance,
process creation, and Dalvik applications.

In the rest of this section, we describe our experimen-
tal setup followed by three sets of experiments for I/O and
process creation. Our results show efficient performance of

1http://www.malgenomeproject.org/
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Figure 5.1: I/O operations write, read, open, and
close for (a) native, and (b) Dalvik applications.

DroidBarrier with low extra overhead in I/O performance,
and, negligible performance penalty in process creation.

Experimental setup. Our evaluation focuses on the effect
of DroidBarrier on the performance of the Linux kernel in
Android. We run all the experiments on a Samsung Galaxy
Tab 10 (with model number P7510) running Android Hon-
eycomb 3.2 with the Linux kernel version 2.6.36.4. For our
evaluations, we port the benchmarking suites lmbench2 and
UnixBench3 to Android.

For our evaluations we needed a benchmarking suite that
can accurately measure I/O and process creation. There are
existing suites such as lmbench4 and UnixBench5 that con-
veniently run on Linux distributions for x86 machines. Per
our research, these suites have not been ported to embedded
Linux running on the ARM architecture. Thus, we modi-
fied some of the existing code in lmbench and UnixBench
for compatibility with the ARM Linux.

When running the modified kernel with DroidBarrier, we
periodically simulate the authentication of processes as if
a user is consistently launching new applications. When
performing experiments, there was about a total of 130–150
running Linux processes.

I/O performance. I/O performance experiments show a
consistently efficient performance of DroidBarrier with the
performance penalty not exceeding 13%. We experimented
with read, write, open and close calls with a measurement
of the total time for 10,000 iterations. We performed 250
runs of each loop to collect an average performance value.
In the results of our experiments (depicted in Figure 5.2), we
have an average maximum of 12.92% performance penalty
for the read calls, an average minimum of 3.76% performance
penalty for open/close, and for write calls there is an average
of 6.01%.

To examine the performance of Dalvik applications under
DroidBarrier, we conducted an I/O experiment by making

2http://www.bitmover.com/lmbench/
3http://code.google.com/p/byte-unixbench/
4http://www.bitmover.com/lmbench/
5http://code.google.com/p/byte-unixbench/
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Figure 5.2: Performance of fork system call evalu-
ated in loops of 1000 iterations.

file writes, reads, open and close using the BufferedWriter

and BufferedReader. The open and close calls involve
opening a file using FileWriter, which is used to create
a BufferedWriter and we close the BufferedWriter subse-
quently. We developed an application to perform 1000 it-
erations of each I/O operation (we call open and close calls
together in one iteration). The results of Figure 5.2 shows
the average performance for 200 runs of all experiments.

Process creation performance. We measure the fork sys-
tem call in loops of 1000 iterations. In each iteration we fork
a child, and, a child exits immediately, and, we perform a
total of 100 runs of the experiments. Android heavily uses
fork for process creations. Since DroidBarrier performs the
authentication asynchronously, we do not see major perfor-
mance downgrade for forking a process. The average perfor-
mance penalty is 0.041% (depicted in Figure 5.2), which is
insignificant.

6. RELATED WORK
Quire is a cryptographic solution that annotates inter-

process communications (IPC) in Android to provide prove-
nance assurance to the receivers of the IPC messages [8].
Our work differs from Quire by authenticating Linux pro-
cesses in Android as one unit and also restricting access to
system resources to authorized process.

A2 [2], uses a challenge-response protocol to authenticate
applications. A2 [2] is designed to work with Linux processes
created for native C applications. DroidBarrier authenti-
cates Android’s interpreted applications by reconstructing
the semantics between the Linux kernel and Android’s run-
time (Section 3.2.2). DroidBarrier substantially improves
and advances the techniques discussed in A2 by (i) an au-
thentication model that specifically addresses the challenges
for authenticating Dalvik applications, (ii) an authentication
mediation strategy that reconstructs the semantic gap be-
tween the Dalvik runtime and the kernel, and (iii) a runtime
system that monitors Android’s zygote for process creation
and enforcing authentication.

VMWare Mobile Virtualization Platform (MVP) [3] is a
type 2 hypervisor and is capable of isolating restricted and
normal execution environments. Bare Metal Hypervisor [15]
runs security sensitive applications in trusted and isolated
environments. Also, Cells [7] runs multiple virtual phones
using a shared underlying physical phone to provide isola-
tion. Other systems such as TrustDroid [4] isolate applica-
tions in isolated logical domains. In DroidBarrier, we do
not use virtualization to provide isolation at runtime. This
helps in achieving better compatibility.

Mandatory access control (MAC) systems complement
DroidBarrier to provide fine-grained authorization. An-

droid’s SELinux [23], for example, can benefit from
DroidBarrier’s strong authentication guarantees. More re-
cent implementations of SELinux for Android [24] provide a
more comprehensive framework to achieve fine-grained con-
trol on applications. Paranoid [20] is a system that takes a
novel direction by delivering a cloud-based security solution
for Android.

Finally, general static analysis techniques such as [9] can
also be used to provide information on installing applica-
tions.

7. CONCLUSIONS
We presented a general model for providing high assur-

ance authentication for application processes running on an
Android-enabled device. We achieve the high assurance by
developing an authentication model that uses secure appli-
cation credentials, maintained and protected by our runtime
system, to authenticate processes and bind their identity to
legitimate applications installed on the device. Our authen-
tication approach guarantees protecting the system from ex-
ecution of malicious applications that may exploit the many
system and application vulnerabilities to be installed on the
device. Our future work will focus on authenticating inter-
process communications and authenticating access to appli-
cations’ assets.
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