
Noname manuscript No.
(will be inserted by the editor)

Secure Mashups For ID Management With In-Browser
Cryptography Support ?

Saman Zarandioon, Danfeng (Daphne) Yao, Vinod
Ganapathy
Department of Computer Science
Rutgers University
Piscataway, NJ 08854
{samanz,danfeng,vinodg}@cs.rutgers.edu

Abstract This paper addresses the identity management problems in modern Web-2.0-
based mashup applications. We present Web2ID, a new identity management framework
tailored for mashup applications. Web2ID leverages a secure mashup framework and en-
ables transfer of credentials between service providers and consumers. We also describe a
new relay framework in which communication between two service providers is mediated by
a relay agent within the mashup. We show that Web2ID is privacy-preserving and prevents
service providers from learning a user’s surfing habits.

We present an implementation of Web2ID and the relay framework using a JavaScript-
based library that executes within the browser. Our implementation does not require client-
side changes and is therefore fully compatible even with legacy browsers. Finally, we
demonstrate how Web2ID can provide identity management for Web-based desktops, a pop-
ular new class of client-side mashup applications.

1 Introduction

Mashup applications integrate information from multiple autonomous data sources within
the Web browser for a seamless browsing experience. For example, iGoogle allows users
to create personal pages containing “gadgets” from multiple Web domains, such as NY-
Times, Weather.com and Google Maps. Despite their popularity, mashups are still not in
widespread use for sensitive Web applications, such as banking, investment, online shopping
and bill payment. Such mashup applications currently require user authentication to prevent
unauthorized access to sensitive information. A Web user who includes such sensitive ap-
plications in a mashup must authenticate herself individually to each of these applications.
For example, mint.com and yodlee.com allow users to view a summary of their financial
activities by accessing back-end services, such as banks and credit card companies.

For historical reasons the Internet lacks unified provisions for identifying who com-
municates with whom [26]. Therefore, currently service providers use ad-hoc solutions to

? The preliminary version of the work appeared in the Proceedings of the Fifth ACM Workshop on Digital
Identity Management (DIM) [32]. Collocated with ACM Conference on Computer and Communications
Security (CCS). Chicago, IL. Nov. 2009.

Address(es) of author(s) should be given



2

identify and authenticate their users. These ah-hoc solutions require the user to create a new
identity for each service provider. This leads to multiple isolated identities for each user; a
problem which is particularly troublesome in mashup applications as they need to authen-
ticate and cores-reference users across multiple service providers in order to share users’
protected resources with their consent.

We present Web2ID, a new protocol for identity management in mashup applications. By
leveraging a secure mashup framework developed in our prior work [31], Web2ID enables
transfer of credentials without requiring page redirections, and works seamlessly with Ajax-
based Web-2.0 applications. We also describe a new relay mashup framework, based on
which a trusted client-side relay agent can be built in the mashup to transmit credentials
between providers.

Most existing identity management protocols for the Web, including OpenID [1], use a
unique URL to represent the identity of a principal. The advantage of using a URL as op-
posed to a name or email address is that a URL is tangible, clickable, user-friendly, and can
contain information that facilitates the authentication process. This URL is called the princi-
pal’s identity URL . The static page that is located at identity URL is called the identity page.
The server that hosts the identity page is called the identity host. Therefore, during authen-
tication, users claim ownership of their identity URL and proves their claims to a service
provider by following the corresponding authentication protocol. However, all these authen-
tication protocols require a trusted third party, called Identity Provider (IdP), to validate the
user’s claim. Users first create an account with IdP and use the identity page to delegate
the authentication of their identity URL to that IdP. But this feature may compromise user
privacy as the IdP can learn the surfing habits of the user.

In this work, user privacy refers to the protection of a user’s transaction history. Better
privacy refers to the separation of providers (service providers or identity providers) in a
way so that they do not directly communicate to each other regarding to the users and their
activities. This notion of privacy follows the one used by Goodrich, Tamassia, and Yao in a
federated identity management or single sign-on (SSO) model [13]. Unlike [13], our solution
is decentralized and does not require any centralized server.

The main advantage of Web2ID is that it uses public-key cryptography to enable users to
prove the ownership of their identity URL without relying on third parties. Authentication in
Web2ID and PGP [2,29] are similar as they both eliminate the need for a centralized identity
provider, and thus support decentralized trust management. However, the main difference is
that Web2ID is specifically designed for modern web 2.0 mashup application. In Web2ID,
the identity of each user is represented by a URL whereas in PGP the public keys directly
represent the identity of users. This feature makes Web2ID more user friendly as URLs are
easier to remember. Moreover, Web2ID provides powerful and flexible APIs that can be
easily imported and integrated into existing modern Mashup applications.

Web2ID relies on client-side components that run within browser and are able to se-
curely communicate with each other. In this paper we use the term mashlet, which we
introduced in [31], to refer to these components. We provide more details on mashlets in
Section 2. In Web2ID, users are represented by a mashlet hosted at their identity URL, in
much the same way that service providers are represented on the client-side by their mash-
lets. We call the mashlet that is hosted at the identity URL an identity mashlet. That is, in
Web2ID, the identity page is a mashlet, (i.e., it includes JavaScript libraries required for
communication) which provides authentication services.

During the authentication protocol, users first presents their identity credentials to their
identity mashlet. In turn, the identity mashlet acts on behalf of the user and interacts with
other mashlets to prove that the user owns the identity that corresponds to its URL. The iden-



3

tity mashlet enables other desirable features including authorization delegation and attribute
exchange.

We have three main technical contributions in this paper.

1. We design and implement a new identity-management framework – Web2ID – for sen-
sitive client-side mashup applications. Web2ID supports identity authentication on the
Internet without any centralized trusted party. In addition, user’s privacy (in terms of
service history) is protected because identity providers and service providers do not
communicate directly about the user’s requests.
We also describe how attribute exchange and the delegation of authorization are done in
Web2ID.

2. We implement an in-browser public-key cryptosystem in JavaScript for Web2ID cryp-
tographic operations can be completed solely in the browser. Our library is general-
purpose and is useful beyond the specific identity management problem studied.

3. We generalize Web2ID to the identity management in Webtop applications, where a
browser provides a desktop-like environment for office applications and data manage-
ment. We describe our open-source Webtop application and how to integrate Web2ID
with it. The source code for Webtop and cryptographic libraries are available on Source-
Forge ([34]).

In our Web2ID architecture, we define a new communication structure which we call
mashlet relay. The mashlet relay is a mashlet that passes information between two mashlets
belonging to different domains. Thus, it enables indirect cross-domain communication. For
identity management, mashlet relay enables a service provider to send a query to another
provider without revealing its identity. The mashlet-relay framework protects user privacy
in mashup environments because service providers that host user data are unable to learn
how users consume their data. This feature is especially important when users wants to
provide their identity attributes (certified by a trusted party) to another service provider.

Our framework is implemented as a JavaScript library without browser modifications
or specialized plugins to operate. It is fully portable across browsers and execution plat-
forms. We illustrate the portability of our framework by incorporating it with several popu-
lar browsers, including Firefox, Opera, Apple Safari, IE and Google Chrome. Moreover, we
avoid using HTTP redirections for communication; consequently, our protocol is compatible
with modern Ajax-based Web applications.

Organization of the paper. The rest of the paper is organized as follows. We provide
the background information on mashup-related concepts in Section 2. We give our threat
model in Section 3. Our basic Web2ID protocol is in Section 4. Extensions of Web2ID
are presented in 5 and 6. Our implementation is presented in Section 7. We apply Web2ID
to the identity management problem in webtop applications in Section 8. Related work is
described and compared in Section 9. We give the conclusions at the end of the paper.

2 Background on Mashups and Mashlets

Mashup applications aggregate content from a number of providers and display them within
Web browsers. Such applications can be designed either as server-side mashups or client-
side mashups. In server-side mashups, a proxy (called the mashup server) aggregates con-
tent from multiple sources. The Web browser loads the mashup application by visiting a
URL corresponding to the proxy. In contrast, client-side mashups directly aggregate con-
tent within the Web browser. Several frameworks have recently been proposed to support



4

safe yet expressive client-side mashups. For example, OMOS [31] and SMash [17] are two
frameworks that support secure inter-domain communication without requiring any change
to the browser. MashupOS [28] is another framework that provides as set of powerful API
for secure inter-domain communication but requires change in the browser. [4] analyses
security of existing client-side communication protocols.

The client-side components of a mashup application are called mashlets. Mashlets rep-
resent the service provider that is hosting them in the client side and run in the browser
with the privileges given to their hosts. To be concrete, a mashlet is simply a HTML page
which loads to an iframe and contains some JavaScript code that enables it to communicate
with other mashlets in the page. A mashup application is a Web application that aggregates
a number of mashlets, possibly from different sources on the Web. We also use the term
mashlet container to refer to the mashup application.

A secure inter-mashlet communication protocol is one that guarantees mutual authen-
tication, data confidentiality, and message integrity. Mutual authentication in inter-mashlet
communication means that two mashlets that communicate with each other must be able to
verify each other’s domain name. Message integrity requires that any attempt to tamper with
the messages exchanged between two mashlets should be detected/prevented. Data confi-
dentiality means a mashlet should not be able to listen to the communication between two
other mashlets running under different domains.

For concreteness, the rest of this paper describes mashups and mashlets in the context
of OpenMashupOS (OMOS) [22,31], a secure client-side mashup framework that we de-
veloped in prior work. However, the concepts developed in this paper are applicable to any
client-side mashup framework that provides the above properties.

3 Our Threat Model

In Web2ID, there are several types of players: user, service provider, service consumer,
attribute provider, and outside attacker (or stranger). Each player has a different degree of
trustworthiness, as we explain next.
Users may be malicious. As is standard with AJAX-based applications, some messages of
the Web2ID protocol are exchanged on the client-side, within the user’s browser via inter-
mashlet communication. Because the user has complete control over the browser, a mali-
cious user may alter the client-side component of the Web2ID protocol, for example, by
forging the identity of another user or providing forged identity attributes to an attribute re-
quester. Consequently, for transactions in which the user must not be trusted, the correctness
and integrity of the Web2ID protocol must not rely on the client-side portion of the protocol
executing correctly. Web2ID uses cryptographic techniques to ensure the integrity of data
that passes through the client.
Service providers may be malicious. When a service provider authenticates a user, it must
receive certain information that enables it to ensure the authenticity of the user. A malicious
service provider may misuse this information to impersonate the user to a second service
provider using a relay attack. For example, a malicious service provider attacker.com that
authenticates Alice may use her credentials to impersonate her to another service provider
honest.com. In this attack, attacker.com tries to log into honest.com claiming the owner-
ship of Alice’s identity URL (e.g., alice.me). When honest.com challenges attacker.com,
it relays that challenge to Alice when she tries to prove her identity to attacker.com. In turn,
attacker.com uses this information to convince honest.com of Alice’s identity.



5

Service consumers may be malicious. In the authorization delegation protocol, a malicious
consumer may try to convince a service provider to give it access to a user’s protected re-
sources without possessing appropriate authorization (i.e., explicit consent from the user). In
the case where users wishe to protect their privacy from the consumer, a malicious consumer
may try to learn the user’s identity during the course of authorization.
Attribute providers may be malicious. We refer to a service provider that requests user’s
attributes as an attribute requester and the service provider that stores user attributes and set-
tings as an attribute provider (also called a wallet [24]). An attribute provider may optionally
certify user attributes (e.g., for attribute-based authorization) or simply send non-certified
values (e.g., for providing settings and preferences).

In an attribute exchange, a malicious attribute provider may try to violate a user’s privacy
by learning the identity of requesters that try to obtain the user’s attributes. As a result,
the attribute provider may learn the user’s surfing habits. Similarly, a malicious attribute
requester may also try to learn the identity or attributes of the user without user’s agreement.
Man-in-the-Middle (MitM) attacks. Based on their capabilities, man-in-the-middle at-
tackers (MitM) [15] can be either active or passive. A passive MitM attacker only listens to
the conversation between two parties in the protocol. The goal of a passive attacker is to ob-
tain information that can be used to impersonate the users, get unauthorized access to their
private resources or violate their privacy. In contrast, an active attacker can also modify the
content of conversation. An active MitM may try to change the result of an authentication
or authorization check by modifying or replaying data transmitted in the protocol. MitMs
can also be classified based upon their location in the network. Client-side MitMs involve
a malicious mashlet that tries to spoof mashlet-to-mashlet communication in the protocol.
A network MitM spoofs network communication, such as those between a mashlet and its
server, or between two servers. In the Web2ID protocol, we assume that the point to point
network communications are safe against active MitM attacks, which can be guaranteed by
using secure lower level protocols like SSL. Finally, malicious mashlets may also try to
subvert the protocol by launching frame phishing attacks against the user [17].

4 Basic Web2ID Protocol

The basic Web2ID protocol enables users to prove their identity to a service provider website
without the use of a trusted third party. This protocol enables users to independently prove
their identities and prevent any third party from learning their surfing habits. We achieve
this goal using public-key cryptographic primitives in a manner akin to public-key client
authentication in SSH (RFC 4252 [3]).

In Sections 5 and 6, we extend our basic Web2ID protocol to support attribute exchange
and the delegation of authorization, respectively.

Suppose that a principal P (e.g., Alice) wishes to adopt an identity I (e.g., an identity
URL, such as alice.me) and prove her ownership of that URL to a service provider SP.com.
There are two main operations in the basic Web2ID protocol: identity adoption and user
authentication, as described in the following.
Identity Adoption. To adopt an identity URL I, say alice.me, Alice first hosts an iden-
tity mashlet at this URL. The identity mashlet is a component that is trusted by Alice
and represents her within a mashup application. To configure her identity mashlet, Alice
must navigate to her identity mashlet using a browser. When the identity mashlet loads for
the first time, it detects that it is not configured, and generates a public/private-key pair



6

(Pu(I),Pr(I)). The public key is embedded within the identity mashlet, while the private
key must be stored safely by Alice.
User Authentication. When a user such as Alice attempts to authenticate herself with a
service provider, she claims the ownership of an identity URL, such as alice.me. In turn,
the service provider sends a session token encrypted under the public key associated with
the identity URL alice.me. When the user then sends requests to access resources, she
must prove ownership of the session token corresponding to her claimed identity. Figure 1
illustrates how service provider SP.com assigns a session token to the user who claims
the ownership of identity alice.me. As Figure 1 illustrates, authentication happens in seven
steps, as described below:

1. The user claims to own an identity I. For instance, this identity could be an identity
URL alice.me. This claim can be communicated to the mashlet of the service provider
SP.com. For example, the user may enter the URL in a form provided by SP.com.

2. The service provider’s mashlet sends the claimed ID I to the service provider and, if
not already loaded, loads the identity mashlet located at the claimed identity URL (i.e.
alice.me).

3. The service provider extracts the public key Pu(I) and the type/version of the corre-
sponding public-key encryption algorithm Alg from the claimed identity page.

4. The service provider first generates a session token χ, and encrypts χ and the do-
main name of its mashlet SP.com with the public key Pu(I). It then sends the result
∆ = EPu(I)(χ, SP.com) back to the service provider’s mashlet as response. Note that
the domain name of the service provider must be included in ∆ to protect users against
relay attacks by malicious service provider (see Section 3).

5. The service provider’s mashlet sends ∆ = EPu(I)(χ, SP.com) to the identity mashlet
for decryption.

6. If the identity mashlet does not already have the private key Pr(I), it asks the user to
provide her login credentials. Using the user’s login credentials identity mashlet com-
putes the private key. For example, the user can load the encrypted value of her private
key from a USB memory stick and provide a passphrase that can be used by the mashlet
to compute the private key. Alternatively, the user may enter the private key directly by
swiping a smart card that contains her private key.
Once the identity mashlet has the private key and user permits the authentication, the
identity mashlet decrypts ∆ and verifies that the domain name of the service provider
(SP.com) matches the domain name in the token.

7. The identity mashlet sends the computed session token χ back to the service provider
mashlet.

In our implementation, inter-mashlet communication is facilitated by the OMOS frame-
work [31] which provides mutual authentication, and confidentiality and integrity guaran-
tees for the data exchanged between two mashlets. This ensures that a malicious mashlet in
the mashup application will not be able to compromise communication between the iden-
tity mashlet and the service provider’s mashlet (so the value χ will not be available to an
eavesdropper).

Upon the completion of the above protocol, the service provider can verify that the
value of the session token received from the identity I is valid. This proves the user’s claim
of ownership of I to SP.com. Existing identity management protocols prove the possession
of the session token by including it with each request, and are therefore vulnerable to session
hijacking via MitM attacks. Our implementation of Web2ID uses a MAC (message authen-



7

Fig. 1 An identity mashlet represents the user within the application. The user can prove ownership of the
identity mashlet by proving the possession of the private key that corresponds to the public key located at
URL of the identity mashlet.

tication code) to prove possession of the session token.1 In this approach, the MAC value
of each XMLHttpRequest request is computed using the session token and is included
in every request. The service provider serves a request only if the included MAC value is
correct. Note that during the above protocol does not require the service provider to keep
any protocol-specific state, thereby ensuring a stateless implementation of the web applica-
tion at the service provider. In addition, the user’s credentials are never transmitted over the
network; instead such communication happens on the client-side, where communication is
secured using OMOS.

The Web2ID authentication protocol can also be used by a service provider to prove the
ownership of its mashlet. We use this feature as part of authorization delegation protocol
that we describe next. The authorization delegation and attribute exchange protocols build
upon the authentication protocol described above.

The above basic Web2ID protocol supports user authentication. It can be generalized
to support more complex operations such as identity attribute exchange and authorization
delegation. In Section 5, we will present a mashup relay framework and explain how it
facilitates attribute exchange in Web2ID. Our authorization delegation protocol is described
in Section 6.
Security Analysis of the User Authentication Protocol. Because Web2ID uses client-side
inter-mashlet communication, its security relies on the client-side communication protocol
that is used in its implementation. We assume that the mashlet framework that is used for
implementation of Web2ID guarantees confidentiality of inter-mashlet communication. This
assumption implies that the mashlet framework protects the protocol against MitM attacks

1 To do so, we ported the necessary cryptographic functions HMAC-SHA1 and HMAC-SHA256
(RFC2104 [18], RFC3174 [9]) into the OMOS framework.



8

by malicious mashlets. Next, we analyze how the user authentication protocol resists against
attacks launch by adversaries.

Since the session token χ is encrypted by the public key that is associated with the
claimed identity URL (located at the identity page), the user can get access to the session
token only if she owns the corresponding private key. Therefore, assuming that only the
owner of an identity URL has access to the private key that corresponds to the public key
embedded in the corresponding identity page, she will be the only person that can use that
session token. This prevents malicious users from forging identities that does not belong to
them.

To protect users against relay attacks, Web2ID requires service providers to encrypt the
domain name of their mashlet besides the session token. This way the identity mashlet can
ensure that the mashlet that is requesting the session token is not relaying an encrypted ses-
sion token issued by another service provider. Finally, since user’s credentials and session
tokens are never sent over network in clear text, Web2ID authentication is immune to pas-
sive MitM attacks. As discussed earlier, Web2ID relies on the underlying network protocols
(e.g., https) to protect integrity of point to point communication against active MitM attack-
ers. However, to prevent active MitM attackers from replaying a successful authentication
transaction, service providers need to record tokens and reject transactions which contain
a token which is already used. Number of tokens that need to be saved can be reduced by
introducing a timestamp into each token and rejecting tokens that are older than a threshold.

5 Attribute Exchange and Relay Mashlet in Web2ID

An important feature supported by most identity management frameworks is that of attribute
exchange, in which one service provider requests a user’s identity attributes (e.g. age) or
preferences from another service provider. Attribute exchange protocol allows sensitive ap-
plications to bind an identity URL with a physical entity (person) by querying attributes of
its owner certified by a trusted third party. For example, SP.com can query certified address
of alice.me from a trusted third-party (e.g. Division of Motor Vehicle Bureau or dmv.org) to
ensure that URL belongs to the same physical entity that claims its ownership. Attribute ex-
change is especially important for mashup applications, in which interaction between mash-
lets is the norm and user may have multiple identities for each service provider as attribute
exchange can be used to correlate these identities.

In this section, we introduce a new mashlet-relay structure that enables user-centric
client-side communications between two domains. Then, we explain why such a mashlet
relay framework is useful in the implementation of identity attribute exchange in Web2ID.
The main purpose of mashlet relay is for better user privacy, as it provides an indirect com-
munication channel between two service providers. The providers do not directly interact
with each other with regard to a user’s request, and thus cannot share information of a user.

5.1 Mashlet-Relay Framework As a Building Block For Privacy-Aware Client-Side
Mashups

We define mashlet-relay framework as a special client-side mashup framework with three
mashlets within a browser environment where the communication of two mashlets, each
hosting contents of a remote server, is indirect and realized through a third mashlet that is
hosted by the local host. We refer to the two mashlets hosted by remote servers as server



9

mashlets. A server mashlet also communicates to its corresponding remote server via the
mashlet-to-server communication mechanism. We refer to the mashlet that bridges the com-
munication of the two server mashlets as the relay mashlet. All inter-mashlet communica-
tion follows the mashlet-to-mashlet messaging mechanism. The relay mashlet effectively
passes messages between two server mashlets and is able to modify the messages based
on user’s inputs. Figure 2 shows a schematic drawing of such a mashlet relay framework,
where the mashlet in the middle (Mediator) mediates the communication between a re-
quester (e.g., SP.com) and a provider (e.g., AttProvider.com). The mediator mashlet is
launched by the local host of the individual user. It anonymizes the identity of the requester
(e.g., SP.com), as the provider (e.g., AttProvider.com) learns nothing about who issues the
request. Such a mashlet relay framework, although simple, supports a user-centric design
where the user is able to monitor and actively control the messages being communicated
among server mashlets. As a consequence, the client-side relay mashlet eliminates the need
of direct communication between the two server mashlets. This feature plays a key role in
enabling privacy-aware identity management in Web2ID.

Fig. 2 Web2ID users mashlet relay communication framework for attribute exchange. In mashlet relay
framework, a mashlet (center) mediates the communication between requester (left) and provider (right)
and anonymizes the identity of requester.

This mashup-based relay framework naturally facilitates the construction of a privacy-
aware identity management protocol, namely identity attribute exchange in SSO, that en-
ables the exchange of user’s identity credentials without the direct communication between
the identity provider and service provider. In existing (federated) identity management sys-
tems, direct communications between providers on user’s ID information are typically re-
quired, which, however, is undesirable as providers may learn sensitive attributes of the user.
Therefore, the segregation of providers in their communication protects user privacy and
prevents providers from colluding to discover user activities. Yet, in the meantime, proper
message exchanges among providers should be allowed, e.g., a service provider may need to
verify Alice’s identity attributes hosted by an identity provider. Next, we explain why such
a mashlet relay framework is useful in the identity attribute exchange in Web2ID.



10

5.2 Identity Attribute Exchange Based on Mashlet Relay

When a service provider requests a user’s identity attributes from another service provider,
the user may wish to anonymize the identity of the provider requesting these attributes.
Doing so prevents the attribute providing service from learning the user’s surfing habits.
To implement privacy-aware identity attribute exchange, Web2ID avails of the mashup re-
lay framework. In particular, the relay mashlet mediates the exchange of identity attributes
between service providers. Because the relay mashlet forwards the request to the attribute
provider only after obtaining the user’s consent, users have full control over what attributes
can be exchanged.

Figure 2 presents an example that shows how using Web2ID a service provider SP.com
can query user’s age certified by AttProvider.com. If the attribute requester already knows
the user’s identity, the identity mashlet of the user can itself be used as a relay mashlet.
Alternatively, a mashlet loaded from a trusted third party or the local machine can act as the
relay mashlet. We omit the security definition and analysis for our identity attribute exchange
protocol, as they can be easily deduced following the analysis in the basic Web2ID protocol.

6 Web2ID Extension: Realizing Authorization Delegation

Web application mashlets included in a mashup typically access resources hosted at other
domains. In this context, the mashlet that accesses resources is typically called the Con-
sumer, while the domain that hosts the resource is called the Service Provider. Consumers
should not be able to access a user’s protected resources unless the user grants them the
required access permission.

An authorization delegation protocol allows the users to delegate permissions to a con-
sumer to access their resources hosted at a service provider. For example, users may be able
to delegate permissions needed to access their files on a photo-sharing website (the service
provider) to a website that provides photo editing utilities (the consumer). An authorization
delegation protocol should be privacy-preserving in that it must not reveal the user’s identity.
For instance, users may wish to grant the photo editing service read access to their photos
hosted on the photo sharing website without revealing their identity to the photo editing
service.

Users may wish to delegate to a consumer the rights to access their resources hosted
on a service provider. There are two cases that arise in the implementation of authorization
delegation, based upon the privacy guarantees that the user requires.
Case 1: Protecting user identity from the consumer. In the first case, users may not want
to disclose their identity to the consumer. For example, a user Alice may wish to print her
photos hosted at a photo sharing website SP.com by allowing a printing website Con-
sumer.com to access her photos at SP.com. Yet, she may not wish disclose her identity
(i.e. Alice.me) to Consumer.com. To support this case, the authorization delegation proto-
col should not give any information to the consumer that reveals her identity.

Figure 3 illustrates the authorization delegation protocol, via which Consumer.com
acquires an opaque token AC to access Alice’s resource (e.g., /a/v.jpg) without learning
her identity I (e.g., Alice.me). As this figure illustrates, the service provider SP.com uses
a secret key SK, known only to the service provider, to generate an opaque token AC =
ESK (Consumer.com, GET, /a/v.jpg, I) that grants Consumer.com read access (i.e., a
GET request) to the resource /a/v.jpg, which belongs to I.



11

When the service provider SP.com receives a request from Consumer.com (via back-
end server-to-server communication) containing the access token AC, it first decrypts AC
and ensures that that the identity of the requester matches the principal that the token is
granted to (Consumer.com); if so, it allows the request.

Fig. 3 In Web2ID, a service provider can issue an opaque token to a consumer to access user’s resources. In
doing so, Web2ID does not reveal the user’s identity to the consumer.

Case 2: User identity known to consumer In this case, the consumer already knows the
user’s identity (e.g., because the user has authenticated to the consumer). Figure 4 illustrates
the protocol used in this case. The identity mashlet of users can independently issue an
access delegation certificate using their private keys to grant the consumer access to their
protected resources hosted on a service provider. In turn, the service provider can validate
the certificate using the user’s public key. The service provider can obtain the public key
using the identity URL of the user that the resource belongs to.

Our Web2ID authorization-delegation protocol does not require the consumer to pre-
register with the service provider. This property is in sharp contrast to similar protocols
(such as OAuth), which require the consumer to pre-register with the service provider.
Additionally, Web2ID does not require the service provider or the consumer to maintain
protocol-related state during delegation, therefore it is scalable and easy to implement.
Security Analysis. Before serving a request, service providers verify that the access tokens
are either issued using their own secret keys or the private key of the owner of the resource.
Since these types of tokens can be issued only with user’s consent, consumers will not be
able to access users resources without agreement of their owner. To prevent MitMs from
using h

ijacked access tokens, Web2ID requires that all access tokens be bound to the domain
name of the mashlet that the token is granted to. Therefore, these tokens can be used only by



12

Fig. 4 The identity mashlet issues a delegation certificate for read access to resource /a/v.jpg. Using this
certificate the consumer can access /a/v.jpg on SP.com.

the service provider that owns the mashlet. Service providers can use Web2ID authentication
to prove ownership of the mashlet that the token is issued for. In the access tokens issued by
the service provider, the identity URL of the user is encrypted by service provider’s secret
key. Therefore, the consumer will not be able to learn the identity of user and this protects
the privacy of the user.

7 Implementation and Evaluation

Realizing Web2ID requires in-browser symmetric and public-key cryptographic primitives.
However, there is no JavaScript cryptographic libraries that provide all the operations that
are required for implementation of Web2ID (i.e., HMAC, public-key encryption and pub-
lic/private key generation). The only JavaScript-based library that implements public-key
cryptography [27] does not support public/private key generation, which is required by
Web2ID.

As one of the main technical contributions of this paper, we developed a JavaScript-
based cryptographic library that not only supports operations that are required by Web2ID
but also can be easily extended to support other cryptographic operations. Our library is
fully compatible with commodity browsers, such as IE, Firefox, Chrome, Opera and Safari,
and does not require any browser modifications.

7.1 Implementation Details

Since development of a JavaScript library from scratch is very time-consuming and error-
prone, we based our implementation of the JavaScript cryptographic library on the Java
Cryptography Architecture (JCA) [16,21], an open-source Java-based cryptographic toolkit.
We used Google Web Toolkit (GWT) to translate code from Java to JavaScript. However, in
implementing this library and porting it to commodity browser platforms, we encountered



13

three technical challenges, namely performance, browser interference, and code complexity,
that we describe below.

Performance. Directly compiling the JCA library into JavaScript resulted in extremely poor
performance of cryptographic operations. We found that the main performance bottlenecks
were BigInteger operations, such as modInverse, mod, and multiplication operations, that
are frequently used in cryptographic operations. We addressed this problem by replacing
the JCA implementation of BigInteger with the native JavaScript code using the JavaScript
Native Interface (JSNI). This replacement significantly improved the performance, with en-
cryption and decryption operations consuming less than a second (see also Section 7.2).

Browser Interference. The implementation of the Web2ID protocol requires generation of
public/private key pairs when the identity mashlet is first loaded. We observed that key gen-
eration algorithms for public-key cryptographic algorithms such as RSA were quite expen-
sive. Because most browsers (and JavaScript interpreters) are single-threaded, users cannot
interact with the browser during key generation. Most browsers time out JavaScript func-
tions that execute for long durations of time (typically about 10 seconds). As a result, key
generation algorithms are interrupted by the browser.

To overcome browser interference during our key generation operations and keep
the browser responsive, we used an incremental and deferred computation technique.
We observed that the most expensive operation during the generation of public/private
RSA key pairs was the generation of probable prime numbers p and q. The BigInte-
ger.getProbablePrime function continuously generates random odd integers until it finds
one that passes Miller-Rabin primality test, thereby resulting in long execution times. We
changed this procedure so that each iteration runs in a continuous time slice. We then sched-
uled the next iteration for another time slice and returned control to the browser, as illustrated
in Figure 5. This process continues until the key generation algorithm finds a number that
passes Miller-Rabin test. We found that this approach was effective at keeping the browser
responsive and preventing browser timeouts of JavaScript execution.

Fig. 5 Deferred execution of prime number generation.

Code complexity. JCA, upon which our JavaScript library is based, uses several Java fea-
tures, such as reflection, that are not supported by GWT. Consequently, we first modified
JCA to a set of core components that were sufficient to implement cryptographic operations
needed for Web2ID. We then used this stripped-down version of JCA with GWT to produce
our JavaScript library.



14

Fig. 6 Key generation performance in milliseconds of our cryptographic library on different browsers.

Fig. 7 The performance in milliseconds of RSA encryption and decryption on different browsers.

7.2 Experimental Results

Our goal is to study feasibility and overhead of using in-browser cryptographic operations.
We ran experiments on a machine with the following configuration: Intel Core 2 CPU, 980
MHz, 1.99 GB RAM, Microsoft Windows XP 2002 SP2. We tested our implementation us-
ing the following browsers: Google chrome v1.0.154.53 Firefox v3.0.8, Internet Explorer
v7.0.5730.13, Opera v9.27, and Apple Safari v3.1.1. The most expensive cryptographic op-
eration that is required by Web2ID is key generation. Figure 6 shows the runtime of our
RSA keypair generation function for keys of size 512 and 1024 bits. Since key generation is
a probabilistic process, the values reported are averaged results over ten runs. As this Figure
shows, Google Chrome, which uses a fast JavaScript Engine (V8), generates a 1024-bit key
pair in under 4 seconds. The slowest browser was IE, which took about one minute to gen-
erate a 1024-bit key pair. Because key generation is a one-time operation and the browser
stays responsive during this time, we feel that this delay is acceptable.

Figure 7 shows the performance of RSA encryption/decryption using keys of length
1024 bits. As expected, decryption is more costly compared to encryption and the perfor-
mance is quite reasonable for web applications. Of the browsers that we tested, Google
Chrome had the best performance (less than 100ms for decryption using 1024-bit key).



15

8 Applying Web2ID to Web-based Desktop Applications

In this section, we present an application of the Web2ID protocol to a web-based desktop
application (in short, a Webtop). Web-based desktop applications (or webtops) provide a
desktop-like environment within the browser. Users can open multiple office applications
within a webtop, and can easily share data between these applications (e.g., using drag-and-
drop). A number of popular Webtops are now available, including Glide OS, eyeOS, and
G.ho.st [12,10,11].

To demonstrate the application of Web2ID to Webtops, we build a Webtop application
called Zaranux [33]. To the best of our knowledge, this application is the first linux-based
open-source Webtop. Zaranux emulates a desktop environment, such as Gnome or KDE,
within the Web browser. It provides several applications, including a command-line interface
(i.e., a terminal), via which users can easily browse and access their remote file system,
upload/download files, and run third-party applications. Each third-party application, such
as a word processor, runs within its own protection domain and can access user data in a
controlled manner after obtain the user’s consent.

Because Webtops support a variety of office applications, typically from different
sources, users often have to authenticate themselves with each such application. A Webtop
that integrates an identity management solution can therefore greatly improve end-user ex-
perience. However, existing identity management solutions are not directly applicable to
Webtop environments due to the heavy use of redirection and privacy concerns. Office appli-
cations are typically stateful and contain unsaved data. The identity management solutions
implemented via a series of HTTP redirections would result in the loss of unsaved data.

We therefore integrated our implementation of Web2ID with Zaranux. Below, we dis-
cuss how Web2ID provides single sign-on, authorization delegation and resource access in
Zaranux.
User Authentication and Single Sign-On. A user first logs into Zaranux and enters his cre-
dentials into a mashlet provided by an identity provider (as discussed in Section 4). The im-
plementation of Web2ID in Zaranux ensures that any applications that require authentication
can seamlessly verify the identity of the user without requiring the user to authenticate again.
Zaranux shares the identity of its users with applications only after getting their consent. The
example below explains a common authentication scenario.

Suppose that Alice has logged into Zaranux, and has started a financial application, e.g.,
located at the URL http://investment.com. When Alice tries to access her data at invest-
ment.com, it must authenticate her. To do so, the mashlet from investment.com requests
Alice’s identity URL by making a client-side system call to Zaranux. After getting Alice’s
consent, Zaranux returns her identity to investment.com. In turn, according to Web2ID
protocol, to verify this claim, investment.com mashlet forwards the claimed URL to the
investment.com server, which retrieves the public key from Alice’s identity URL, encrypts
a session token and returns it to the client side (as in the Web2ID protocol). Note that all
these steps are transparent to Alice, once she has authenticated herself to Zaranux, which in
turn provides identity management services to other office applications that require authen-
tication.
Authorization Delegation and Resource Access. In Zaranux, an office application that
wishes to access a resource, such as a file or directory, invokes a client-side API akin to
the open system call on traditional desktop operating systems. This API call returns a file
handle that can be used to access the resource. This file handle serves as an opaque ca-
pability token that delegates a certain access permission (e.g., read, write or delete) to the



16

token holder. Zaranux also implements the authorization delegation protocol (discussed in
Section 6), and uses relays to enable delegation in a privacy-preserving manner.

9 Related work

OpenID implements decentralized user authentication on the Internet via a series of HTTP
redirections within the user’s browser. These redirections perform inter-domain commu-
nication between the IdP and SP and transmit the user’s credentials from the IdP to the
SP. However, redirections are ill-suited for stateful Ajax-based applications, such as Web
desktops and Web-based office applications, because they involve unloading/reloading the
application upon each redirection. Without application-level support, unloading/reloading
operations will result in the loss of unsaved data. In addition, the use of an identity provider
to manage credentials and personal information raises privacy concerns. Web2ID provides
technical solutions for both problems.

Our Web2ID protocol can be realized with any secure mashup frameworks. They pro-
vide general infrastructure and environments for content providers to communicate in our
identity management applications. There have been a couple of recent work that proposed
secure mashup solutions including MashupOS [28], SMash [17], PostMessage method [4],
and OMOS [31]. The main goal of these solutions is two-fold: to isolate contents from
different sources in sandbox structures such as frames and to achieve frame-frame commu-
nication.

SMash [17] uses the concepts in publish-subscribe systems and creates an efficient event
hub abstraction that allows the mashup integrator to securely coordinate and manage con-
tents and information sharing from multiple domains. SMash mashup integrator (i.e., the
event hub) is assumed to be trusted by all the web services. MashupOS [28] applies concepts
in operating systems in mashup and develops sophisticated browser extensions and environ-
ments that enable the separation and communication of frames similar to inter-process com-
munication management in the operating system. As mentioned earlier, the OpenMashupOS
(OMOS) framework contains a key-based protocol providing secure frame-to-frame com-
munication [31].

Despite the recent progress on mashup applications, the identity management in mashup
environments has not been systematically investigated in the literature. Camenisch et al.
presented the architecture of PRIME (Privacy and Identity Management for Europe), which
implements a technical framework for processing personal data [7]. PRIME focuses on en-
abling users to actively manage and control the release of their private information. Privacy
policies for liberty single sign-on [8,19] have been presented [23] by Pfitzmann. The paper
identifies a number of privacy ambiguities in Liberty V1.0 specifications [20] and propose
privacy policies for resolving them. A good article on the issues and guidelines for user pri-
vacy in identity management systems was written by Hansen, Schwartz, and Cooper [14].

In the federated identity management (FIM) solution by Bhargav-Spantzel et al., per-
sonal data such as a social security number is never transmitted in cleartext to help prevent
identity theft [5]. Commitment schemes and zero-knowledge proofs are used to commit data
and prove the knowledge of the data. BBAE is the federated identity-management protocol
proposed by Pfitzmann and Waidner [25]. They gave a concrete browser-based single sign-
on protocol that aims at the security of communications and the privacy of user’s attributes.
Goodrich et al. proposed a notarized FIM protocol that uses a trusted third-party, called no-
tary server, to effectively eliminate the direct communication between identity provider and



17

service provider [13]. The main difference with these proposed privacy-aware ID manage-
ment solutions and our approach is that we study ID management in the client-side mashup
environment through a novel and efficient mashlet relay framework.

In the access control area, the closest work to ours is the framework for regulating
service access and release of private information in web-services by Bonatti and Sama-
rati [6]. They study the information disclosure using a language and policy approach. We
designed cryptographic solutions to control and manage information exchange. Another re-
lated work aiming to protect user privacy in web-services is the point-based trust manage-
ment model [30], which is a quantitative authorization model. Point-based authorization
allows a consumer to optimize privacy loss by choosing a subset of attributes to disclose
based on personal privacy preferences. The above two models mainly focus on the client-
server model, whereas our architecture include two different types of providers.

10 Conclusions

As mashup applications increase in popularity, we expect that they will also be used with
sensitive Web services, such as financial and banking applications. When mashups are used
in such scenarios, it is important to provide features such as identity management. We pre-
sented Web2ID, an identity management protocol for mashup applications. Web2ID pre-
serves the privacy of the end user and eliminates the need for a trusted identity provider
in the online single sign-on process. We described how this feature can be realized with
conventional public-key cryptography. We also described a mashlet-relay framework that
enables efficient yet indirect communication between two server mashlets via a local relay
mashlet controlled by the user. Such a relay framework allows for attribute exchange with-
out disclosing the user’s surfing habits to service providers. Our implementation of Web2ID
and the relay framework is implemented as an in-browser library and is fully compatible
with commodity browsers.

We overcome several technical difficulties and successfully implemented a public-key
cryptographic JavaScript library for the browser to perform cryptographic operations such
as key-pair generation, encryption, and decryption. This technical contribution is beyond the
specific identity management problem studied. Last but not the least, we also described how
Web2ID applies to the emergent Webtop environments.

11 Acknowledgements

This work has been supported in part by NSF grant CAREER CNS-0831186. This material
is based upon work supported by the U.S. Department of Homeland Security under grant
number 2008-ST-104-000016. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the U.S. Department of Homeland Security.

The first author would like to thank the help of professors at Bahai Institute for Higher
Education (BIHE).

References

1. OpenID Specification. http://openid.net/developers/specs/.
2. Philip Zimmermann, http://www.philzimmermann.com.



18

3. RFC 4252, The Secure Shell (SSH) Authentication Protocol http://tools.ietf.org/html/rfc4252.
4. Adam Barth, Collin Jackson, and John C. Mitchell. Securing Browser Frame Communication. In Pro-

ceedings of the 17th USENIX Security Symposium, 2008.
5. Abhilasha Bhargav-Spantzel, Anna Cinzia Squicciarini, and Elisa Bertino. Establishing and Protecting

Digital Identity in Federation Systems. Journal of Computer Security, 14(3):269–300, 2006.
6. Piero A. Bonatti and Pierangela Samarati. A Uniform Framework for Regulating Service Access and

Information Release on the Web. Journal of Computer Security, 10(3):241–272, 2002.
7. Jan Camenisch, Abhi Shelat, Dieter Sommer, Simone Fischer-Hübner, Marit Hansen, Henry Krasemann,

G. Lacoste, Ronald Leenes, and Jimmy Tseng. Privacy and Identity Management for Everyone. In
Proceedings of the 2005 ACM Workshop on Digital Identity Management, pages 20–27, November 2005.

8. S. Cantor, F. Hirsch, J. Kemp, R. Philpott, E. Maler, J. Hughes, J. Hodges, P. Mishra, and J. Moreh.
Security Assertion Markup Language (SAML) V2.0. Version 2.0. OASIS Standards.

9. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). In RFC3147.
10. eyeOS, http://eyeos.org/.
11. G.ho.st, http://g.ho.st/.
12. Glide OS, http://www.glidedigital.com.
13. Michael T. Goodrich, Roberto Tamassia, and Danfeng (Daphne) Yao. Notarized federated ID manage-

ment and authentication. Journal of Computer Security, 16(4):399–418, 2008.
14. Marit Hansen, Ari Schwartz, and Alissa Cooper. Privacy and Identity Management. IEEE Security and

Privacy, 6(2):38–45, 2008.
15. Hyunuk Hwang, Gyeok Jung, Kiwook Sohn, and Sangseo Park. A study on mitm (man in the middle)

vulnerability in wireless network using 802.1x and eap. In ICISS ’08: Proceedings of the 2008 Interna-
tional Conference on Information Science and Security, pages 164–170, Washington, DC, USA, 2008.
IEEE Computer Society.

16. Java Cryptography Architecture. http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html.
17. Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, and Sachiko Yoshihama. SMash:

Secure Component Model for Cross-Domain Mashups on Unmodified Browsers. In Proceedings of the
17th International Conference on World Wide Web, 2008.

18. Krawczyk, Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication. In RFC2104.
19. Liberty Alliance Project. http://www.projectliberty.org.
20. July 2002. Liberty Alliance Project: Liberty Protocols and Schemas Specification, Version 1.0.
21. OpenJDK, http://openjdk.java.net/.
22. OpenMashupOS, http://omos.zaranux.com/.
23. Birgit Pfitzmann. Privacy in Enterprise Identity Federation - Policies for Liberty Single Signon. In Pro-

ceedings of the Third International Workshop on Privacy Enhancing Technologies (PET 2003), volume
2760, pages 189–204, 2003.

24. Birgit Pfitzmann and Michael Waidner. Privacy in browser-based attribute exchange. In Proceedings of
the 2002 ACM workshop on Privacy in the Electronic Society, pages 52–62. ACM, 2002.

25. Birgit Pfitzmann and Michael Waidner. Federated Identity-Management Protocols. In Security Protocols
Workshop, pages 153–174, 2003.

26. R. Leenes, J. Schallabck, and M. Hansen. Privacy and identity management for europe. Prime whitepaper,
15 May 2008.

27. RSA JS library. http://www-cs-students.stanford.edu/ tjw/jsbn/.
28. Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and Communication Abstrac-

tions for Web Browsers in MashupOS. In ACM Symposium on Operating Systems Principle (SOSP),
pages 1–16. ACM Press, 2007.

29. A. Whitten and J.D. Tygar. Why Johnny can’t encrypt: a usability evaluation of PGP 5.0. In 8th Usenix
security symposium, pages 169–184, 1999.

30. Danfeng Yao, Keith B. Frikken, Mikhail J. Atallah, and Roberto Tamassia. Point-Based Trust: Define
How Much Privacy Is Worth. In Proc. Int. Conf. on Information and Communications Security (ICICS),
volume 4307 of LNCS, pages 190–209. Springer, 2006.

31. Saman Zarandioon, Danfeng Yao, and Vinod Ganapathy. OMOS: A Framework for Secure Commu-
nication in Mashup Applications. In ACSAC’08: Proceedings of the 24th Annual Computer Security
Applications Conference, December 2008.

32. Saman Zarandioon, Danfeng Yao, and Vinod Ganapathy. Privacy-aware identity management for client-
side mashup applications. In DIM ’09: Proceedings of the 5th ACM workshop on Digital identity man-
agement, pages 21–30, New York, NY, USA, 2009. ACM.

33. Zaranux, http://zaranux.com/, Saman Zarandioon.
34. Zaranux Open Source Project, http://zaranux.sourceforge.net/.


