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Abstract

We propose a decentralized trust management model called anonymous role-based cascaded
delegation. In this model, a delegator can issue authorizations on behalf of his role without
revealing his own identity. Anonymous delegation protects sensitive membership information
of a delegator and hides the internal structure of an organization. Certificates used in anony-
mous role-based cascaded delegation model can be signed using any type of group signature
scheme. However, in ubiquitous computing, users may have mobile computing devices with nar-
row communication bandwidth and small storage units. To make credentials efficient to store
and transmit, we construct a group signature scheme that supports aggregation. We explain
why an aggregate group signature scheme cannot be trivially obtained using existing aggregate
signature scheme and one-time signing keys. Improvements in the credential size brought by
using signature aggregation are compared with existing group signature schemes.

Keywords: Role-based Access Control, Decentralized trust management, Delegation, Group sig-
natures, Aggregate signatures

1 Introduction

In Role-Based Access Control (RBAC) systems [23], a user is assigned one or more roles by ad-
ministrators, and privileges are associated with roles. Role members prove their memberships with
public keys and digital credentials. Role-based delegation is a crucial concept in RBAC and in
decentralized role-based trust management [15, 19], where resources can be shared with role mem-
bers of organizations that are unknown to resource owners. A delegation credential is a digital
certificate signed by a delegator on a statement that gives authorizations of certain access rights
to delegatees. In role-based delegation models [19, 24], a member E of role r is allowed to delegate
privileges associated with r to other roles by issuing delegation credentials. In order to delegate,
the member F has to show his role membership by revealing his role credential.

However, role membership of a delegator is sensitive information. A delegator may not want
to reveal his or her identity and role membership at each delegation transaction. In addition,
organizations may want to hide their internal structures from the outside world.

To address these privacy concerns, we propose an anonymous role-based delegation protocol
based on group signatures, in which a signature proves the membership of a signer without revealing
the identity [13]. The anonymous signing feature of group signatures is particularly suitable for
role-based delegation, because what is essential to verifying a delegation credential is the proof of
delegator’s role membership, rather than the identity. However, a practical concern about group



signatures is their efficiency in a decentralized environment. Next, we introduce the technique of
aggregate signatures and explain the need for an aggregate group signature scheme in an efficient
anonymous role-based delegation protocol.

1.1 Credential Size and Aggregate Signatures

Lengthy digital credentials are inefficient to transmit and store. In decentralized trust management
systems [19, 24], a delegation chain represents how trust or a delegated privilege is transferred
from one user to another. The chain contains a sequence of delegation credentials that connects
unknown entities and resource owners. For example, a user with role manager at Central Bank
issues a delegation credential C; to role clerk at State Bank to authorize the right of signing
e-coins. A member of role clerk at State Bank delegates this right to a role at County Bank by
issuing another delegation credential Cy. Credentials C'y and Cs form a delegation chain connecting
the County Bank role with Central Bank. The number of credentials required to authenticate a
delegation chain is linear in the length of the chain. Credentials associated with a delegation chain
need to be compact, because mobile devices may have limited storage units and bandwidth.

Aggregate signatures [8, 20] are an effective solution for shortening credential size. Namely,
multiple signatures on different messages can be aggregated into one signature of constant size. An
interesting question is how to construct an aggregate group signature scheme so that it can be used
to realize an efficient anonymous role-based delegation protocol. An aggregate group signature
scheme not only has properties of a group signature scheme, such as anonymity, unlinkability, and
revocability, but is also efficient.

In this paper, we present an efficient aggregate group signature scheme and then use it to build
an anonymous role-based delegation protocol. In the following, we first introduce group signature
schemes. Then, we describe the role-based cascaded delegation (RBCD) protocol [24].

1.2 Group signatures

Group signatures, introduced by Chaum and van Heijst [13], allow members of a group to sign
messages anonymously on behalf of the group. Only a designated group manager is able to identify
the group member who issued a given signature. Furthermore, it is computational hard to decide
whether two different signatures are issued by the same member. A group signature scheme with
constant-sized public keys was first given in [12], and followed by a number of improvements [1,
2, 6, 17, 18]. Until recently, group signature constructions [1, 10, 25] were mostly based on the
strong-RSA assumption [4], and a group signature typically comprised of multiple elements of
RSA-signature length. Recently, bilinear pairing [7] was used to construct group signature schemes
[6, 11, 14, 21], whose security is based on variants of Diffie-Hellman assumptions. The group
signature scheme by Boneh, Boyen, and Shacham [6] significantly shortens the signature length,
compared to the RSA-based state-of-the-art group signature scheme by Ateniese et al. [1].
Existing group signatures do not support signature aggregation. A naive aggregate group
signature scheme can be derived from the pairing-based aggregate signatures [8] and one-time
signing keys. However, it fails to satisfy the exculpability or non-framing requirement of group
signatures. Exculpability is that even if the group manager and members collude, they cannot
sign on behalf of a non-involved member. In the naive scheme, a group member generates k
public keys (PKj,...,PK}), by running k times the key generation algorithm of the aggregate
signature scheme [8]. The group manager signs (with the group master secret) each of the public
keys separately, and sends the k certificates ! Certy,...,Cert;, back to the group member. To
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produce a signature on message M, the group member signs M with the private key corresponding
to PK; (1 < i < k) to create signature Sig as in the aggregate signature scheme, and sends
(M, Sig, PK;,Cert;) to the verifier. Group signature Sig can be aggregated with other signatures
of this scheme as in the aggregate signature scheme [8].

However, the above scheme does not satisfy the exculpability (non-framing) requirement of a
group signature, which is shown as follows. A group manager first runs the key generation algorithm
of the aggregate signature scheme [8] to obtain a key pairs (PK,SK). He signs public key PK
using the group master secret and generates a certificate C'ert for PK. The group manager can
then sign a message with private key SK, and misattribute the signature to any group member.
Unfortunately, the innocent group member does not have any proof for denying the signature.

In this paper, we present an efficient aggregate group signature scheme that solves the above
problem. A group member generates a one-time signing key based on both a long-term private
key of and a short-term secret. The signing keys are then certified by the group manager. The
long-term public key of a group member is certified by a Certificate Authority (CA). Misattributing
a signature to others is infeasible, even for the group manager, because a group member can prove
that a signing key is not his and does not correspond to his CA-certified public key. The use
of bilinear pairing allows us to achieve this property. Aggregate group signatures are useful in
role-based cascaded delegation, which is introduced next.

1.3 Role-based Cascaded Delegation (RBCD)

Role-based Cascaded Delegation (RBCD) [24] is a flexible and scalable role-based delegation frame-
work. It comprises four operations: Initiate, Extend, Prove, and Verify. Initiate and Extend
are used by a resource owner and an intermediate delegator, respectively, to delegate a privilege
to a role. Prove is used by a requester to produce a proof of a delegation chain that connects the
resource owner with the requester. Verify decides whether the requester is granted acess based on
the proof.

In the RBCD protocol [24], delegation credentials include role membership certificates of each
intermediate delegator, and delegation extension credentials that are proofs of delegation trans-
actions signed by delegators. Credentials associated with a delegation chain are transmitted to
delegated role members at each delegation transaction. Therefore, for a delegation chain of length
n, the number of certificates required to verify the delegation path is 2n. In this paper, we use
our aggregate group signatures to extend the original RBCD protocol to support the anonymity of
delegators.

1.4 Owur Contributions

The contributions of this paper are summarized as follows.

1. In order to construct aggregate group signatures, we present the first group signature scheme
that supports aggregation. Our scheme is based on the aggregate signature technique by
Boneh, Gentry, Lynn, and Shacham [8]. It uses bilinear maps in gap groups, where the
computation Diffie-Hellman problem is hard and the decision Diffie-Hellman problem is easy.
In our scheme, a group member E has a long-term public and private key pair. In addition,
FE computes a set of secret signing keys from his private key. Then, the public information
associated with these secret signing keys are certified by the group manager. The resulting
certificates are called signing permits. To generate a group signature, the member E first signs

a CA certificate, which certifies the validity of a public key.



with one of the secret signing keys, then the signature is aggregated with the corresponding
signing permit. This gives a group signature from E. The length of a group signature can be
as short as 170 bits with security equivalent to a 1024-bit RSA signature. A group signature
along with the public information needed for verification is only 510 bits or 64 bytes long.
Group members can join and leave at any time, without requiring existing members to perform
any update. Furthermore, we are able to solve the framing problem that exists in the naive
group signature scheme described earlier. A group member cannot deny a signature if his
anonymity is revoked by the group manager, and in the meantime, the group manager cannot
misattribute a signature to any group member.
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. We define and construct the first aggregate group signature scheme based on our group
signatures. Individual group signatures that may be generated by members of different groups
can be aggregated into one signature of constant length. Even if a signature is aggregated
with other signatures, a group manager can trace the signer by showing a proof that cannot
be denied by the signer. The security of our aggregate group signatures is based on the
security of the aggregate signature scheme [8]. For a delegation chain of length n, a delegation
credential using our aggregate group signatures is twenty times shorter than the one using
ACJT scheme [1], and five times shorter than the one generated in BBS scheme [6]. Because
of one-time public keys, the asymptotic growth of our aggregate group signatures is still
linear in the number of individual signatures. Nevertheless, the aggregatability along with
short signatures and public keys can significantly reduce the length of multiple signatures. A
discussion on the practical efficiency of the scheme is given in Section 6.

. We describe how aggregate group signatures can be used to realize an anonymous and efficient
role-based delegation protocol, where a delegator issues delegation credentials and proves role
membership without disclosing the identity. Although anonymous RBCD can be realized
with any group signature scheme, using aggregate group signatures allows the compression of
delegation credentials and significantly improves efficiency. Delegation certificates in RBCD
are issued to roles, rather than individual role members. For example, a privilege is delegated
to role doctor at a hospital. Note that the RBCD protocol does not use aggregate group
signature in a hierarchical fashion, where a group member of one group is the group manager
of another group and so on. Instead, signatures to be aggregated are generated by group
members (or role members) belonging to independent groups (or organizations), and role
members have their signing keys certified independently by their role managers. The RBCD



protocol does not require a hierarchical generalization of aggregate group signatures, which
involves the hierarchical certification of one-time signing keys. We illustrate our RBCD
protocol using aggregate group signatures in Figure 1.

2 Preliminaries

Here, we describe the aggregate signature scheme [8] that is used to construct our signature schemes.
The aggregate signature scheme by Boneh et al. [8] supports aggregation of multiple signatures
on distinct messages from distinct users into one signature. It uses bilinear maps [7] and works in
any group where the decision Diffie-Hellman problem (DDH) is easy, but the computational Diffie-
Hellman problem (CDH) is hard. Such groups are referred as gap groups [22] and are explained
further in Section 3.1. The aggregate signature scheme comprises five algorithms: KeyGen, Sign-
ing, Verification, Aggregation, and Aggregate Verification. The first three are as in ordinary
signature schemes; Aggregation merges multiple signatures into one signature of constant length;
Aggregate Verification verifies aggregate signatures. Informally, the security of aggregate sig-
nature schemes is equivalent to the nonexistence of an adversary capable of existentially forging an
aggregate signature [8]. Here, existential forgery means that the adversary attempts to forge an
aggregate signature by some set of users, on messages of her choice. The formal proof of security
defines an aggregate chosen-key security model, where the adversary is given a single public key,
and her goal is the existential forgery of an aggregate signature. The adversary is given the power
to choose all public keys except the challenge public key, and she is also given access to a signing
oracle on the challenge key [8]. We refer readers to the aggregate signature paper of Boneh et al. [8]
for further details.

3 Group Signature Scheme

In this section, we present our group signature scheme. First, we list the number theoretic assump-
tions needed in our scheme, and then describe the algorithms.

3.1 Assumptions

Similar to the aggregate signature scheme [8], our aggregate group signature scheme uses bilinear
maps and works in gap groups [9, 22], which is explained next. Let G; and G2 be two cyclic groups
of some large prime order q. We write 1 additively and G2 multiplicatively.

Computation Diffie-Hellman (CDH) Problem: Given a randomly chosen P € Gy, aP, and
bP (for unknown randomly chosen a,b € Z,), compute abP.

Decision Diffie-Hellman (DDH) Problem: Given a randomly chosen P € Gy, aP,bP, and cP
(for unknown randomly chosen a, b, ¢ € Z,), decide whether ¢ = ab. (If so, (P,aP,bP, cP) is called
a valid Diffie-Hellman tuple.)

We call G; a gap group, if DDH problem can be solved in polynomial time but no probabilistic
algorithm can solve CDH problem with non-negligible advantage within polynomial time [22]. As
observed in the aggregate signature scheme [8], general gap groups are insufficient for constructing
efficient aggregate signatures, therefore our scheme also makes use of bilinear maps. We refer the
readers to papers by Boneh and Franklin [7] for examples and discussions of groups that admit
such pairings.

Admissible pairings: Following Boneh and Franklin [7], we call é an admissible pairing if é :
G1 x G1 — Gy is a map with the following properties: bilinear: é(aP,bQ) = é(P,Q)™ for all



P,Q € Gy and all a,b € Z; non-degenerate: the map does not send all pairs in G; x G to the
identity in Gs; computable: there is an efficient algorithm to compute é(P, Q) for any P,Q € G;.

3.2 Definitions
A group signature scheme is consisted of SETUP, JOIN, SIGN, VERIFY, and OPEN algorithms.

SETUP: On input a security parameter k, a probabilistic algorithm outputs the initial group public
key Y. Group members and manager also choose public/private keys.

JOIN: A protocol between the group manager and a user that results in the user becoming a new
group member. The output of the user is membership certificates and membership secrets.

SIGN: An algorithm that on input a group public key, a membership secret, a membership certifi-
cate, and a message M outputs the group signature Sig of M.

VERIFY: An algorithm takes as inputs the group public key ), the group signature Sig, and the
message M. Output is 1 or 0.

OPEN: The deterministic algorithm takes as inputs the message M, the signature Sig, and group
manager’s secret information to return the identity of the signer.

A secure group signature scheme must satisfy the following properties:

Correctness: Signatures produced by a group member using SIGN must be accepted by VERIFY.
Unforgeability: Only group members can sign messages on behalf of the group.

Anonymity: Given a valid signature, it is computationally hard to identify the signer for anyone
except the group manager.

Unlinkability: Deciding whether two different valid signatures were computed by the same group
member is computationally hard for anyone except the group manager.

Traceability: The group manager is always able to open a valid signature and identify the signer.
Ezculpability: Even if the group manager and members collude, they cannot sign on behalf of a
non-involved member.

Coalition-resistance: A colluding subset of group members cannot produce a valid signature that
the group manager cannot open.

3.3 Construction

As explained earlier, a naive group signature scheme based on one-time keys cannot satisfy the
exculpability requirement. To overcome this problem, our signing keys are computed from the long-
term private key of a signer. The corresponding long-term public key is certified by a Certificate
Authority (CA). We prove that the non-framing property is achieved.

The construction of our group signature scheme is based on the pairing-based aggregate signa-
ture scheme [8] and the group signature scheme by Chen et al. [14]. It comprises five algorithms:
SETUP, JOIN, SIGN, VERIFY, and OPEN. The Signing, Verification, and Aggregate Verifica-
tion algorithms of Boneh et al.’s aggregate signature scheme [8] are used in our scheme.

SETUP: This operation outputs the system parameters and public/private keys of users that will
be used in the system.

e The root of system chooses a set of public parameters params = (G1,Ga,é,m, H), where
G1, G4 are groups of a large prime order ¢, G1 is a gap group, é : G1 X G1 — G is a bilinear
map, 7 is a generator of Gy, and H : {0,1}* — G; is a collision-resistant hash function,
viewed as a random oracle.

e Each group member chooses a secret s, as his private key, and computes the product s, 7 as
its public key P,. Similarly, the group manager chooses his secret key s4, and computes the



public key P4 = sam. These are the long-term public keys, and are certified by a Certificate
Authority (CA) using any signature scheme. The public key certificate of a member is used
for repudiating misattributed signatures, and is different from the one-time signing permits
below.

JOIN: A group member E obtains one or more one-time signing permits from the group manager.
The permits certify E’s one-time signing key information, and are used for issuing group signatures.
The following shows how the signing permits are generated.

1. E randomly chooses a number of secrets z1, ..., x;, and computes one-time signing secret keys
17, ..., x;m and one-time signing public keys s, z17, ..., syx;7m. Keys s,m, z;7, and s,x;m are
sent to the group manager, for all i € [1,1]. E also sends Cert to the group manager.

2. The group manager tests if e(sy,x;m, m) = e(sym, x;m) for all i € [1,1]. If the test fails, the
protocol terminates. Otherwise, the group manager runs algorithm Signing of aggregate sig-
nature scheme on inputs s 4 and strings groupinfo||s,z;m to obtain S; = s H (groupinfol|s,z;m)
for all i € [1,1]. S; is an one-time signing permit and is given to E. The group manager adds
(Sum, x;m, Syx;7) to its record for all ¢ € [1,1].

SIGN: A group member F first computes a signature S, on a message M on behalf of the group, by
running algorithm Signing of aggregate signature scheme [8] on inputs s,z; and M, where s,z; is
one of his one-time signing secrets. Then, E calls algorithm Aggregation of aggregate signature
scheme to merge signature S, with his one-time signing permit S; associated with the secret s,x;.
This gives the group signature, which is returned with the public key P4 of the group manager and
the key s,x;mw. The details are as follows.

e F runs algorithm Signing of aggregate signature scheme with secret key s,x; and message
M, and obtains a signature S, = s,x; H(M).

e I aggregates the signature S, with one-time signing permit S; associated with secret s,x;.
This is done by running Aggregation of aggregate signature scheme, which returns a sig-
nature S, = S, + S;. Recall that S; = ssH (groupinfo||s,z;m). S, is output as the group
signature. E also outputs public key P4 and one-time signing public key s, x;m.

VERIFY: This algorithm calls algorithm Aggregate Verification of aggregate signature scheme [8]
with the following inputs: a group signature Sy, and public keys P4 and s,z;m needed to verify
the signature. The algorithm computes hash digest H(M) of message M and the hash digest h =
H (groupinfo||s,z;m) of one-time signing permit. Sy is accepted if é(Sy, 7) = é(Pa, h)é(syz;m, H(M));
rejected if otherwise.

OPEN: Given a group signature S; and its associated public information P4 and s,x;7, a group
manager first verifies S;. If S, is valid, the group manager can identify a group member’s public
key s,m from the s,x;m value, by consulting the group record. Furthermore, the group member
cannot deny his signature because the group manager can provide a proof that the signature is
associated with the member’s public key s, 7 by showing: é(s,z;m,m) = é(sym, x;7). The exculpa-
bility requirement is satisfied. Intuitively, this is because (1) long-term public keys are certified by
CA (2) signing keys are computed from long-term private keys (3) forging a valid signature with a
correctly formed signing key is hard. We give the proof for exculpability in Theorem 3.

3.4 Security

We analyze the security of our group signature scheme by proving the following three theorems.
The first theorem states it is infeasible for an adversary to forge either an one-time signing permit



or a group signature. The second theorem shows that in our group signature scheme, a verifier can
verify the membership of a signer without gaining any other knowledge about the signer. Finally,
the last theorem shows that our group signature scheme satisfies the properties listed in Section 3.2.

Theorem 1. Our group signature scheme is as secure as the aggregate signature scheme of Boneh,
Gentry, Lynn, and Shacham against existential forgery attacks.

Proof. One-time signing permits, and members’ signatures using one-time secret signing keys, are
generated by running algorithm Signing of the aggregate signature scheme of Boneh, Gentry,
Lynn, and Shacham. Therefore, if an adversary can forge any of these signatures, she can also
forge signatures in the aggregate signature scheme of Boneh et al. Note that a signature computed
with one-time secret signing key is in the form of sz H(M), rather than sH (M) as in the aggregate
signature scheme [8]. It can be easily shown that if an adversary can forge a signature in a
form of sx H(M), then she can forge a signature in the form of sH (M) (by setting x to 1 in the
reduction). Furthermore, our group signature is computed by running algorithm Aggregate of the
aggregate signature scheme with an one-time signing permit and a member’s signature. Therefore,
we conclude that our group signature scheme is as secure as the aggregate signature scheme of
Boneh, Gentry, Lynn, and Shacham against existential forgery attacks. O

Theorem 2. A wvalid group signature in our scheme contains a proof of group membership without
revealing the identity of the signer.

Proof. A valid group signature S, is aggregated from an one-time signing permit of a group member
E and E’s signature using the corresponding one-time signing key. That is S; = S;+ 95, where S; =
saH (groupinfol|s,z;m) and S, = syx;H(M). Because of the definition of aggregate signatures [8],
a valid signature S, implies that both S; and S,, are valid. This proves that the holder of key s, x;m
is a certified member of the group, and S, is a valid signature signed with secret key s,x;. Thus,
signature S, contains a proof of group membership. Furthermore, because the signing key s,x; is
an one-time signing key and x; is chosen randomly by the group member, the identity of the signer
is not revealed. O

Next, we show that our scheme satisfies the security requirements of an aggregate group signa-
ture scheme, which is captured in the Section 3.2.

Theorem 3. Our group signature scheme from bilinear pairings in gap groups is a secure group
stgnature scheme.

Proof. Correctness: This is trivial. Unforgeability: This is proved in Theorem 1. Anonymity:
This is proved in Theorem 2. Unlinkability: Given one-time secret signing key sx;m and sx;m, it is
computationally hard to decide whether they correspond to the same sw, without knowing x;7 and
xj7. Traceability: This is shown in the description of OPEN algorithm in Section 3.3. Ewzculpability:
In our proof, we assume that Certificate Authority (CA) does not collude with a group manager
to misattribute a public key certificate to a group member. In a naive attack, a group manager or
any collusion of members chooses random z* and s*, signs a message with s*z*m, and misattributes
the signature to a group member. A group member with long-term public key s, 7 repudiates the
signature by showing that the signing key does not correspond to s, 7, i.e. é(s*x*m, 7) # é(sym,x* 7).
Furthermore, the group manager cannot misattribute a signature to frame the member, unless he
can compute br given ¢, aw, and cm that satisfies: a = bc mod ¢. This problem was shown to



be equivalent to CDH problem [14] in group G, and is called the reversion of computation Diffie-
Hellman (RCDH) Problem. Therefore, it is impossible for the group manager to forge a signature
with a correctly formed signing key. to frame a group member. Coalition-resistance: From Theorem
1 and 2 this can be deduced. O

4 Aggregate Group Signature Scheme

In this section, we first define an aggregate group signature scheme, and then give a construction
of this scheme based on our group signatures.

4.1 Definitions

An aggregate group signature scheme consists of six algorithms: SETUP, JOIN, SIGN, VERIFY,
AGGREGATE, and OPEN. Algorithm AGGREGATE is defined below, and the rest of the algorithms
have the same definitions as in the group signature scheme in Section 3.

AGGREGATE: This deterministic algorithm takes as inputs a number of group signatures and
returns one aggregate signature.

Correctness, anonymity, unlinkability, traceability, exculpability, and coalition-resistance of ag-
gregate group signature scheme are defined the same as in a group signature scheme in Section
3. Besides, an aggregate group signature scheme has stricter requirement for unforgeability, and a
new requirement for aggregatability.

Unforgeability: Only group members can sign messages on behalf of the group. In particular, for
an aggregate group signature S that is aggregated from n individual group signatures, even if an
adversary knows n — 1 of them, she cannot successfully forge S.

Aggregatability: Multiple signatures signed on different messages by different signers can be aggre-
gated into one signature of constant length, and the aggregation can be performed by anyone.

4.2 Construction

We use our group signature scheme as a building block to construct an aggregate group signature
scheme. The scheme also makes use of the Aggregate Verification algorithm of aggregate signa-
ture scheme [8]. SETUP, JOIN, and SIGN algorithms are the same as in our group signature scheme
and are not repeated here.

AGGREGATE: Same as in algorithm Aggregation in the aggregation signature scheme [8]. Tt takes
as inputs n number of group signatures Sigy and corresponding values Pj4, and sy, z; 7 for all
ke [1,n]. Set Sagg= > p_qi Sig,. Sagq is output as the aggregate group signature. The associated
keys Pa, and sy, z; 7 for k € [1,n] are also returned.

VERIFY: This algorithm calls algorithm Aggregate Verification of aggregate signature scheme [8]
with the following inputs: an aggregate group signature S444, public key Py, , and one-time signing
public key s, z;, 7 for all k € [1,n].

e For 1 < k < n, compute the hash digest H (M},) of message M}, and hy, = H (groupinfoy,||sy, i, m)

of the statement on one-time signing permit.

o Sugg is accepted, if é(Sagq, m) = II}_ €(Pa,, hi)é(su, 2,7, H(My)); rejected if otherwise.
OPEN: Given an aggregate group signature S,y and its associated public information including
Py, and sy, x;, 7 for k € [1,n], a group manager first verifies Syqy. If it is valid, a group manager
can easily identify a group member’s public key s,, 7 from s,, x;, 7, by consulting the group record.
Furthermore, the group member cannot deny his signature because the group manager can provide



a proof (i.e. showing é(sy, x; m,m) = é(sy,m, x;, 7)) that the signature is associated with the
member’s public key.

Theorem 4. Our aggregate group signature scheme is as secure as the aggregate signature scheme
of Boneh, Gentry, Lynn, and Shacham against existential forgery attacks.

Proof. Individual group signatures are shown in Theorem 1 to be as secure as the aggregate sig-
nature scheme of Boneh, Gentry, Lynn, and Shacham against existential forgery attacks. In our
aggregate group signature scheme, group signatures are aggregated using Aggregation algorithm
of aggregate signature scheme of Boneh et al. Therefore, the aggregate group signature scheme is as
secure as the aggregate signature scheme of Boneh, Gentry, Lynn, and Shacham against existential
forgery attacks. O

Theorem 5. Our aggregate group signature scheme from bilinear pairings in gap groups is a secure
aggregate group signature scheme.

The proof of the Theorem 5 is similar to Theorem 3 in Section 3.4, and is not shown in this
paper. Next, we describe how aggregate group signatures are used to implement an anonymous
role-based cascaded delegation protocol.

5 Anonymous Role-Based Cascaded Delegation Protocol

We first define anonymous role-based cascaded delegation and then describe how it is realized using
aggregate group signatures. Delegation credentials generated in our signature scheme are efficient
to store and transmit, which is important in ubiquitous computing. Similar to definitions in the
original RBCD protocol [24], a privilege represents a role membership or a permission for an action
such as accessing a database. A role defines a group of entities who are members of this role. Role
members are managed by a role administrator. A role administrator in this protocol is equivalent
to a group manager in the aggregate group signature scheme.

5.1 Definitions

An anonymous role-based cascaded delegation protocol defines five operations: Initiate, Extend,
Prove, Verify, and Open.

Initiate: Same as in RBCD protocol [24], this operation is run by a resource owner to delegate
a privilege to a role. It initiates a delegation chain for the privilege. The delegation certificate is
signed using the private key of the resource owner on a statement, which includes the delegated
privilege, the name of the role, and the public key of the role administrator.
Extend: This operation is similar to Initiate, but is run by an intermediate delegator F, who
is a member of a role that is delegated a privilege by credential C. The goal is to generate a
credential C’ that extends the privilege to members of another role r. Delegation credential C’
includes information of the delegated privilege, the name of role r, and the public key of role r’s
administrator. In addition, C” also contains the delegation credential C' that E received, and the
proof of E’s role membership. C’ does not disclose the identity of E.

C'" may simply be an accumulation of individual certificates. In comparison, our realization
using aggregate group signatures is more efficient.
Prove: A requester F with role r produces a proof, which authenticates the delegation chain
connecting the resource owner with E. This includes a proof of E’s role membership without
disclosing the identity, and the delegation credential that delegates the requested privilege to r.
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Verify: This is performed by the resource owner to verify that a proof produced by a requester
correctly authenticates the delegation chain of a privilege.

Open: Role administrator revokes the anonymity of a delegator by examining signatures on a
delegation credential. The identity of the delegator is returned.

5.2 Realization

We give an anonymous RBCD protocol using aggregate group signatures. Compared to the original
RBCD protocol [24], an one-time signing secret key instead of the delegator’s private key is used
to sign a credential, and an one-time signing permit instead of a role credential is used to prove
role membership.

Setup: SETUP in aggregate group signature scheme is run to allow the root of system to set
up public parameters params, and individuals to choose and certify long-term keys. Then, JOIN
protocol is run between role members and the role administrator to set up one-time signing permits.
The role administrator also keeps a record of signing key information.

Initiate: A resource owner runs the Signing algorithm of aggregate signature scheme [8] to sign
a delegation credential that authorizes a certain privilege to a role.

Extend: To further delegate a privilege to a role r’, a member E of role r first runs algorithm
SIGN of aggregate group signature scheme to sign a delegation statement. Inputs to algorithm SiGN
are params, E’s one-time signing secret key s,x;, his one-time signing permit .S; corresponding to
su;, and a delegation statement. SIGN returns a group signature Sig, and appends public signing
key syx;m to the delegation statement. Then, delegator F calls AGGREGATE of aggregate group
signature with Sig and the signature on the delegation credential issued to role r. The resulting
aggregated signature S 444 and delegation statements are returned to ’ as the delegation credential.
Prove: A requester E of role r first runs SIGN algorithm of aggregate group signature, which uses
an one-time signing key to sign a random message 1" chosen by verifier. Then, F calls AGGREGATE
to merge the output signature with the signature on the delegation credential issued to role r. The
outputs are returned.

Verify: VERIFY of aggregate group signature is run to verify the aggregate signatures submitted
by the requester. The request is granted if the signature is accepted, and rejected if otherwise.
Open: A role administrator runs algorithm OPEN of aggregate group signature with a delegation
credential, a target signing key s,z;mw, and the signing keys record. This returns the public key
$u7, which identifies the signer.

The security of the above protocol is directly based on the security of the aggregate group sig-
nature scheme. This implies that it is infeasible to forge any valid delegation credential even under
collusion. The anonymous RBCD protocol satisfies traceability and exculpability requirements, i.e.,
a role administrator can revoke the anonymity of a role member as an intermediate delegator, but
cannot frame a role member. Our realization of anonymous RBCD supports delegator anonymity
without affecting the performance. It has similar efficiency as in the original RBCD protocol [24].
The time required for signing and verification is the same as in the original RBCD protocol [24].
In anonymous RBCD, role administrators need to sign multiple one-time signing permits for role
members, which is not required in RBCD. Nevertheless, a single signature is quite fast (3.57 ms on
a 1 GHz Pentium III, compared to 7.90 ms for a RSA signature with 1007-bit private key on the
same machine [5]).
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6 Discussion

We compare our group signature scheme with several existing group signature schemes in Table 1.

‘ Properties | Proposed | ACJT [1] | BBS[6] | NS [21] (2nd scheme) |
Assumption CDH Strong RSA | Strong DH Strong DH
DDH DBDH, DL
Aggregatability Yes No No No
Length of signature* 170 bits | 8696 bits [21] | 1533 bits [6] 3072 bits [21]
Number of certificates Many One One One
Length of group public key | Constant Constant Constant Constant
System CA-based CA-based CA-based CA-based

Table 1: Comparison of group signature schemes. Strong Diffie-Hellman (DH) and DBDH problems [6, 21]
are variants of DH problem. *Length of signature with security equivalent to a 1024-bit RSA signature, and
does not include public keys and parameters. The length of ACJT signature is from the instance given in
[21].

For a delegation chain of length n, a delegation credential using our aggregate group signatures

is twenty times shorter than the one using ACJT scheme [1], and five times shorter than the one
generated in BBS scheme [6]. For a delegation chain of length twenty, the size of our credential is 1.4
KB, while the one in BBS scheme is 5.2 KB; for a 20 Kbits per second connection, our credential
can be transmitted within 0.5 seconds, while the one using BBS takes 2.1 seconds. Note that
this improvement is significant for small mobile devices with limited communication bandwidth
and storage unit. For example, smart cards with a microprocessor typically have 32 KB EEPROM
storage. Since RBCD protocols are aimed to be used for resource sharing in dynamic and distributed
collaboration environment, users with small computing devices are not unusual. Therefore, our
approach has the advantage over existing schemes, in terms of storage and transmission efficiency.
The calculation of credential sizes is omitted due to the page limit.
One-time keys A major drawback of our aggregate group signature scheme is that group signing
keys and signing permits in our signature schemes are not reusable. To reduce communications
between the group manager and members, group members can obtain multiple signing permits
S1,...,5, at a time, by asking the group manager to certify multiple signing keys s, z17, ..., Sy&,m.
Similar concepts can be found in the trustee tokens scheme [16] and the secret handshakes proto-
col [3]. A group manager needs to keep a file for storing one-time signing public keys. However,
this does not significantly affect his performance, even though the number of group members is
large. For example, for a group that has 100,000 members who obtain 100 one-time signing keys
each year for ten years, the total storage space for all the one-time signing keys takes about 6.4
GB and can be easily stored on hard disks. Although file I/O in general can be relatively slow,
appending new keys to the file is done off-line and does not affect the performance of users. If a
database is used to maintain the keys, operations such as searching a signing key can be very fast
as the keys can be indexed.

Therefore, we conclude that anonymous RBCD model using our signature scheme supports
anonymity, exculpability (non-framing), and aggregation, without incurring significant overhead
from the use of one-time signing keys.
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