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Abstract
The importance of the Event-Driven Architecture (EDA) has
never been greater. Web servers and the IoT alike have begun
to adopt the EDA, and the popular server-side EDA frame-
work, Node.js, boasts the world’s largest package ecosys-
tem. While multi-threaded programming has been well stud-
ied in the literature, concurrency bug characteristics and use-
ful development tools remain largely unexplored for server-
side EDA-based applications.

We present the first (to the best of our knowledge) con-
currency bug characteristic study of real world open-source
event-driven applications, based in Node.js. Like multi-
threaded programs, event-driven programs are prone to con-
currency bugs like atomicity violations and order violations.
Our study shows the forms that atomicity violations and or-
dering violations take in the EDA context, and points out
the limitations of existing concurrency error detection tools
developed for client-side EDA applications.

Based on our bug study, we propose Node.fz, a novel test-
ing aid for server-side event-driven programs. Node.fz is a
schedule fuzzing test tool for event-driven programs, embod-
ied for server-side Node.js programs. Node.fz randomly per-
turbs the execution of a Node.js program, allowing Node.js
developers to explore a variety of possible schedules. Thanks
to its low overhead, Node.fz enables a developer to explore
a broader “schedule space” with the same test time budget,
ensuring that applications will be stable in a wide variety
of deployment conditions. We show that Node.fz can expose
known bugs much more frequently than vanilla Node.js, and
that it can uncover new bugs.
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1. Introduction
The Event-Driven Architecture (EDA) has escaped from the
client-side. While traditionally used to build user interfaces
in areas like the desktop [50], mobile [10, 33] and web [21,
23], the EDA is now being widely adopted to build general
applications like web servers and Internet of Things (IoT)
applications. The use of the EDA on the server-side had
been promoted through the wide-spread use of the Node.js
framework [8]. The Node.js package ecosystem, npm, is the
largest ever, with over 400,000 packages [7] and over 1.75
billion package downloads per week1. Node.js has been de-
ployed in industry, including at eBay [40], PayPal [22], and
LinkedIn [37], and is also being embraced on IoT platforms
including Cylon.js [1] and IBM’s Node-Red [3].

Event-driven programs, like multi-threaded programs,
can have concurrency bugs like atomicity violations and or-
dering violations [24, 29]. Just as thread-based programs
can have race conditions between unordered threads, event-
driven programs may have them between unordered events.
The resulting concurrency errors have serious consequences,
including server crashes and inconsistent database states,
which this paper demonstrates with real examples in §3.
Though techniques for detecting concurrency errors in event-
driven client-side web [27, 43, 44] and mobile [11, 25, 31]
applications have been proposed, server-side event-driven
programs have hitherto remained unexplored.

In §3 we study concurrency bug patterns, bug manifesta-
tions, and fix strategies in real world open-source npm mod-
ules and Node.js programs. Our findings reveal the form that
atomicity and ordering violations take in the EDA setting. In
addition, we identify three significant differences between
client-side event-driven applications and server-side Node.js
applications, limiting the applicability of existing bug detec-
tion and analysis techniques. First, server programs interact
frequently with other system components like databases and
the file system. Thus, Node.js programs are an “open sys-
tem”, making existing model checking [27] techniques dif-
ficult to apply. Second, we demonstrate that race conditions
in Node.js programs are not only on shared memory (e.g.
writes to variables and arrays), but also on system resources
(e.g. queries to a database, I/O to the file system). Exist-

1 See https://www.npmjs.com/.



ing related data race detectors (e.g. [43, 44]) consider only
memory accesses and would therefore miss many race con-
ditions. Third, server-side programs are much longer-lived
than client-side programs, with normal lifetimes spanning
thousands or millions of events. Existing approaches all suf-
fer from scalability issues, making them infeasible in the
Node.js setting.

To address these issues, we present Node.fz (§4), a
novel schedule fuzzing test tool for server-side event-driven
Node.js applications. Node.fz perturbs the execution of a
Node.js program, allowing Node.js developers to explore a
variety of possible schedules. Node.fz thus enables a devel-
oper to explore a broader “schedule space”, ensuring that
an application will be stable on a wide variety of deploy-
ment conditions. Our results show that Node.fz can expose
known bugs more frequently than Node.js, and that it can
expose new bugs in two popular npm modules. Critical to
easy adoption, Node.fz is a drop-in replacement for Node.js
and offers comparable performance. In summary, this paper
makes the following contributions:

• We present the first concurrency bug characteristic study
of real world open-source Node.js programs, illustrating
the forms that atomicity violations and ordering viola-
tions take in the EDA setting.

• We present Node.fz, the first concurrency fuzz testing tool
tailored to server-side event-driven applications.

• We evaluate Node.fz using a diverse set of real-world
Node.js applications, showing it increases the manifes-
tation rate of concurrency errors with low overhead.

2. Background
In this section we define the EDA, discuss Node.js as the
preeminent EDA framework, and explain the race conditions
that can emerge in the EDA setting.

2.1 The Event-Driven Architecture
In its most common form, an EDA-based application has two
main components, illustrated in Figure 1: a (typically single-
threaded) event loop that processes incoming requests, and
a worker pool to which it can offload expensive tasks. While
there are other potential realizations, this Asymmetric Multi-
Process Event-Driven (AMPED) architecture [41] is the
one used by the mainstream general-purpose EDA frame-
works: Node.js (JavaScript)2 Twisted (Python)3, EventMa-
chine (Ruby)4, libuv (C)5, and Reactor (Java)6.

Conceptually, EDA-based applications go through two
phases: registration and listening. In the registration phase,
the application defines callbacks to respond to different
kinds of input (events). In the listening phase, the event loop

2 See http://nodejs.org/.
3 See http://twistedmatrix.com/.
4 See http://rubyeventmachine.com/.
5 See http://libuv.org/.
6 See http://projectreactor.io/.

Figure 1. Event-Driven Architecture event loop and worker
pool à la Node.js. The application is servicing requests from
users A and B with callbacks (CBs). The callback chains
for RequestA and RequestB are connected by lines. When
these lines are dashed, the application has cooperatively
partitioned the composition of its response. RequestA is
handled by two callbacks partitioned with a timer, while
RequestB offloads two tasks to the worker pool.

continuously awaits new events, executing the associated
callback for each event.

The EDA has been shown to scale well compared to the
One Thread Per Client (OTPC) architecture [42], though
the jury is still out [53]. The essential trade-off is that of
efficiency for reliability: in the OTPC architecture, each
new client incurs more overhead (memory and context-
switching), while in the EDA misbehaving clients have more
opportunities to bring down vulnerable servers [16, 38].

2.2 Node.js, the Popular EDA Framework
Node.js [52] is an open-source EDA framework for devel-
oping server-side JavaScript applications. Its principal com-
ponents are: (1) libuv, the core library providing an EDA
with an event loop and a worker pool; (2) Chrome V8 [2], a
highly efficient JavaScript execution engine; and (3) C/C++
and JavaScript libraries abstracting functionality including
the network, the file system, cryptography, and compression.
Node.js has the largest package ecosystem of any language
or framework [7], and as a result we consider it suitable for
study as the most prominent example of an EDA system.

The Node.js worker pool is provided by libuv. The
Node.js libraries use it to provide “asynchronous” file sys-
tem I/O and DNS queries, and users can offload their own
tasks to it too. Tasks for the worker pool are placed in its task
queue and consumed concurrently by the workers. Work-
ers signal the completion of tasks by placing the completed
tasks on the worker pool’s done queue and sending a “task
done” event to the event loop. This process is illustrated in
Figure 1: while handling user request RequestB , the call-
back CBB1 offloads two tasks to the worker pool. After the
worker pool processes tasks TaskB1 and TaskB2, they are
placed in the done queue, eventually triggering callbacks
CBB2 and CBB3 to send the response to the user.



2.3 Programming and Race Conditions in the EDA
The primary programming style in the EDA is coopera-
tive multitasking [48]. In the EDA, all incoming requests
must pass through the event loop. If the callbacks associ-
ated with each request type compose their responses syn-
chronously, pending requests will starve, especially when
composing responses requires I/O or extensive computation.
Consequently, the most basic rule of thumb of programming
for the EDA is “never block the event loop” [12].

As hinted in Figure 1, to avoid blocking the event loop,
the responses to requests should not be composed in a sin-
gle heavy callback. Instead, response composition should be
partitioned into multiple steps according to the principle of
cooperative multitasking, resulting in the generation of inter-
mediate events and callbacks to handle them. If developers
follow this rule, they can create applications that offer both
high responsiveness and high throughput.

Composing responses using this callback chain technique
has important implications for software correctness: devel-
opers must provide guarantees for both ordering and atom-
icity. The EDA offers no guarantee of the order in which
the event loop will process callbacks. For example, the call-
backs associated with the expiration of a timer and the com-
pletion of a file system I/O may run in either order. Devel-
opers must therefore either write commutative callbacks or
introduce their own ordering constraints. Furthermore, while
each link in a callback chain is executed atomically by the
(single-threaded) event loop, between any pair of links there
is no guarantee of atomicity; the links from other callback
chains can be interleaved.

Race conditions manifest when developers fail to ac-
knowledge these issues. Most commonly, an ordering vio-
lation will frustrate the correct composition of even a single
request (an intra-request race), while an atomicity violation
impacts correctness when the system is processing multiple
requests (an inter-request race). EDA-style race conditions
are sensitive to the specific timing and order of events, mak-
ing them difficult for developers to identify and reproduce.
We visit these issues in detail in our concurrency bug study
of real world open-source Node.js programs (§3).

Our bug study suggests an urgent need to provide pro-
grammers with solutions to explore broad swaths of the
“event schedule space” in an effective manner. A remark
from one of the developers inspired the approach we took
to Node.fz (§4): “Unfortunately, I’m not able to provide a
simple test case because I dont know how to artificially ex-
pand the delay between the ‘timeout’ and ‘close’ events.”7.
Using Node.fz, developers can do this and much more.

3. Concurrency Bug Study
This section provides the first, to the best of our knowledge,
concurrency bug characteristic study of Node.js software.
More generally, we believe it to be the first focused on

7 See https://github.com/node-modules/agentkeepalive/issues/23.

Name Abbr. Type LoC Dl/mo Description
etherpad-lite EPL A 43K N/A Collaborative document editing

ghost GHO A 50K 4.5K Blogging engine
fiware-pep-steelskin FPS M 8.2K 4 Policy enforcement point proxy
cinovo-logger-file CLF M 0.9K 111 Logging module

nes NES M 6.1K 6.8K Native WebSockets for Hapi
agentkeepalive AKA M 1.9K 194K keepalive http agent

webpack-tapable WPT M 0.4K 3.9M Facilitates WebPack plugin use
socket.io-client SIO M 4.6K 4.9M Real-time server framework

mkdirp MKD M 0.5K 23.3M Recursive mkdir
kue KUE M 6.6K 69K Priority job queue (w/ Redis)

restify RST M 5.5K 232K Tool for RESTful APIs
mongoose MGS M 88K 969K MongoDB-based object modeling

Table 1. Node.js software used in bug study. Abbr.
(Abbreviations) are used throughout the paper. Type is
A(pplication) or M(odule). Lines of Code (LoC) was com-
puted using the cloc tool. LoC and Dl/mo (downloads/-
month) are rounded. Statistics are as of February 2017.
Sorted by application type and race type (see Table 2).

server-side EDA concurrency errors. We have studied the
patterns, manifestations, and fixes of concurrency bugs in
real world open-source Node.js programs.

To identify bugs, we searched across all GitHub8 bug
reports for closed bugs in JavaScript-based projects that
matched either “race” or “race condition”9. The search re-
turned over 1000 results, from which we excluded race con-
ditions in client-side JavaScript, as this type of race has been
well studied in previous research [9, 35, 36, 43, 44]. From
the remaining bugs, we manually selected 12 patched bugs
for careful study, making our selection based on how well-
documented the bugs were.

Table 1 shows a summary of the software whose bugs we
studied, listing the program name, type (full-fledged Appli-
cation or library Module), source code size in LoC, down-
loads in the past month, and a brief description. With a mix
of applications and modules, a range of code base sizes, and
a variety of purposes, we feel the selected software repre-
sents a broad range of Node.js practices. Hereafter, we will
refer to software using its abbreviation.

The following sections describe a summary of our find-
ings (§3.1), with in-depth descriptions of server-side EDA
bug patterns (§3.2), manifestation (§3.3), and fixes (§3.4).

3.1 Summary of Findings
Our bug study reveals three key findings:

1. Like client-side JavaScript, server-side JavaScript soft-
ware written for Node.js suffers from race conditions.
We observed both atomicity violations and ordering vi-
olations in the races we examined, including a new sub-
type called commutative ordering violation.

2. Due to the “open system” nature of server-side software,
we observed races on system resources like databases and

8 See https://github.com/.
9 e.g. the search string “race language:JavaScript state:closed label:bug”.



1 ...
2 this.sockets = [];
3 ...
4 Manager.prototype.socket = function (opts) {
5 var self = this;
6 ...
7 s = new Socket(self, opts);
8 - socket.on(’connect’,function () {
9 if (notContains(self.sockets, s))

10 self.sockets.push(s);
11 - });
12 ...
13 };
14
15 Manager.prototype.destroy = function (s) {
16 removeIfPresent(this.sockets, s);
17 if (this.sockets.length === 0)
18 this.close();
19 return;
20 };

Figure 2. Atomicity violation bug (SIO). The destroy

method (line 16) can race with in-process connections (line
8)

the file system. This style of race has not been reported
in client-side EDA (JavaScript) concurrency studies, and
significantly complicates the task of anyone seeking to
build a Node.js data race detector.

3. While the Node.js community has excellent techniques
to fix the OV bugs in our study, they do not seem to have
tools to help detect these or the AV bugs.

Table 2 summarizes our findings. The second column
presents the GitHub bug (issue) number. Each bug has three
major features: its general pattern, its specific manifestation,
and the strategy employed to fix it. We identified two gen-
eral patterns: atomicity violations (AV) and ordering viola-
tions (OV). With regard to bug manifestation, three columns
indicate the events and object involved in the race, and the
impact of the bug. Finally, the bug fix strategy is described in
the last column. The final three rows describe the novel bugs
we discovered. FPS (novel) is discussed in §3.2.2, while SIO
(novel) and KUE (novel) are evaluated in §5.2.

3.2 Bug Patterns
In this section we introduce examples of AVs and OVs in
server-side JavaScript applications, including a new sub-
type of OV called a commutative ordering violation (COV).
We follow Lu et al. [29] and Hong et al. [24] in the defini-
tions we use for AVs and OVs in the EDA context.

3.2.1 Atomicity Violations
The most frequent type of bug in our bug study was an AV.
An AV occurs when two operations are intended to happen
consecutively but another operation can be interleaved be-
tween them and affect the result. The other operation can

1 Job.prototype.markFailed () {
2 var self = this;
3 ...
4 if (self.canRetry) {
5 - self.update().delayed();
6 + self.update(function () {
7 + self.delayed();
8 + });
9 }

10 ...
11 }

Figure 3. Ordering violation (KUE). Both update and
delayed are asynchronous. The delayed method must be
called only after the update method completes.

occur before or after the relevant operations without issue,
but not between them.

In event-driven programs, including Node.js, memory ac-
cesses in one event callback are executed without preemp-
tion, so AVs cannot occur within a callback. However, many
concurrency bugs we found in this study are due to a false as-
sumption of atomicity across callback chains. In the server-
side EDA context, AVs tend to occur when the processing
of one request can interfere with the processing of another
request.

Many of the concurrency bugs in our study (9/12) were
AVs. They had relatively little in common other than the
shared bug type; the form of the AV and its effect varied
widely from bug to bug. One example is illustrated in Fig-
ure 2, showing the patch to repair a (simplified) AV bug in
the connection manager of SIO. Here we discuss the bug in
the un-patched version. When a client requests a socket, the
connection manager executes its socket method (line 4),
creating a socket and adding it to its sockets array on the
‘connect’ event (lines 8–11). When the client disconnects,
the connection manager executes its destroy method (line
15), deleting s from the sockets array (line 16) and closing
the itself if there are no remaining connections (line 18).

Suppose a client attempts to connect to two different
paths of the same server. If one connection completes
quickly while the other takes a long time, the fast connec-
tion could be disconnected before the slow connection con-
nects. In this case, the destroy method will find an empty
sockets array, closing the manager and causing the slower
connection to fail inappropriately.

3.2.2 Ordering Violations
Event-driven programs also suffer from OVs. An OV occurs
when operation A should always be executed before opera-
tion B, but this order is not enforced.

OVs occur in the EDA when developers, overeager to
partition the composition of responses, misunderstand the
dependencies between their partitions and fail to enforce
them. Therefore, OVs tend to occur during the processing of



Abbr. Bug # Race type Racing events Race on Impact Fix
EPL 2674 AV NW-NW Array Crash (null dereference). Check not null before use.
GHO 1834 AV NW-NW Database Creates too many user accounts. Deprecate functionality.
FPS 269 AV NW-NW Variable Request hangs. Fix incorrect control flow.
CLF 1 AV FS-Call Variable Creates a duplicate file. Rd/wr in the same callback.
NES 18 AV NW-Timer Variable Crash (null dereference). Check not null before use.
AKA 23 AV NW-Timer Variable Throws error (possible crash). Rd/wr in same callback.
WPT 243 AV X-X Variable Throws error (possible crash). Counter per request (callback chain).
SIO 1862 AV NW-NW Array Request hangs. Rd/wr in same callback.

MKD 2 AV FS-FS File system Incorrect response (does not finish mkdir). Check err code.
KUE 483 OV NW-NW Database Job runs more than once. Order async. calls using callbacks.
RST 847 (C)OV FS-X Array Incorrect response (missing data). Use an “async barrier”.
MGS 2992 (C)OV NW-NW Database Incorrect response. Global counter.

SIO (novel) PR 2721 AV NW-Timer Socket Subsequent tests fail because the server’s socket is occupied. Disable automatic reconnection.
KUE (novel) 967 AV Unknown Unknown Tests fail because lock is taken. Unknown.
FPS (novel) PR 339 (C)OV NW-NW Variable Test case fails in wrong place. Global counter.

Table 2. Characteristics of concurrency bugs in Node.js software, sorted by software type (Table 1) and race type. Race type is
atomicity violation (AV) or ordering violation (OV); commutative ordering violations are marked with a (C). Races were either
“solo” (intra-request) or due to competing concurrent requests. The racing events were network responses (NW) (typically from
an external resource like a database), calls to the racy API (Call), timers (Timer), file system interactions (FS - uses worker
pool), and “application-dependent asynchronous step” (X).

a single request, without the need of interference from other
clients.

Several of the concurrency bugs in our study (3/12) were
OVs. The patch to repair a (simplified) OV bug in KUE is
shown in Figure 3. Here we discuss the bug in the un-patched
version. This OV bug was caused by asynchronous status
updates to a Redis database. On the failure of a job that can
be retried later, the call to update sets the state of the job
in the database to ‘failed’, while the call to delayed sets it
to ‘delayed’. Both update and delayed are asynchronous,
launching concurrent updates to the status database.

The job’s final state should be ‘delayed’, but because
of the lack of ordering between the update and delayed

methods, the job can end up with two states: both ‘delayed’
and ‘failed’.

Commutative Ordering Violation The other two OVs
in our study were of a sub-type of OV not previously re-
ported in the literature. We call it a commutative ordering
violation (COV). We suspect that it has gone unreported un-
til now because it may occur more frequently in server-side
EDA contexts than in client-side ones, due to the increased
complexity of server-side applications.

Applications will sometimes launch multiple asynchronous
requests, intending to run a callback only when all of them
have completed. When the application prematurely runs this
final callback, a COV bug occurs. While this is clearly a type
of OV, it is distinctive because the ordering constraint is not
between the asynchronous requests themselves, but rather in
ensuring that they can execute in any order (commutatively)
and that control will only shift to the final callback when
appropriate.

Figure 4 shows the patch to repair a COV bug from MGS.
The firstStep method (line 4) launches N find requests
(line 7), each of which invokes the nextStep method (line

13) when complete. Whether each request is the final one is
bound to the nextStep invocation. When the final request
invokes nextStep, a promise is resolved (line 18) to indi-
cate that populate (line 1) is complete.

The bug: there is no guarantee that asynchronous requests
will complete in the same order in which they are submitted.
The last launched find request may not be the last com-
pleted request, so the promise should be resolved using an-
other mechanism.

This bug is similar to that of RST , in which an event call-
back makes a series of asynchronous fs.read calls, with
callbacks updating a shared buffer. However, it returns pre-
maturely, before all of the asynchronous reads have finished.
The initial fix for RST used the same anti-pattern from Fig-
ure 4; the complete fix made use of an asynchronous bar-
rier10 instead. While studying the fix for the AV in FPS, we
identified a novel COV in the associated test case11 that uses
the same anti-pattern, suggesting that this may be a common
confusion even for professional Node.js developers.

3.3 Bug Manifestation Study
The findings of our bug manifestation study can be summa-
rized as follows:

1. Events involved in race conditions stem from diverse
sources such as network traffic, timers, user method
calls, and the timing of worker pool work processing
and “done” events (§3.3.1).

2. Race conditions are not only on shared memory (e.g.
writes to variables and arrays), but also on system re-

10 An asynchronous barrier is the EDA analogue of MPI’sMPI Barrier
command.
11 See our accepted pull request at https://github.com/telefonicaid/fiware-
pep-steelskin/pull/339.



1 Model.prototype.populate = function (N) {
2 ...
3 + var remaining = N;
4 function firstStep (args, N) {
5 ...
6 for (var i = 0; i < N; i++) {
7 find(args,
8 - nextStep.bind(this, i === N-1));a

9 + nextStep.bind(this);
10 }
11 }
12 ...
13 - function nextStep (isLast, ...) {
14 + function nextStep (...) {
15 ...
16 - if (isLast)
17 + if (--remaining === 0)
18 promise.resolve(...);
19 }
20 }

Figure 4. Commutativity ordering violation (MGS). The
nextStep function should only resolve the promise after all
of the asynchronous find methods launched by firstStep
have completed.

abind creates a function that, when called, invokes the original function
in the context and with the args provided.

sources (e.g. queries to database, I/O to file system)
(§3.3.2).

3. Race conditions may result in severe consequences in-
cluding server crashes and inconsistent database states
(§3.3.3).

3.3.1 Racy Events
A brief evaluation of the events that triggered the races is
informative. Races occurred in the callbacks for a diverse set
of events, implying that detection or testing tools for server-
side EDA applications in general, and Node.js applications
in particular, must consider all these and more.

We were not surprised to find that many of the racy
events (Table 2, column “Racing events”) had to do with
network traffic; this traffic was either between the client
and the server (EPL, FPS, NES, AKA, SIO, MGS) or be-
tween the server and some back-end (e.g. to a Redis database
server) (GHO, KUE). Of greater interest were the file system
(CLF, MKD, RST) races, as these cannot occur in client-side
JavaScript. Messiest of all was the WPT bug, because WPT
is a plug-and-play framework and the racy events could have
been any asynchronous task supported by Node.js.

3.3.2 What Were Races On?
By examining the types of objects on which the races oc-
curred (Table 2, column “Race on”), we can see the kinds of
racy accesses a data race detector for server-side JavaScript
would need to detect.

Of course, just like client-side JavaScript, server-side
Node.js programs have races on the property (variable, ar-
ray, etc.) of some shared object (EPL, FPS, CLF, NES, AKA,
WPT , SIO, MKD, SIO, RST). However, server-side software
interacts with back-end systems like databases and the file
system, and thus are vulnerable to race conditions on their
state.

For example, GHO is vulnerable to a race on the state
of its database. When a new username is registered, it asyn-
chronously checks whether this username is already present
in the database, and asynchronously adds it if it is not. Alas,
if two fetch calls are interleaved and neither request finds
a match, an extra username entry will be created.

The bug in MKD provides an example of a file system
race. The mkdirp API works like the mkdir -p command:
it creates a directory, creating any parents that don’t already
exist. In the MKD bug, two concurrent requests sharing the
same prefix may race, causing one to return prematurely due
to an incorrect handling of an EEXIST errno.

Unfortunately, these racy objects tell us that existing data
race detectors developed for client-side JavaScript web ap-
plications [43, 44], which only consider object properties,
cannot be directly applied to Node.js applications. They are
defeated by these races on the state of external resources
(the “open system” problem). Though attractive, modeling
accesses to the shared resource file system or to a database
as shared memory accesses does not strike us as a feasi-
ble extension: identifying a shared resource and determining
conflicting requests to it (e.g., fs.create and fs.unlink)
seems difficult in the Node.js context given the Node.js
community’s widespread reliance on external npm modules;
there is no fixed set of system calls to instrument.

3.3.3 The Impact of Concurrency Errors
While concurrency errors in client-side JavaScript do not
have particularly fearsome manifestations (e.g. unrespon-
sive HTML buttons, an incorrectly initialized entry form,
warnings written to a hidden console [35, 43, 44]), these
12 server-side EDA concurrency errors manifested in a vari-
ety of more serious ways (Table 2, column “Impact”). As in
multi-threaded programs, impacts ranged from incorrect re-
sponses (3/12) all the way to potential server crashes (4/12).
Coupled with the surging popularity of Node.js, the potential
severity of errors emphasizes the need for tools to support
server-side JavaScript developers.

3.4 Bug Fixes
In our bug fix study, we found that:

1. The AV bugs are solved in a variety of ways, most typ-
ically moving the intended-to-be consecutive accesses
into the same callback (§3.4.1).

2. OVs can be solved using two semantically equivalent
(but syntactically quite different) techniques: nested call-



backs, and the equivalent approaches of the async module
and promises (§3.4.2).

3.4.1 Fixing Atomicity Violations
In multi-threaded programs, AVs are often fixed by lock-
based mutual exclusion. Since the majority of these EDA-
based AV bugs occurred in the event loop, and the event loop
is single-threaded, each racy callback already is an atomic
region: no locks required. As a result, the fixes frequently
just moved the racy access from the later (asynchronous)
callback into the initial callback, as shown in Figure 2 for
the bug in SIO. The fixes for AKA and CLF follow the exact
same fix strategy, and the fixes for EPL and NES are similar
in spirit (testing for null).

An alternative approach we observed in the fix for WPT
was to convert the shared (racy) variable into a variable
local to each request (callback chain), eliminating potential
interference between chains.

3.4.2 Fixing Ordering Violations
Though we analyzed only a small number of OV bugs, it
seems that the fix strategy is well understood by the com-
munity. The fix for KUE’s OV bug illustrates one common
pattern, and the fix for the OV bug in RST another.

Figure 3 shows the fix for the KUE OV. To ensure the
order between events, delayed is invoked as a callback
of update. This style matches that of the Node.js API,
but taken to extremes can lead to deeply nested callbacks–
“Callback Hell” [46].

Common ways to express more sophisticated ordering
constraints are the async module12 and the use of Promises
(e.g. the Bluebird module13). In this vein, the COV bug in
RST is fixed with an async.barrier, ensuring that all
of the fs.read calls are completed before the next step.
Bluebird’s Promise.all API would also have served.

However, developers are also free to roll their own so-
lutions, as shown in the patch for the COV bug in MGS
(Figure 4). In the patch, the remaining counter is initial-
ized with the number of requests N, and each asynchronous
invocation of nextStep decrements it; the last completed
callback is that for which --remaining is 0. We took the
same approach for the FPS (novel) bug we repaired. The
async.barrier and Promise.all APIs approaches are
also suitable for addressing COV bugs.

3.4.3 Everybody Makes Mistakes
On a final note for the bug study, we want to emphasize
that even developers familiar with effective EDA patterns
still make mistakes. We do not believe that complex EDA-
based software is significantly easier to get right than multi-
threaded software, it just relies on a different paradigm.

12 See https://www.npmjs.com/package/async.
13 See https://www.npmjs.com/package/bluebird.

The correct use of OV-preventing techniques does not
protect against AVs. In WPT , the code affected by the bug
made use of the async waterfall pattern, but when other
callback chains were interleaved, it caused an AV. In GHO
the same problem occurred, using promises instead of the
async module.

More surprising, code that correctly used OV-preventing
techniques still had OV bugs. In MGS (Figure 4), line 18
calls a promise, a typical ordering pattern, but MGS still had
an OV! Clearly understanding ordering constraints is a non-
trivial matter.

4. Node.fz: A Schedule Fuzzer for the EDA
The race conditions discussed in our bug study (§3) are dif-
ficult to find dynamically due to non-determinism in EDA-
based systems like Node.js. This non-determinism, arising
from the order in which inputs and intermediate events are
handled by the event loop and the worker pool, masks the
OVs and AVs that cause inter- and intra-callback chain races.

Inspired by the success of schedule fuzzing approaches to
find race conditions in the multi-threaded context (e.g. [18]),
we propose Node.fz, an EDA schedule fuzzing scheme de-
signed for Node.js. Node.fz amplifies Node.js’s internal non-
determinism, allowing applications to explore a broader
schedule space for the same input.

In this section we discuss the design and implementation
of Node.fz. We first describe how Node.js works (§4.1),
then evaluate the sources of non-determinism in the Node.js
framework (§4.2), then discuss how we amplify this non-
determinism using the techniques of de-multiplexing, event
shuffling, and event delaying (§4.3), and conclude with a
demonstration of the fidelity of Node.fz (§4.4).

4.1 How Node.js Works
During an application’s listening phase, Node.js divides its
time between checking for new events (using the libuv event
loop) and executing and optimizing the associated JavaScript
callbacks (using V8) .

When Node.js JavaScript code calls the asynchronous
Node.js system call APIs, Node.js compiles the associ-
ated callbacks using V8 and registers the resulting function
pointer with libuv. For example, when registering a listener
on an HTTPServer object, Node.js asks libuv to monitor the
associated socket and to invoke a function pointer when new
data arrives. libuv tests this file descriptor on every iteration
of its event loop (e.g. using epoll on Linux), executing the
supplied callback with any data that arrives.

Each iteration of the libuv event loop examines in turn
timers, pending callbacks, idle handles, prepare handles, I/O,
timers again, check handles, and close callbacks. Timers are
callbacks to be invoked after a certain amount of time has
elapsed; pending callbacks finish work that was not quite
completed on a previous iteration of the loop; idle, prepare,
and check handles are callbacks to be invoked on every event



loop iteration; I/O invokes callbacks registered in response
to I/O events; close callbacks are invoked just before the
associated objects are destroyed.

Node.js makes heavy use of the timer, closing, and I/O
stages of the event loop. Node.js’s use of the timer and clos-
ing stages is straightforward: Node.js translates JavaScript
timers to libuv timers, and uses “closing” events to clean
up the resources associated with JavaScript-level objects like
HTTPServers. The I/O phase, on the other hand, is really a
catch-all; network traffic, file system results, OS signal de-
livery, completed worker pool tasks, etc. are all implemented
as I/O events, and these are the events that trigger most of the
racy JavaScript callbacks from our bug study.

4.2 Non-Determinism in Node.js
Before we introduce Node.fz, this section first addresses the
wide array of sources of non-determinism in Node.js, each
of which will be fuzzed by Node.fz.

4.2.1 Non-determinism due to External Input
Input from external entities to an application is an obvi-
ous source of non-determinism. Node.js developers must be
aware of the potential variations in input order from a broad
range of sources.

Network traffic The order in which network traffic ar-
rives is highly non-deterministic. While the traffic on a par-
ticular TCP socket is well-ordered, the traffic on UDP sock-
ets and between multiple TCP sockets is not [45]. Applica-
tions cannot make assumptions about how many clients will
make requests simultaneously, or about which client will
make a request next.

Timers Using the setTimeout API, developers can
queue a function to be invoked at least (and approximately) k
milliseconds in the future. Timers are often used for ad-hoc
synchronization, by deferring an action until a condition is
met, and for timeouts, by aborting long-running operations.

There is significant non-determinism in the relative order
of timer callbacks and other callbacks. This variation is due
to changes in callback execution time, which varies based on
the deployment conditions. For example, callback execution
time will vary due to differing hardware or differing rate
and type of incoming requests (e.g. leading to alternative V8
optimizations and file system caching).

Misc. As server-side applications, Node.js programs
can make use of (and are therefore vulnerable to non-
determinism in) a variety of features uncommon or unavail-
able in client-side JavaScript. For example, Linux Node.js
applications can spawn child processes, send and receive
UNIX signals, and do I/O to and monitor changes in the file
system. In short, server-side JavaScript applications can be
(and are) much more complex than client-side JavaScript.

4.2.2 Non-determinism due to Callback Chains
The EDA programming style discussed in §2.3 leads to a
major source of non-determinism in Node.js applications.

Developers typically structure the composition of responses
into a callback chain, generally setting callback boundaries
on I/O-bound activities (file system I/O, database queries,
etc.). Though callback chains enable a responsive server
with high throughput, they also expose applications to non-
determinism: they can be interleaved in many different ways.
The sources of non-determinism from external input (§4.2.1)
are multiplied as callback chains are partitioned.

In Node.js, callback chain partitioning can be done
on the event loop itself (e.g. using the setImmediate

and nextTick APIs) or using the worker pool (calling
libuv’s uv queue work API from a C++ add-on). The
EventEmitter pattern facilitates this style of code.

4.2.3 Non-determinism in the Worker Pool
The worker pool is the final source of non-determinism
in Node.js applications, and a familiar one on the server
side. Node.js applications can queue file system I/O re-
quests, DNS-related queries, and user-defined tasks for asyn-
chronous handling by the worker pool. The tasks in the
worker pool queue are consumed concurrently by the work-
ers. Once a worker completes a task, it places a correspond-
ing “done” event on the event loop.

Both the size of each worker pool task and the schedul-
ing of the worker pool workers affect the order in which the
worker pool tasks are processed and their completion call-
backs executed by the event loop. This variation in worker
pool task processing and completion order leads to many
possible schedules. Alternative orderings exist both within
the worker pool (task processing and completion) and be-
tween the worker pool and the event loop (task process-
ing and completion relative to incoming events in the event
loop).

We provide one example of a possible worker pool race:
concurrent I/O requests to the same file. The ext4 file system
offers write atomicity only at the page granularity [15]. This
means that if a Node.js application makes concurrent, over-
lapping, multi-page writes to a file, each affected page will
consist of data from either write. File locks are not part of
the native Node.js API, and this type of low-level race might
be surprising to a developer from the client-side JavaScript
perspective.

4.3 Node.fz Design
Having determined in our concurrency bug study (§3) that
non-determinism in Node.js affects the manifestation of
bugs, and having evaluated the sources of non-determinism
in Node.js (§4.2), we now turn to the design of Node.fz.

At a high level, Node.fz takes control of the event loop’s
event queue and the worker pool’s task and done queues.
Node.fz then fuzzes these queues to explore alternative
schedules. By shuffling the entries in the event queue be-
fore executing each callback, Node.fz yields schedules with
alternative input and intermediate event arrival orders. By
shuffling the entries in the worker pool’s task and done



Figure 5. Highlights of Node.fz, our fuzzed EDA scheme,
targeting AMPED architectures like Node.js. This figure
illustrates the same case as Figure 1, with many callback
orderings changed by the scheduler. Dotted lines indicate
architectural changes compared to Figure 1.

queues, Node.fz produces schedules with alternative worker
pool task processing and completion order.

Node.fz amplifies the non-determinism in Node.js using
the techniques of de-multiplexing, event shuffling, and event
delaying, achieving a greater exploration of the possible ap-
plication schedule space without requiring any developer in-
tervention. As a drop-in replacement for Node.js, developers
can easily make use of Node.fz during development and test
and then seamlessly switch to the optimized Node.js binary
in production. Developers then have the assurance that their
applications will be stable under a wider variety of deploy-
ment conditions.

4.3.1 Multiplexing
A recurring technique in the Node.js implementation is mul-
tiplexing, with the goal of minimizing the time it takes
to complete an iteration of the event loop. Multiplexing
application-level events into a single internal “wrapper”
event reduces the total number of events handled by the
event loop. This approach offers substantial performance
gains, e.g. by reducing the number of system calls.

From a fuzzing perspective, however, multiplexing is un-
desirable. When we execute a “wrapper” event’s callback,
that (internal) callback consecutively executes a sequence of
application-level callbacks. We want to be able to change
the order of any pair of events, and multiplexing prevents
us from interleaving other events into that consecutive list.
Consequently, we eliminate multiplexing where possible.

In some cases, multiplexing is unavoidable. For example,
when an EventEmitter emits an event, the callback reg-
istered for every listener is guaranteed by Node.js to be in-
voked successively, synchronously, and in registration order.
Consequently, we cannot break this “wrapper” event into its
constituent parts. We focus our attention, therefore, on cases
where the use of multiplexing is not documented as part of

the Node.js API: Node.js timers and the libuv worker pool
done queue. In these cases, developers cannot assume any
atomicity or ordering guarantees, even though the imple-
mentation currently provides them (§4.4 and §4.5).

4.3.2 Taking Control of the Event Loop
The racy events from the event loop identified during our bug
study (see §3.3.1 and Table 2) were timers, I/O, and socket
disconnects (which occur during the “closing” stage). Con-
sequently, we insert hooks to the Node.fz scheduler (§4.3.4)
when checking for expired timers, prior to handling ready
file descriptors during the I/O phase, and prior to handling
“closing” events. Hooks for the I/O phase are shown using
dotted lines in Figure 5 (¬).

4.3.3 Taking Control of the Worker Pool
Each worker in the libuv worker pool repeatedly takes a task
from the queue, processes it, places it on the worker pool’s
“done queue”, and signals the event loop. This signaling is
implemented using a file descriptor included in the event
loop’s epoll set. When work is completed, a worker writes
to this file descriptor, to be detected on the next pass through
the I/O portion of the event loop. The event loop will then
process every task in the done queue, so this internal file
descriptor essentially multiplexes the done queue.

We take several steps to gain control of the worker
pool. First, we serialize callback executions between the
event loop and the worker pool, also effectively limiting
the worker pool size to one. This allows the scheduler to
be completely certain about the relative order of the execu-
tion of events and tasks, a fact on which we rely in §5.3.
A drawback of doing so is that it eliminates the possibility
of exposing several varieties of worker pool-related races
(§4.2.3), though we did not identify any such races in our
bug study (§3). Figure 5 illustrates this (®); unlike in Fig-
ure 1, no two callbacks ever execute at the same time (no
horizontal overlap).

Second, we insert a hook to the Node.fz scheduler prior to
taking an item from the work queue. The scheduler can then
suggest which of the tasks the lone worker should handle
next, simulating multiple workers. Note in Figure 5 () that
the order of TaskB1 and TaskB2 are inverted compared to
Figure 1, as may be suggested by the scheduler.

Third, we eliminate multiplexing of the done queue, for
the reasons discussed in §4.3.1. To de-multiplex the done
queue, we assign a private file descriptor to each task and
add this file descriptor to the event loop’s epoll set. When
a task is completed, we write a byte to its file descriptor to
signal the event loop that it is done. The individual task done
callbacks can then be fuzzed by the scheduler just like any
other I/O event, giving the scheduler complete control over
the order in which done items are handled relative to each
other and to other callbacks. In Figure 5 (¯) you can see
the effect this has: the order of the callbacks for TaskB1

and TaskB2, CBB2 and CBB3, is inverted compared to



Figure 1, and CBA2 was able to run between them because
they are no longer multiplexed.

4.3.4 Node.fz Scheduler
The Node.fz scheduler decides which pending events to han-
dle and in what order. It exposes hooks for the event loop and
the worker pool workers to call when they need to choose
which events or tasks to handle. The scheduler has a number
of parameters, outlined in Table 3.

Scheduling the event loop The event loop requests a
scheduler decision when dealing with expired timers and
with ready I/O descriptors. Included in the ready I/O de-
scriptors are the done events in the de-multiplexed worker
pool done queue (§4.3.3).

Expired timers are executed according to the timer defer-
ral percentage, until one of them is deferred. After a timer
is deferred, timer processing short-circuits until the next it-
eration of the event loop loop. Short-circuiting preserves the
{timeout, registration time} timer callback ordering imple-
mented in libuv. While this ordering is not documented by
libuv or Node.js, it is assumed in several of the test suites we
encountered in §5, and fuzzing it causes test failures. When
deferring a timer, we also inject a delay of 5 milliseconds as
a compromise between desiring forward progress and hop-
ing for other events to arrive to interleave with the timer.

Once the event loop obtains the list of ready file descrip-
tors from epoll, the scheduler shuffles them, moving each
descriptor no further in the list than the shuffle distance
(“epoll degrees of freedom”) to allow a trade-off between
extreme fuzzing and more realistic schedules. Each file de-
scriptor is then handled or deferred according to the “epoll
deferral percentage”. This shuffling is illustrated in Figure 5:
despite their arrival order, CBB1 is scheduled before CBA1.

Scheduling the Worker Pool To maximize the fuzzing
potential of the worker pool, the scheduler prompts the
worker to wait until the task queue has at least “degrees
of freedom” items in it, or until one of the “max delay” and
“epoll threshold” limits is reached. The scheduler then se-
lects one of the first “degrees of freedom” tasks in the queue
at random for execution.

4.3.5 Implementation Details
We implemented Node.fz for Linux in roughly 10,000 lines
of code, based on Node.js v0.12.7 (which used libuv v1.7.4).
The changes we made to convert Node.js to Node.fz were en-
tirely in the libuv event library. Though this introduced some
limitations into the scope of our fuzzing (see §4.5), the rea-
sons for this choice are twofold. First, the core event loop
and worker pool reside in libuv, so placing our implemen-
tation here gives us full control over the event and worker
pool schedule. Second, Node.js frequently releases new ver-
sions and; its source code is in a near-constant state of flux.
So long as Node.js continues to rely on libuv as its event li-
brary, concentrating our efforts in the libuv insulates Node.fz
from the rampant changes to the Node.js source. Node.fz

can therefore easily be used in Node.js applications across
a range of Node.js releases, as well as in other libuv-based
software like Julia [4], MoarVM [6], and Luvit [5]).

We demonstrated the flexibility of our libuv-only ap-
proach by applying our libuv changes in three other branches
of Node.js: two development branches, v3.x and v4.0.0-rc,
and one release branch, v0.12.5-release. After substituting
our version of libuv, we could compile and use Node.fz to
say “hello world” in these different versions.

Though we only implemented Node.fz for Linux, extend-
ing our implementation to the other operating systems sup-
ported by libuv (Windows, OSX, etc.) would not be difficult.

4.4 Node.fz Fidelity
The Node.fz scheduler makes only legal fuzzing decisions
according to the Node.js documentation:

1. Fuzzing timers Node.js does not provide an upper bound
on how late a timer can be.

2. Fuzzing epoll results Fuzzing the ready file descriptors
returned by epoll can be viewed from two perspectives.
We are simulating either input arriving earlier or later
than it actually did, or an epoll implementation that
doesn’t guarantee immediate notification of ready file
descriptors. From either perspective such fuzzing is legal.

3. Fuzzing the worker pool task queue libuv offers no
guarantee about the order of the handling of tasks.

4. Fuzzing the worker pool done queue libuv offers no
guarantee about the order of the handling of done tasks
relative to each other or to other events in the libuv event
loop. It only assures the user that the completion callback
of a task will be invoked only after its corresponding task
has completed, a guarantee we also provide.

However, having a legal fuzzer is irrelevant if Node.js ap-
plications depend on undocumented implementation details
of Node.js, or if Node.js is too tightly coupled to the libuv
implementation. This is a legitimate concern, as an early
version of Node.fz would also shuffle Node.js timers, which
is legal but still caused some applications to fail . We next
demonstrate that Node.fz is a viable alternative to Node.js by
evaluating the Node.js test suite using Node.fz.

We evaluated Node.fz on the Node.js v0.12.7-release
branch because it was the most recent branch that used the
version of libuv on which we based our implementation.
We compiled a non-fuzzy vanilla version (nodeV), then re-
placed the libuv component with our own and recompiled to
obtain a fuzzy version (nodeFZ). We identified the test cases
from the Node.js test suite that worked using nodeV, then
evaluated them using nodeFZ.

Due to our implementation choices, nodeFZ cannot ac-
commodate concurrent access to libuv from Node.js. As a
consequence, tests that make use of the debugger module (3
tests) and the VM module (2 tests) encounter a protective
assert. Any application that relied on these modules would



Node.fz parameter name Description Standard parameterization
Event Loop: epoll degrees of freedom Maximum shuffle distance of epoll ready items. -1 (unlimited)
Event Loop: epoll deferral percentage Probability of deferring a ready epoll item until the next iteration of the event loop. 10%
Event Loop: Timer deferral percentage Probability of deferring an expired libuv timer until the next iteration of the event loop. 20%

Event Loop: “closing” deferral percentage Probability of deferring a “close” event until the next iteration of the event loop. 5%
Worker Pool: Degrees of freedom Work queue lookahead distance, i.e. number of simulated worker pool workers. -1 (unlimited)

Worker Pool: Max delay Total maximum time to wait to fill the worker pool work queue up to the degrees of freedom. 0.1 ms
Worker Pool: epoll threshold Maximum time the event loop can be in epoll while we wait for the worker pool task queue to fill. 0.1 ms

Table 3. Node.fz scheduler parameters. The standard parameterization is described in §5.1.2.

also be immediately terminated. We did not encounter any
such applications in our evaluation.

nodeFZ passed all but one of the other tests without is-
sue. It initially failed the test test-fs-sir-writes-alot.js, which
atomically submits 10,240 file system requests and then
waits for them to complete. As discussed in §4.3.3, to de-
multiplex the worker pool done queue we introduced one file
descriptor per task. In the case of test-fs-sir-writes-alot.js,
the event loop does not have the opportunity to close any
of these file descriptors until every request has been submit-
ted, concurrently consuming 10,240 file descriptors. nodeFZ
received EMFILE until we increased the limit on the test pro-
cess’s open file descriptor count using ulimit.

Based on the strength of the Node.js test suite, we con-
clude that nodeFZ is a legal, viable alternative to Node.js.

4.5 Node.fz Limitations
Despite its success (§5), Node.fz has many limitations. Its
primary constraints are:

1. Node.fz serializes callbacks (§4.3.3), degrading perfor-
mance and limiting the possible races we can expose.

2. Our implementation was restricted to libuv for portability
between versions of Node.js (§4.3.5). We could expose
additional non-determinism were we to extend our imple-
mentation into the Node.js libraries (e.g. de-multiplexing
Node.js timers).

3. As a dynamic tool, Node.fz can only identify races that
can be exposed by the input to the software (e.g. data,
test suite, etc.), so it may have false negatives. However,
since Node.fz is a faithful alternative to Node.js (§4.4), it
will not suffer from false positives.

5. Evaluation
Our evaluation seeks to answer the following research ques-
tions:

1. Does Node.fz improve the reproducibility of the bugs
described in §3?

2. Does Node.fz uncover novel bugs?

3. How effectively does Node.fz explore the schedule space
of an application?

4. What performance overhead does Node.fz introduce?

We ran all of our experiments on a machine with a 4-core
Intel i7-4790 CPU (2 threads per core), 16GB RAM, running
Linux 3.13.0-86. Due to the event-driven nature of the bugs
in our study, however, we believe our experimental results
are applicable to a wide variety of machine configurations.

5.1 Reproducing Bugs
Our primary research question was whether Node.fz in-
creases the manifestation frequency of the race conditions
from our bug study. We measured this by comparing the rel-
ative ability of Node.js (nodeV) and Node.fz (nodeFZ) to
cause a bug to manifest. Due to the changes we made in
libuv (§4.3.3), Node.fz will explore a slightly different area
of the schedule space than Node.js even without fuzzing. As
a result, we also measured the ability of non-fuzzed Node.fz
(nodeNFZ) to cause a bug to manifest, choosing schedule
parameters that induce no fuzzing (see Table 3).

5.1.1 Test Cases
Our bug study evaluated 12 concurrency bugs in Node.js
software. In this and subsequent experiments we excluded
those bugs whose reproduction we could not readily auto-
mate (EPL, triggered by web browser interaction) or that
were not written in JavaScript (WPT)14. In the case of GHO,
the bug report and the fix did not include enough clues to
allow us to trigger the race externally, so we replicated the
racy code in a small standalone application (GHO ′) in Fig-
ure 6). The bugs in KUE and RST manifest frequently even
using nodeV, so we only included KUE in our evaluation.

We drew test cases from the bug report where possible
to increase the realism of our experiments. Where the bug
report was too vague, we used the automated test case in-
cluded with the commit where available. In cases where the
commit did not include an automated test case, we developed
a simple test of our own to imitate the actions described in
the bug report. We observe that in 4/12 bug reports the patch
did not include an automated test case; this was surprising,
as in 3 of these 4 cases the associated GitHub project was
well-established, with 2000-6500 commits.

The external test cases were all unit tests that could hit the
bug with high or complete certainty on nodeV. Such cases
often used timers to artificially encourage the manifestation

14 The reproduce scenario for the WPT bug was written in CoffeeScript, and
we could not successfully transpile it to JavaScript.



of the bug. These unit test-style test cases were retrospective,
introduced after the discovery of the bug and deliberately
targeting it by encouraging the racy path. In our view this
approach is undesirable, as it over-tunes the test case to the
implementation. While unit tests are better than nothing, also
adding functional or system tests [32] that can uncover both
the bug in question and other related bugs would be better
practice. With this in mind, we therefore adapted the external
test cases we used by introducing non-determinism (e.g. file
system calls or timers) into the test to reduce the likelihood
of hitting the bug, in effect converting these tests from unit
tests to functional tests.

5.1.2 The Standard Parameterization
When we used nodeFZ in this section, except where noted
(§5.2.3) we used it with what we refer to as the “stan-
dard parameterization”. This parameterization is a choice of
fuzzing parameters that fuzzes each supported aspect of non-
determinism in Node.js without perturbing the execution too
dramatically. The values for the standard parameterization
are listed in Table 3. We identified reasonable values using
some synthetic races, and they proved effective across the
spectrum of race conditions we set out to reproduce.

5.1.3 Experimental Results
We ran the test case used to reproduce each of the known
bugs 100 times for each version of Node.js (nodeV, nodeNFZ,
nodeFZ). We ran 100 tests because this is roughly the num-
ber of rounds of testing we ourselves use before declaring
our own software “relatively bug free”; a tool that cannot
cause a bug to manifest in 100 iterations is probably imprac-
tical. The results of this experiment are shown in Figure 6.

Overall, Node.fz was able to trigger the race conditions
much more reliably than nodeV. The variation in bug re-
production rates for different modules is due to factors like
how difficult the bug is to hit in general, how effective the
(adapted or hand-crafted) test case in question is at trigger-
ing the race, and how relevant the standard parameteriza-
tion (§5.1.2) is in each case. We note that only the KUE and
FPS bugs manifested using nodeV; the rest could only be
detected using nodeFZ. In some cases, nodeNFZ was suffi-
cient to trigger the races as well, but was generally inferior
to nodeFZ. Overall, the use of even the generic standard pa-
rameterization clearly offers a marked improvement in bug
reproduction, indicating that it will also increase the rate of
novel bug manifestation.

5.2 Finding Novel Bugs
We searched for novel bugs by running the full test suites
of the software whose bugs we studied. We found a total of
three bugs (two novel) across two of the modules, SIO and
KUE. The manifestation rate of these bugs is also shown in
Figure 6.

These manifestation rates are based on 50 iterations rather
than 100 because running a full test suite can be far more
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Figure 6. Bug reproduction rates. In the majority of these
cases, only nodeFZ was able to cause the bug to manifest.

time consuming than running individual tests, even when
using nodeV. Because we used the most recent version of
each software’s test suite in this experiment, we had to omit
NES and GHO, whose most recent versions are no longer
compatible with the version of Node.js (libuv) on which
Node.fz is based.

5.2.1 Novel bug in socket.io (c94058f9)
We identified a novel atomicity violation in the SIO test
suite. nodeFZ uncovered a test case that failed to clean up
one of its client requests, which was on a repeating timer.
When the timer expired, it would attempt to connect to a
server shared by all of the test cases. If it happened to wake
up during the small subset of sensitive test cases, it would
steal a connection and cause those cases to time out. This
bug manifested far more frequently using nodeFZ than using
nodeV. Our patch for this issue was accepted15.

5.2.2 Novel bug in kue (4c5711ba)
We identified a novel bug in the KUE test suite. One of the
test cases failed regularly using both nodeNFZ and nodeFZ.
We traced the cause of the failure to a timeout due to an
inability to promptly acquire a lock from Redis, suggesting
a deadlock. Though we couldn’t identify the root cause of
the issue, we have contacted the maintainers with a descrip-
tion16.

5.2.3 Guided Fuzzing Increases Reproduction Rate
We independently identified a bug in the 2014 version of the
KUE test suite (03736bd7) that had since been fixed. The
test suite assumed that a timer would not be executed with
high precision, crashing if a timer went off too soon after its
scheduled deadline. It manifested in 3/50 trials when running
the test suite on nodeV, nodeNFZ, and nodeFZ.

The failed assertion said a timer had gone off early. Ac-
cordingly, we tweaked the fuzzing parameters to favor ac-
curate timers; deferring worker pool tasks and event loop

15 See https://github.com/socketio/socket.io/pull/2721.
16 See https://github.com/Automattic/kue/issues/967.



events with high probability caused the event loop to spend
most of its time spinning instead of executing callbacks. This
in turn meant that it could identify and execute ready timers
relatively quickly. Our first tweak to the parameterization
quadrupled the manifestation rate to 13/50; a higher repro-
duction rate simplified our subsequent root cause analysis.

We observe that this bug is neither an AV nor an OV as
described in §3. Rather, this bug is a “race against time”; the
assert is simply that the time of callback execution is at least
k milliseconds after the time of registration.

5.2.4 Pros and Cons of this Approach
Our approach to identifying new bugs ably demonstrates
both the strengths and the weaknesses of Node.fz. On one
hand, Node.fz is easily used with existing Node.js software
and test suites, and Node.fz was able to expose races in
the test suite or the software more able than nodeV. As
a runtime approach, Node.fz requires no expertise in the
software under test. On the other, however, as a dynamic
tool, Node.fz can only increase the manifestation rate of race
conditions exposed by the test suite. In essence, Node.fz
increases the power of the existing test suite to expose bugs,
but it cannot infer bugs that the test suite could never expose.

We believe that we discovered relatively few novel bugs
for three reasons. First, the software we studied is rela-
tively mature, so many race conditions have already been
addressed. Second, without expertise on each piece of soft-
ware, we could only report bugs that caused a crash or a test
failure; others may have gone unnoticed. Third, manual in-
spection of the suites suggested that tests are typically unit
tests rather than functional or system tests, and we feel that
the latter types of tests are more likely to expose race condi-
tions in software.

5.3 Schedule Space Exploration
In §5.1 and §5.2, we demonstrated the practicality of Node.fz.
To determine its generality, we measured the variation in the
schedules Node.fz explores when executing the test suites of
some of the modules identified in our bug study.

We define a Node.js schedule as the order in which
JavaScript callbacks are executed and the worker pool op-
erations are interleaved. We define a libuv schedule as the
order in which libuv callbacks are executed and the worker
pool operations are interleaved. Note that at the libuv level,
we cannot accurately identify the Node.js schedule because
the callbacks supplied to libuv are black boxes; we do not
bridge the semantic gap [14].

The greater the schedule variability, the more likely race
conditions are to manifest. Since Node.fz is implemented at
the libuv level, we propose a simple measure to approximate
the libuv schedule variability; this is in turn an approxima-
tion of the Node.js schedule variability. We record the type
(e.g. “timer”, “network read”, “worker pool task”) of each
libuv callback as we execute it; the resulting type schedule

Figure 7. Normalized Levenshtein Distance between the
type schedules generated by running the test suites of the
indicated modules 10 times using nodeNFZ and nodeFZ.
Note that an LD of 1.0 would occur only when the two
type schedules have nothing in common, not something we
expect to see here.

approximates the libuv schedule17. The variation between
two libuv type schedules can be measured using the Lev-
enshtein Distance (LD) [28] (string edit distance)18.

Figure 7 shows the result of the pairwise LD between
the type schedules produced by 10 executions of the test
suites for some of the modules from our bug study using
nodeNFZ

19 and nodeFZ. We normalize the LD for each mod-
ule against the maximum possible value so that the variation
between schedules can be compared across modules. Due to
the computational complexity of the Levenshtein Distance
algorithm, we considered only the first 20K callbacks from
each schedule. This truncated the schedules from FPS, CLF,
SIO, and MGS, which had 66K, 210K, 37K, and 56K call-
backs per execution, respectively.

In every case but CLF, nodeFZ increased the schedule
variation, in most cases appreciably or significantly. We be-
lieve the significant truncation of the CLF schedule led to
the surprising decrease in schedule variation for that test.
Given the approximate nature of the type schedules we used,
this experiment indicates, albeit imprecisely, that Node.fz ex-
pands the schedule space explored by a test suite.

5.4 Performance Evaluation
To determine the amount of overhead induced by Node.fz,
we evaluated the running time of the test suites for recent
versions of some of the buggy modules, while being run us-
ing nodeV, nodeNFZ, and nodeFZ. Figure 8 shows the nor-
malized time to run the test suite under the various versions.
17 The type schedule is not an exact schedule because it cannot differen-
tiate between alternative orderings of two callbacks of the same type. For
example, if the order of two timers were inverted, the corresponding type
schedules would be identical.
18 The LD answers the question, “How many steps are required to turn one
string into the other?”
19 nodeNFZ is as close an emulation of nodeV as possible while still
serializing callbacks to produce a comparable type schedule.



Figure 8. Normalized performance overhead to run the test
suite of the indicated modules using nodeV, nodeNFZ, and
nodeFZ. Each suite was run 50 times on an otherwise idle
system.

Overall the results are encouraging. Though even a
vanilla parameterization of Node.fz introduces overhead due
to the callback serialization, from the comparable perfor-
mance of nodeV and nodeNFZ it is clear that our changes to
libuv did not introduce appreciable overhead in these cases.
The increased overhead using nodeFZ (up to ~1.5x) is pre-
sumably due to the delays we inject. The amount of overhead
will vary with different choices of scheduler parameters.

6. Discussion and Related Work
In this section we discuss the relationships between this
paper and previous work in bug studies and test aids for
multi-threaded programming and for client-side JavaScript.

Bug Studies The largest concurrency bug study to date
was on multi-threaded programs [29], and we are indebted
to Lu et al. for their careful definitions of AVs and OVs.
However, as we discussed in §3, the forms that AVs and OVs
take in the EDA context are unique and also worthy of study.
While there have been studies of JavaScript bugs [35, 36],
these studies have not examined in detail the root causes and
fix patterns in the way that we have done.

Schedule exploration Schedule exploration has been ap-
plied in the multi-threaded context by injecting random or
guided variation into thread schedules (e.g. [18, 20, 39, 47,
49]). To the best of our knowledge, Node.fz is the first to
extend this notion into the realm of the server-side EDA.
Node.fz focuses on the schedule of events, not threads, and
takes a randomized approach suited to long-lived server pro-
cesses.

Though systematic testing of multi-threaded [19, 34] and
“asynchronous reactive” [17] programs has been proposed,
randomized scheduling has been shown to be just as effec-
tive [51], and we also found randomized schedule fuzzing
to be effective in the EDA. Because it controls all points of
non-determinism in Node.js, Node.fz can also enable more
systematic exploration of Node.js application schedules.

Client-side JavaScript Other researchers have discussed
aids to detect bugs in client-side JavaScript [27, 43, 44].
Though the prevalent client-side and server-side JavaScript
environments are all event-driven, these client-side analy-
ses are tuned to the relationship between JavaScript and
the browser’s DOM rather than to the relationship between
JavaScript and the “open system” (e.g. the file system, a
database, etc.). Our bug study shows that these solutions
cannot be easily applied to Node.js applications, primarily
due to the open system nature of Node.js and the concomi-
tant race conditions, and in part due to scalability issues, as
server-side applications are much longer lived.

Node.js tools We are aware of two related tools in the
realm of Node.js. Madsen et al. presented a static analysis
using the event-based call graph [30], though they apply
it to bugs more common in a novice’s program than in an
expert’s. In contrast, Node.fz can expose bugs even in large,
well-maintained Node.js projects. In the broader Node.js
community, the node-mocks project20 enables a narrow form
of JavaScript-level schedule fuzzing, and is subsumed by
Node.fz.

Android The Android environment is another hotbed
of event-driven programming, and researchers there have
proposed several dynamic data race detectors [11, 25, 31]
and record-and-replay systems [26]. These tools are tailored
to the Android system architecture, and cannot easily be
ported to the Node.js architecture.

Misc. Lastly, like Node.fz, Chadha et al. [13] peek ahead
into the EDA event queue, though they do so to prime caches
rather than to shuffle the order of events.

7. Conclusion
This paper presents Node.fz, a novel schedule fuzzing test
aid for server-side EDA programs, targeting the Node.js
environment. The design of Node.fz was based on the first
concurrency bug study of real-world Node.js (and EDA)
software, in which we discussed the forms atomicity and
ordering violations take in the EDA, and draw attention to
a common sub-type of ordering violation which we term a
commutative ordering violation. Based on the root causes
of the bugs in our study, we designed Node.fz to shuffle the
order of input events and callback chains as they appear
in the Node.js runtime. Our results show that Node.fz can
trigger known bugs more frequently, expose new bugs, and
expand the schedule space explored by a test suite, all with
an acceptable overhead.
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