
Offline Symbolic Analysis to Infer Total Store Order∗

Dongyoon Lee†, Mahmoud Said‡, Satish Narayanasamy†, Zijiang Yang‡
University of Michigan, Ann Arbor† Western Michigan University‡

Abstract
Ability to record and replay an execution can significantly help pro-
grammers debug their programs, especially parallel programs. De-
terministically replaying a multiprocessor’s execution under a re-
laxed memory model has remained a challenging problem. This is
an important problem as most modern processors only support a
relaxed memory model to enable many performance critical opti-
mizations. The most common consistency model implemented in
processors is the Total Store Order (TSO).

We present an efficient and low-complexity processor based so-
lution for recording and replaying under the Total Store Order (TSO)
memory model. Processor provides support for logging data fetched
on cache misses. Using this information each thread can be de-
terministically replayed. A TSO-compliant casual order between
the shared-memory accesses executed in different threads is then
inferred using an offline algorithm based on Satisfiability Modulo
Theory (SMT) solver. We also discuss methods to bound the search
space during offline analysis and several optimizations to reduce
the offline analysis time.

1. Introduction
A record and replay system has a number of different applica-

tions such as time travel debugging [21], forensics [15] and fault
tolerance [12]. Perhaps one of the most important application is
that deterministic replay can help programmers reproduce and un-
derstand non-deterministic concurrency bugs.

Software [4, 15, 23, 32] solutions are preferable, but they incur
significant performance cost for precisely recording the causal or-
der between shared-memory operations to support multiprocessor
replay. Recent solutions [4, 23, 32] avoid recording the causal or-
der to reduce the online performance cost. They rely on offline
search [4] or pure chance to reproduce the causal order offline [32].
However, since they do not bound the search space, they cannot
guarantee to find the causal order in a reasonable amount of time.
Hardware solutions [13, 18, 26–28, 37, 39] can record for a negligi-
ble performance cost, and therefore could be used even in produc-
tion systems. However, they require a complex hardware support
for monitoring coherence messages to detect causal order between
shared accesses and log them precisely. A low complexity solution
is a must if hardware vendors were to provide replay support.

One another important limitation of many prior hardware and
software solutions is that they guarantee replay only for sequen-
tially consistent (SC) executions. However, most modern proces-
sors support only a relaxed memory model as SC disallows many
common optimizations. For instance, SPARC and x86 based pro-
cessors support variants of the Total Store Order (TSO). If a pro-
gram execution violates SC while running on these processors, prior
solutions [26, 28, 39] may not be able to correctly replay it. This is
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a serious limitation for a replay tool as non-sequentially consistent
program executions are perhaps the most difficult to understand and
debug for a programmer.

To address the above limitation, RTR [40] and LReplay [13] pro-
posed additional hardware support for detecting memory accesses
that violate sequentially consistency at runtime, and log their val-
ues explicitly so that they can be replayed correctly. However, this
approach not only adds additional complexity to already complex
recording hardware which needs to precisely detect and log the
causal order for shared memory accesses, but also could increase
the log size.

In this paper we present a low complexity hardware solution for
supporting replay under the most commonly implemented mem-
ory model – Total Store Order (TSO). We leverage the observa-
tion made by Lee et al. [22] that logging initial register state and
cache miss data is sufficient for replaying each thread in a multi-
processor. The intuition here is that a processor can observe a value
produced by another processor or an external system entity only by
issuing a cache miss request and fetching the corresponding mem-
ory block. Thus, we can guarantee to deterministically replay the
exact same sequence of instructions and their input/output values of
each recorded thread. Lee et al. [22] also proposed an offline anal-
ysis algorithm to determine a sequentially consistent causal order
between shared accesses replayed across all the threads. The causal
order is guaranteed to reproduce the erroneous program state seen
during any recorded buggy execution. This approach has the advan-
tage in that it requires only a simple hardware extension (primarily
for logging cache misses) and delegates much of the problem to an
offline search. But their solution was applicable only for a sequen-
tially consistent processor model.

In this paper we observe that cache miss log is sufficient to deter-
ministically replay each thread even under the TSO memory model.
To determine a TSO-compliant causal order between shared ac-
cesses, we present a new offline symbolic analysis algorithm based
on Yices [16] Satisfiability Modulo Theory (SMT) solver. TSO dif-
fers from SC in that it relaxes store-to-load order and store atom-
icity [5]. The first relaxation allows a load to be scheduled ahead
of an earlier store in the same thread provided they are accessing
different locations. The second relaxation allows a store’s value to
be made visible to a local load before it is made visible to remote
loads. We discuss how these two relaxations can be encoded as
first-order logic constraints and reproduce a TSO-compliant causal
order using an SMT solver.

To bound the search space during offline analysis, we propose to
log certain hints during recording. At periodic intervals, all the pro-
cessor cores simultaneously record the number of committed mem-
ory operations along with the number of stores pending in its local
store buffer. Using this information, we show that we can legally
partition a multi-threaded program execution into smaller bounded
intervals and determine a causal order for memory accesses in each
interval separately. In our mechanism, hints needed for bounding
the search can be logged without any additional communication
between the processor cores.



To further reduce offline analysis time, our offline analysis elim-
inates a majority of cache hits from the offline search. This is based
on our observation that the causal order for most cache hits can be
trivially inferred from the causal order between cache misses.

We analyze the log size and performance of the offline symbolic
analyzer using Apache, MySQL, Parsec, and Splash benchmarks
for the TSO memory model. We find that searching for a valid
TSO order is as efficient as searching for a SC order, and for some
programs could be even faster than SC. We compare the efficiency
of our system to two earlier approaches, one that records precise
shared-memory dependency [18] and another that uses offline anal-
ysis [22].

By sacrificing precision in logging causal order, we manage to
design a low-complexity processor solution. The tradeoff is the of-
fline analysis cost. However, offline analysis need to be performed
only once. Once shared memory dependencies are resolved, later
replays can be very efficient. We believe that developers would be
willing to pay an one-time cost to reproduce a bug (by replaying a
few seconds that preceded a crash) that manifested in the produc-
tion sites and during beta-testing which is where a low-overhead
processor recording solution would be crucial.

2. Background
A multi-threaded program has two sources of non-determinism

– program input and shared-memory dependencies. In this section
we discuss how recording the data fetched on cache misses is suf-
ficient for capturing program input [30] and for deterministically
replaying each thread in isolation [22]. Later in Section 3 we de-
scribe a new offline analysis for reproducing the TSO causal order
for the shared-memory operations replayed across all the threads.
2.1 Load-Based Input Logging

One common solution for recording program input is to check-
point the initial memory and register state, and then record non-
deterministic system events such as signals, interrupts, DMA, etc.,
along with their timestamps. However, this approach is system-
dependent as the set of non-deterministic events are specific to a
particular operating system. As a result, it is difficult to device a
solution that can record and replay across different operating sys-
tem environments.

An alternative approach is load value logging [10,30]. Past work
has shown that recording the initial register state and then logging
the values of the reads (including load instructions and instruc-
tion fetches) that first access a memory location is sufficient for
deterministically replaying a program’s execution [30]. Using the
recorded information, a dynamic instrumentation tool like Pin [24]
can be used to replay the recorded execution. The replay can re-
produce exactly the same sequence of instructions along with their
input and output values. In the case of memory operations, their
effective addresses are also reproduced.

Load value logging approach is system-independent in that it en-
ables replay across different operating system environments. In-
tel’s PinPlay tool [29,33,34] exploits this property to enable cross-
platform architectural simulation. But PinPlay is a software-only
solution that is nearly 100x slower than native execution.
2.2 Processor Support

Logging memory accesses that first access a location in software
could be expensive. In a recent work, which we refer to as Replay-
SMT, Lee et al. [22] discussed a complexity-effective processor so-
lution that required just logging memory blocks fetched on cache
misses. The only additional hardware state that Replay-SMT re-
quires is a “log” bit per cache block in the outermost private cache
of each processor core to determine whether an access is a first
access to that location or not. Logs are stored in the local cache
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Figure 1: Replaying two threads using cache miss log

and continuously written to main memory. To begin recording a
thread in a processor core, the operating system first records the
context header, resets “log” bits and turns on logging for the pro-
cessor core. The header contains the initial register state, process
and thread identifier and the value of the timestamp counter of the
processor core. Thereafter, when a processor reads or writes to a
cache block whose log bit is not set, it logs the cache block data, its
physical address and the current memory count. The memory count
of a processor core is the number of memory operations commit-
ted since the last context switch. It helps the replayer determine
when to read values from the log while emulating a memory oper-
ation. When a new cache block is fetched into the cache its log bit
is reset. All uncacheable reads and return value of RDTSC (ReaD
TimeStamp Counter) are also logged.

The above approach effectively logs cache blocks fetched on a
cache miss, and also pre-fetched cache blocks when they are ac-
cessed for the first time. Thus, it guarantees to log the values of all
the first accesses to memory locations during an execution. This in-
formation along with the initial register state is sufficient to replay
the execution.

When a cache block is logged due to a store, Replay-SMT records
the state of the cache block before the store modifies it. This helps
us recreate the memory state before a store’s execution during re-
play. Note that upgrade misses for store operations will not result
in additional logs as the corresponding cache block’s log bit would
be set. More details on how this mechanism could support context
switches, operating system code replay, self-modifying code, page
faults, etc., can be found here [22].

2.3 Replaying Threads
The cache miss data and the context header is also sufficient to

replay each thread when a multi-threaded program executes on a
multi-processor (which includes a DMA processor). The reason is
that, irrespective of the memory model, the underlying cache coher-
ence mechanism ensures that when a processor modifies a location,
the corresponding cache block is invalidated in other processors.
As a result, a cache miss is always generated when a processor
wants to read a value written by another processor core.

Figure 1(left) shows an example with two threads concurrently
accessing a shared-memory location X. Right sub-script is a unique
identifier for the dynamic memory access. Labels R denotes a read
and W denotes a write. Memory operations marked with crosses
on the left result in cache misses and therefore are logged. When
P1 executes R(X2), it would encounter a cache miss as the cache
block containing X would have been invalidated when P2 had ex-
ecuted W(X4). The new cache block fetched would contain the
new value for X written by W(X4) and would be logged. Thus, the
cache miss log captures the input values to each thread, including
the values produced by remote threads. This allows us to determin-
istically replay each thread and reproduce its sequence of memory
operations, their addresses and values independent of other threads.



The picture on the right in the Figure 1 shows the memory trace
generated by individually replaying each thread. Each memory ac-
cess is represented as follows. The literal X denotes the address.
The left superscript and subscript denote the state of X before and
after the execution of the memory access respectively (for loads the
two values will be the same). We refer to these values of a memory
operation as the old and new values respectively. At the end of
recording an execution, the operating system also dumps the final
memory state of the program. The final state is denoted as XF .
In Section 3, we discuss an offline analysis that uses the memory
trace of each thread and the final state to reproduce a causal order
for shared accesses under the TSO memory model.

3. Reproducing Shared-Memory Dependen-
cies under TSO Memory Model

In Section 2, we reviewed how a load-value based logging en-
ables each thread to be deterministically replayed with the same
sequence of memory operations along with their addresses, old and
new values. However, to debug and understand parallel executions,
we need the TSO-compliant causal order between shared-memory
operations as well, which we now discuss.

3.1 Overview of Offline Symbolic Analysis
The goal of our offline analysis is to find a valid causal order

between all the memory accesses executed concurrently across all
the threads. The algorithm takes the memory trace of each thread
and the final memory state as input. The memory trace for a thread
is produced by deterministically replaying using its cache miss log
(Section 2.2). It contains the memory accesses in the program or-
der. For each memory access, we have its effective address, old
value, new value and information about whether it was a cache hit
or a miss. To produce the causal order between the memory ac-
cesses, we determine the memory ordering constraints that need to
be satisfied, encode them as a quantifier free first-order logic for-
mula and use a Satisfiability Modulo Theory(SMT) solver called
Yices [16] to find a solution.

The algorithm to encode all the necessary constraints in the first-
order logic formula is presented in Algorithm 1. A valid causal or-
der should satisfy two constraints. First, any memory access M ’s
old value should be same as the new value of the memory access
to the same location that immediately precedes M in the derived
causal order. We call this constraint as the coherence constraint(CH ).
Because, it is the property of coherence that ensures that there ex-
ists a total global order between all memory accesses to a location
under any memory model.

Second, the causal order should obey the memory ordering con-
straints specified by a particular memory model. We refer to these
constraints as the memory model(CM ) constraints. These constraints
of course vary across memory models. In this paper we discuss the
TSO constraints and a method to encode them as the first-order
logic formula.

3.2 Encoding Coherence Constraints
For each memory access M , there exists an order variable O.

The values of the order variables determine the causal order for
the memory operations. Lines 21-33 in Algorithm 1 presents
the algorithm for encoding the coherence constraints. To encode
coherence constraints, for each memory access M , the algorithm
specifies the set of all memory operations that access the same lo-
cation and can potentially be ordered immediately after M (which
requires that their old values equals the new value of M ). Special
care is taken to account for the possibility that an access could be
the last access to a memory location.

In the example shown in Figure 1(right), all accesses are to the

same location X, and therefore only coherence constraints need to
be satisfied to derive a valid TSO order. X4 is the only access that
can immediately followX1, because onlyX4 has the old value that
matches the new value of X1. X4 could be followed by either X2

or X5, which leads to the possibility that there could be multiple
solutions for a given execution trace. For this example, bothX1 →
X4 → X2 → X3 → X5 → X6 and X1 → X4 → X5 → X6 →
X2 → X3 are valid causal orders as they both obey the coherence
constraints.

Though the order determined by the offline analysis might be
different from the original order observed during recording, the re-
played execution is guaranteed to deterministically reproduce the
same final state, system output, and reproduce exactly the same se-
quence of instructions with the same old and new values. For exam-
ple, in the case of data races, the racy accesses would have the same
value, and any erroneous behavior would also be deterministically
reproduced. Our symbolic analyzer can be extended to produce all
possible solutions, which could also be valuable, as it could reveal
many thread interleavings leading to the same erroneous state.

3.3 Encoding Memory Model Constraints for TSO
Memory model constraints specify the legal order between mem-

ory accesses to different locations. Relaxed memory models relax
two types of constraints [3,5]. One is how they relax the processor-
local Instruction Reordering axiom. Sequential consistency has the
strictest requirement. It requires that program order between the
memory operations of a processor is satisfied in the global total or-
der observed between memory accesses executed by all the proces-
sors. Second is how they relax the Store Atomicity axiom. That is,
either all or none of the processors see a store’s value. SC requires
store atomicity.

The TSO model is widely used in the SPARC [35] and is also
similar to the x86 memory model [19, 20]. It relaxes the SC mem-
ory order constraints between memory accesses executed in a pro-
cessor core as follows:

• Instruction Reordering: A processor may re-order a load
before a store if they access different locations.
• Store Atomicity: A store’s value may be made visible to a

following local load in the same processor before it is made
visible to remote processors.

Lines 35-45 in Algorithm 1 describes how we encode these
memory ordering constraints. Our algorithm encodes these con-
straints using the order variables O of memory operations. Under
SC, order of each memory operation in a processor P is constrained
to be greater than the order of all the earlier memory operations that
appeared in the program order in P . We relax this constraint for
TSO to account for the above two relaxations (line 40).

3.3.1 Allowing Relaxed Instruction Reordering
Instruction re-ordering relaxation in TSO allows a processor to

retire a store to a local store buffer and allows following (perfor-
mance critical) loads to execute. The execution shown on the left
in Figure 2 is not valid under SC but is a valid TSO execution due
to the relaxed instruction ordering requirement. Under SC, either
Y2 orX4 should be the last memory operation in any valid total or-
der. But in this example, both loads Y2 and X4 are executed before
the stores X1 and Y3 respectively, which leads to a non-SC order.

If a load can be re-ordered above a store in a processor, the or-
dering requirement between them is not specified in the first-order
logic formula. The first clause in line 40 in Algorithm 1 checks
whether the ordering between a store and a load can be relaxed,
and if so no ordering constraint between those two instructions will
be enforced (Line 42).
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Figure 2: Two example TSO executions and their replayed memory traces with old/new values

3.3.2 Allowing Relaxed Store Atomicity
Store atomicity relaxation allows a processor to read its own

store’s value early. That is, a processor can forward the value of
a store in the store buffer to a following load to the same location.
Thereby, if a store results in a cache miss, a processor need not wait
for it to resolve, and instead forward that store’s value to a later load
accessing the same location.

Relaxed store atomicity requirement can be accounted for in our
memory model constraints. Under TSO, a load-to-load program
order constraint generally cannot be broken. However, to accom-
modate relaxed store atomicity constraint, we make an important
observation that loads can be allowed to reorder with respect to an
older load that read its local store’s value. Thus, if we can deter-
mine all loads that read its local store’s value offline, then we can
simply relax the ordering requirement between those loads and the
loads that follow them in the program order. To identify the loads
that read a local store’s value offline, we log the memory count of
the load that hit in the store buffer during recording.

The example shown on the right in Figure 2 is not valid under SC
as it violates store atomicity but is valid under TSO. Under TSO,
while the stores X1 and Y4 are temporarily held in P1’s and P2’s
store-buffer respectively, the loads X2 and Y5 can read the value
1 written by locally buffered stores. Then, before the stores’ new
values become visible to the other processor, loads Y3 and X6 can
read the old value 0 from their locally cached copies. Effectively,
the load-load ordering between X2 → Y3 and Y5 → X6 appear to
be relaxed.

Thus, we accommodate TSO’s relaxed store atomicity constraint
by allowing loads to be re-ordered with respect to older loads that
resulted in store buffer hits during offline analysis. The second
clause in line 40 in Algorithm 1 checks for the condition when a
load-load order can be relaxed. The offline analysis should ensure
that no remote load/store accesses are interleaved between the load
that caused a store buffer hit and the previous store to the same
location. This is taken care of by ensuring that, if a load results in
a store buffer hit, its preceding store’s immediate follower set (IFS)
contains only the load that resulted in the store buffer hit (Line 11).

Consider again the example trace in Figure 2(b). Our analyzer
would relax the program order constraints X2 → Y3 and Y5 →
X6 because X2 and Y5 are store buffer hits. This would allow
our analysis to produce a valid causal order under TSO for this
example: Y3 → X6 → X1 → X2 → Y4 → Y5.

While relaxing the above constraints, we also specify that all
memory accesses following a fence or a lock-prefixed memory op-
eration should obey the program order.

4. Bounding Search Space
Section 3 described a way to encode first-order logic formula for

determining the causal order between shared accesses under TSO.
During offline analysis, a solution for the formula is found using an
SMT solver [16]. However, it is impractical for an SMT solver to
find a satisfiable solution for unbounded number memory accesses.
We present a solution to bound the search space by logging hints

that allows our offline analyzer to partition a multi-processor ex-
ecution into smaller bounded intervals, and analyze each interval
separately.

To bound the search space we log barrier-like hints called Strata
at regular intervals [28]. Each processor keeps track of the length
of interval by counting the number of cycles elapsed since the last
Stratum log. Once a predetermined threshold is reached, all the
processors simultaneously record their current memory counts. A
memory count is the number of memory operations committed by
a processor. The program execution between two Strata hints is
referred to as a Strata region.

Each processor logs its memory counts at the same instant of
time. Under SC, memory counts logged at a particular time t pro-
vide a barrier-like happens-before relation between all memory ac-
cesses committed before t and the accesses committed after t. Thus,
memory accesses in different Strata regions are totally ordered.
Therefore, an SMT solver can solve one Strata region at a time,
starting with the last Strata region and final state. Later, solutions
found for all the regions are concatenated based on the total order
for Strata.

The above approach, however, is not sufficient for recording ex-
ecution under relaxed consistency models and out-of-order execu-
tion. We discuss how we can ensure the correctness of the happens-
before relations specified by the count of committed memory oper-
ations.

4.1 Pending Stores in Store Buffer
For clarity, we distinguish between three states of a memory ac-

cess’ execution: (a) a load access is said to have executed if it has
read the value, (b) a memory access is said to have committed when
it is committed in-order and its entry removed from the Re-Order
Buffer (ROB) and (c) a store access is said to have performed when
its value is written to the cache block (made visible to remote pro-
cessors) and its entry removed from the store buffer.

Stores committed from the ROB, but not yet removed from the
store buffer could violate the happens-before specified by the Strata
hints. Consider the example in Figure 3(a), which shows the same
trace in Figure 2(b). Ignore the dashed box for now and let us
assume the following state: stores X1 and Y4 are committed but
not yet performed (temporarily buffered in the store-buffer of their
respective processors), loads X2 and Y5 are committed, and loads
Y3 and X6 have only been executed but have not been committed
yet. Assume a Stratum is logged at this state. Each processor logs
that they have committed two memory operations. This Stratum
would provide happens-before relation Y4 → Y3, but in reality load
Y3 executed before the store Y4 was made visible to P1. Similarly,
an incorrect happens-before order X1 → X6 would be enforced
by the offline analyzer. As a result, it will be impossible to find a
satisfiable solution for the second Strata region containing {Y3,X6}
as they would conflicts with the final state.

We solve this problem by logging the number of in-flight stores
(IStore) in addition to the number of committed instructions as
Strata hints. Since the stores are retired in-order from the store



Algorithm 1 ENCODING_ALGORITHM(STRATAREGIONE , FINALSTATE F )
1: /*
2: Given: Memory events E = {e1, e2, . . . , e|E|} and Final State F of a Strata region
3: Goal : Find a causal order between memory events satisfying (1) uniqueness constraints CU ,

(2) coherence constraints CH , and (3) memory model constraints CM
4: */
5: let E|p be a set of all memory accesses in processor p
6: let Oi be an event order variable of memory access ei
7: let ei.loc be the memory location of ei
8: let ei.type be the access type (load or store) of ei
9: let ei.succ be the memory access to ei.loc in the same processor, following ei in program order

10: let ei.sbh specifies if ei resulted in a store buffer hit
11: let ei.IFS (Immediate Follower Set) be the set of memory accesses which can immediately follow ei. It contains only ei.succ if

ei.succ.sbh is a hit. Otherwise, it contains ei.succ and remote memory accesses to ei.loc, provided their old values are same as ei’s
new value

12: let ei.IntS (Interference Set) be the set of memory accesses including ei.succ and remote accesses to ei.loc
13: let ei.LAST be the set containing a memory access if it is the last access to ei.loc in a thread and its new value is same as final state of

ei.loc in F
14:
15: /* Uniqueness Constraints */
16: CU=true;
17: for all pairs of memory accesses (ei, ej) ∈ E ×E where i 6= j do
18: CU = CU ∧ (Oi 6= Oj);
19: end for
20:
21: /* Coherence Constraints */
22: CH = true;
23: for all memory accesses ei ∈ E do
24: for all ej ∈ ei.IFS do
25: //order one immediate follower ej , prevent other accesses to ei.loc from being scheduled between ei and ej
26: Ci = Ci ∨ ((Oi < Oj) ∧

V
ek∈(ei.IntS−{ej})((Ok < Oi) ∨ (Oj < Ok)));

27: end for
28: if ei ∈ ei.LAST then
29: //schedule ei to be the last memory access to ei.loc and prevent other accesses in ei.LAST from being the last access
30: Ci = Ci ∨ (

V
ek∈(ei.LAST−{ei})(Ok < Oi);

31: end if
32: CH = CH ∧ Ci;
33: end for
34:
35: /* Memory Model Constraints */
36: CM=true;
37: for all E|p : 〈ep1 , ep2 , . . . , epk 〉 ⊆ E do
38: for i = pk; i > p1; i−− do
39: for j = i− 1; j ≥ p1; j −− do
40: if ¬(ei.type = load ∧ ej .type = store ∧ ei.loc 6= ej .loc) ∧ //store-to-load reordering

¬(ei.type = load ∧ ej .type = load ∧ ei.loc 6= ej .loc ∧ ej .sbh = hit) //store atomicity violation
then

41: CM = CM ∧ (Oj < Oi);
42: end if
43: end for
44: end for
45: end for
46:
47: /* The SMT solver should find a solution that satisfies all the above constraints */
48: CFINAL = CU ∧ CM ∧ CH
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Figure 3: Two examples of recording Strata Hints under TSO

buffer, the offline analyzer can determine that the last IStore stores
in a thread before the Stratum log were pending in the store buffer.
Using this information, while constructing the Strata regions, the
offline analyzer moves the stores pending in the store buffer and its
dependent loads (loads that read their value from the store buffer)
to the following Strata region. Then they are analyzed with the
memory accesses in that Strata region.

For the example in Figure 3(a), each processor logs both the
number of committed instructions, which is two, and the number
of in-fight stores, which is one. The Strata is represented as a
dashed box, and the tuple inside the box shows the logged infor-
mation in each processor. During offline analysis, while creating
Strata regions, in-fight stores X1 and its dependent load X2 would
be moved to the second region as the arrows indicates. Also, Y3

and Y4 would be moved to the second region. With this modi-
fication, now the SMT solver would be able to correctly analyze
{X1,X2,Y3,Y4,Y5,X6} together and arrive at valid TSO-compliant
causal order.

4.2 In-flight Loads in Out-of-Order Execution
Most modern processor implementations have speculation sup-

port for breaking load-to-load memory ordering constraints to ef-
ficiently support TSO [17]. They execute a load out-of-order, and
then re-execute them on commit to check if the out-of-order spec-
ulative execution was valid or not. The check would fail if there
was a remote store that modified the value before the load com-
mits. When a check fails, the load and its dependent operations are
re-executed. However, recording Strata using committed memory
counts is still sufficient even in the presence of out-of-order specu-
lation.

Figure 3(b) presents an example. Say, the load Y2 executes out-
of-order returning a value of 0, but remains uncommitted. Then,
the store Y3 in P2 executes, commits and retires from the store
buffer by writing a value of 1 to memory. If Strata is created at
this moment, then the loads X1 and Y2 in P1 would be considered
as part of the second Strata region, because those loads have not
committed yet, whereas the store would be considered as part of
the first Strata region. This would be an incorrect happens-before
relation. However, before committing Y2, the processor would re-
execute the load and find that its value has changed, which would
trigger a misspeculation recovery.

4.3 Bounding Search Space Effectively Using B-
bound

Processors can determine the end of a Strata region in many
ways. The simplest approach would be for each processor to count
the number of processor cycles and determine the end of an inter-
val when a threshold number of cycles had elapsed. This requires
no additional communication between processors. However, the
interval size does not account for the degree of communication be-
tween concurrently executing threads which is a critical factor that
determines the offline analysis time. An adaptive scheme that logs
adjusts Strata region size based on the amount of inter-processor

communication is preferable.
We evaluate two approaches that are aware of the degree of com-

munication between processors. One is called downgrade bound
(d-bound). In d-bound, each processor counts the number of inval-
idated or downgraded cache blocks in an interval. If any processor
observes downgrades more than a pre-configured threshold, it asks
all the other processors to log a Stratum hint. Since the number
of downgrades implicitly capture the amount of sharing, we expect
the number of shared accesses to be analyzed across Strata regions
to be similar. However, d-bound requires changes to the coherence
mechanism as it requires additional inter-processor communication
to create Strata.

We also evaluate a second approach that is suitable for a snoop-
based architecture broadcast-bound (b-bound). In snoop-based ar-
chitecture, each processor snoops the coherence messages broad-
casted on the bus. We leverage this property to determine the Strata
interval length. Each processor simply counts the number of broad-
casted messages and when a threshold is reached a Stratum is logged.
Thus, b-bound does not require additional communication between
processors in a snoop-based architecture, while it can also adapt the
frequency of Strata logs according to the degree of communication
between concurrent threads.

5. Reducing Offline Analysis Cost Using
Cache Hit Filtering

While analyzing a Strata region, causal order for many mem-
ory operations can be trivially determined and therefore filtered out
from the time consuming SMT constraint analysis. First, all ac-
cesses to a location that was accessed in only one processor in a
Strata region can be filtered. Second, all accesses to a location that
was only read within a Strata region can be filtered. This is because
any causal order between these eliminated accesses is valid within
a Strata region. Filtering unnecessary memory operations can sig-
nificantly reduce offline analysis time. In this section, we propose
an additional filtering method called cache hit filtering (CHF).

Cache hit filtering is based on our observation that memory op-
erations in between a cache-miss and its last-cache-hit (a hit be-
fore losing the read or write permission) to a location can be fil-
tered from the offline analysis. Our recorder logs only cache blocks
fetched on a cache miss, and so after replaying each thread and ob-
taining its memory trace, the offline analyzer can determine which
memory accesses had resulted in cache misses during recording.
Using this cache hit and miss information, it is also trivial to deter-
mine last-cache-hits.

Our offline analysis filters out all cache hits except last-cache-
hits. Following constraints (also illustrated in Figure 4) are added
to the first-order-logic formula produced by Algorithm 1.
• Remote reads and writes cannot be interleaved between write-

miss and a consecutive write-hit.
• Remote writes cannot be interleaved between {write-miss,

read-miss, or write-hit} and a consecutive read-hit.
The SMT solver then finds a valid causal order among only un-
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Figure 4: (a) Write-hit Property, (b) Read-hit Property, and (c) Cache Hit Filtering Example

filtered memory operations. The order for the filtered operations
are inferred trivially according to the program order.

Figure 4(c) shows an example for the cache hit filtering optimiza-
tion. Memory operations marked with crosses are cache misses.
Memory operations marked with solid dots are last read/write cache
hits. Rest of the memory operations in gray are the memory oper-
ations eliminated by the cache hit filtering optimization. Follow-
ing are the constraints added to correctly support this optimization.
Write X6 and reads X7, X9 cannot be interleaved between X1

(write-miss) and X4 (write-hit). Remote write X6 cannot be inter-
leaved between X4 (write-hit) and X5 (read-hit). Note that remote
reads such as X7 and X9 are allowed to be scheduled between X4

and X5.
5.1 Implications of Cache Hit Filtering

In addition to enforcing the above additional constraints, cache
hit filtering also requires several modifications in our offline analy-
sis. First, cache miss/hit information is available only at the cache
block granularity. Therefore, local and read-only accesses also
need to be determined at the block granularity, and not the word
granularity. Otherwise, local and read-only filtering may incor-
rectly remove memory operations that are cache-misses or last-
cache-hits which need to be preserved for enforcing cache hit fil-
tering constraints. This may reduce the effectiveness of local and
read-only filtering optimizations due to false sharing at the block
granularity. However, we expect that cache hit filtering would ef-
fectively compensate for this loss opportunity.

Second, memory dependencies should also be determined at the
block granularity. That is, SMT solver should consider block ad-
dress to determine if two memory accesses are aliased or not. Sim-
ilarly, old and new value comparison should also be performed at
the block granularity. This could reduce the aliasing between val-
ues of loads and stores, and thereby reduce the search space and
offline analysis time.

Third, filtering out write hits could lead to a mismatch between
old and new values of unfiltered accesses. We resolve this by patch-
ing up the old and new values at the cache block granularity before
we feed the filtered traces into the SMT solver.

Finally, a Stratum log may be created between a cache miss and
a cache hit. This implies that a the first access to a location in a
Strata region is a cache hit. SMT solver takes care of such tricky
special boundary cases. For instance, if the first access to a location
in a thread in a write-hit, then none of the remote accesses to that
location would be allowed to be scheduled before the write-hit.

6. Results
In this section, we first evaluate the size of cache miss logs for the

load-based input logging scheme. Second, we measure the Strata
log size and offline analysis overhead for the TSO model and com-
pare them to the sequentially consistent (SC) model. For SC, we
also compare the sizes of Strata logs to the precise memory race
logs in ReRun [18]. Third, we evaluate the effectiveness of cache
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Figure 5: Cache miss and store buffer hit log size

hit filtering and b-bound optimization in reducing the Strata log
size and offline analysis overhead. Finally, we perform sensitivity
studies on different b-bound thresholds and analyze the scalability
of our solution across different number of processor cores.
6.1 Evaluation Methodology

Our simulation framework is based on Simics [25] for full sys-
tem functional simulation and modified FeS2 [1] for cycle-accurate
TSO simulation. We model 2, 4, 8, and 16 cores, each with a 32
KB private L1 cache (32-byte block, 4-way associative, 3-cycle la-
tency) and a shared L2 cache (64-byte block, 8-way associative, 30-
cycle latency). We model the MESI coherence protocol and a store
buffer (32 entry FIFO, 8-byte granularity). We also model specula-
tion support for breaking load-to-load memory ordering constraints
to efficiently support TSO [17].

We use four sets of benchmarks: SPLASH-2 [38], PARSEC
2.0 [11], SPEComp [36], and server applications. We evaluate our
system with barnes, fmm, and ocean from SPLASH-2, black
sholes, bodytrack, and x264 from PARSEC 2.0, wupwise,
and swim from SPEComp, and two server applications Apache
and MySQL. All applications are configured to have the same num-
ber of worker threads as the number of cores. We fast-forward
up to a point where all the threads are spawned and the program
starts its main computation (e.g. up to the second barrier synchro-
nization point or OMP parallelization point). Then, we collect the
multi-threaded workload traces for 500 million instructions. For
Apache, we use SURGE [7] to generate web requests to a reposi-
tory of 20,000 files (totaling 480 MB) with 400 concurrent clients.
For MySQL, we use SysBench [2] to send concurrent queries to
a database containing one million records. We tested OLTP mode
with 16 client threads. Except the scalability results, all other re-
sults are collected for 8-core configurations. Finally, for offline
symbolic analysis, we used the Yices SMT solver [16].
6.2 Cache Miss and Store-buffer Hit Log Size

We first measure the size of cache miss and store buffer hit logs
collected during recording (Figure 5). Our recording system logs
cache blocks fetched on cache misses to implicitly capture program



input and values of loads dependent on remote stores. We also
record instruction cache misses to support self-modifying code [22].
A cache miss log record contains cache block data (32 bytes) and a
count of the number of memory instructions executed between two
logs (2 bytes). Memory counts of load instructions that hit in the
store buffer is logged to handle violations of store atomicity under
TSO (Section 3.3.2).

On average, cache miss and store buffer log requires 192MB for
one second of 8-threaded execution. For scientific benchmarks,
data cache misses constitute a large portion of the total log size. On
average, about 2.45% of load instructions read their values from the
store buffer.

6.3 Strata Log Size and Offline Analysis Time for
TSO

Figure 6 compares Strata log size and offline analysis time be-
tween the SC and TSO models. For this experiment, we apply
cache hit filtering and b-bound optimization with a threshold of 10.
Sensitivity results on these optimizations are presented in the later
two sections.

We logged 4 bytes to record a memory count in a processor core
while logging a Stratum, but this could be optimized by recording
only the different in memory counts in a processor between two
Strata logs. In addition, we logged the number of in-flight stores
to support TSO model (Section 4). For a 32 entry store buffer,
we need 5 bits to log the number of in-flight stores. On average,
we need 1025KB for SC and 1185KB for TSO (15% increase) to
record Strata hints for one second of program execution on an 8-
core configuration.

Figure 6(b) shows that offline analysis time for TSO surprisingly
decreases by 30% when compared to that of SC. Relaxing con-
straints could have positive or negative effect on offline analysis
time. Under TSO, search space increases. But when compared to
SC, in TSO, it is possible that the proportion of legal solutions to
the infeasible solutions that the SMT might explore increases. If
so, then the offline analysis time could be better than SC. The vari-
ation in analysis time for different applications in Figure 6(b) is a
consequence of this.

On average, it takes 260 seconds to analyze one second of an 8-
threaded execution under TSO. swim is our worst case which takes
745 seconds. This offline analysis need to be performed only once.
Once shared memory dependencies are resolved, execution can be
replayed with little overhead. Furthermore, we could reduce the
analysis cost by parallelizing the offline analysis of different Strata
regions and also improve our generic Yices solver by customizing
it specifically for our problem.

For the SC model, we also compared the sizes of Strata logs to
the precise race logs in one of the state-of-the-art hardware recorders,
called Rerun [18]. The results show that we can save about 10
times memory race log size when compared to ReRun. However,
our program input log could be larger than that of a copy-on-write
based program input recorder assumed by ReRun (discussed in
Section 6.2).

6.4 Performance
The performance overhead would be similar to Replay-SMT [22].

Similar to Replay-SMT we record cache misses and log Strata at
semi-regular intervals. In addition, we log the number of pending
stores as part of Strata hints and memory counts of loads that read
from the store buffer to support TSO. Since the recording overhead
is dominated by cache miss logging, the recording performance
would be similar to Replay-SMT (less than 1% on average).

6.5 Effects of Cache Hit Filtering and B-Bound
Optimization

In this section, we evaluate the effectiveness of cache hit filter-
ing (CHF) and also compare d-bound to b-bound optimization. We
compare three configurations under SC: SC(d-bound), SC+CHF(d-
bound), and SC+CHF(b-bound). The first SC(d10.c10000) config-
uration, is for the technique used in Replay-SMT [22], where each
processor creates Strata either after more than ten cache blocks
have been downgraded (d-bound) or after 10000 cycles have elapsed.
This is the best configuration of Replay-SMT and we consider it as
the baseline for our evaluation. The second configuration, SC+CHF
(d10.c10000), employs our cache hit filtering optimization over the
earlier design. The third configuration, SC+CHF(b10), is a design
with cache hit filtering and with b-bound. Each core creates Strata
if there have been more than ten coherence broadcast messages (b-
bound). Without cache hit filtering, b-bound optimization alone is
not effective because there could be a Strata region with high hit
rate and less sharing, leading to a large number of unfiltered ac-
cesses.

Figure 7 shows the result of filtering local, read-only, and cache-
hit memory operations. For the baseline SC(d10.c10000) config-
uration we need to analyze less than 0.4% of total memory opera-
tions. Applying cache hit filtering (SC+CHF(d10.c10000)) reduces
the effectiveness of local or read-only filters due to false sharing
(we have to analyze at the block granularity if we employ cache
hit filtering). However, cache-hit filtering effectively compensates
for the loss. Figure 8 shows the average and maximum number of
unfiltered accesses per Strata region. This shows that the cache-
hit filtering is effective especially when we combine it with the b-
bound optimization represented as SC+CHF(b10). When the two
optimizations are applied together the average number of memory
operations per Strata reduces by nearly 40% compared to the base-
line (SC(d10.c10000)). Programs like ocean with a high cache
miss rate does not benefit from CHF optimization.

Also, the maximum number of operations per Strata region, which
determines the worst case analysis time, reduces significantly in
most cases. Maximum number of memory operations per Strata
region is an important measure given that the offline analysis time
grows exponentially with the number of memory operations to be
analyzed together. The maximum number of memory operations
across all Strata regions in all programs is less than 90 after em-
ploying CHF and b-bound optimizations. Without those optimiza-
tions it was nearly 290 (wupwise).

One interesting property of b-bound is that the standard devia-
tion of the maximum number of unfiltered accesses across different
benchmarks is a lot smaller than d-bound (16.9 vs 76.6). This in-
dicates that b-bound with CHF is a better application-independent
predictor of how large each Strata region should be. Furthermore,
b-bound is simpler than d-bound in terms of hardware implemen-
tation for a snoop-based architecture, because d-bound requires ad-
ditional communication among cores but b-bound does not.

Figure 9 shows the result of cache hit filtering and b-bound op-
timizations on Strata log size and offline analysis overhead. The
b-bound optimization reduces the Strata log size by nearly three
times. Cache hit filtering does not affect the size of Strata log, be-
cause it is an offline filter employed to reduce the number of mem-
ory operations that need to be analyzed within a Strata region.

Cache hit filtering reduces offline analysis time by reducing the
number of memory operations that need to be analyzed. Also,
to support CHF optimization, we perform analysis at the cache
block granularity. While this may reduce the effectiveness of lo-
cal and read-only filters as discussed before, it could reduce the
search space by reducing the amount of aliasing between the old
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Figure 6: Strata log size and offline analysis overhead under SC and TSO memory models
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Figure 7: Effectiveness of local, read-only, and cache-hit filtering

�

��

��

��

��

��

��

�
�
�
��
�
��
��
	


��
�
�
��
�
��
��
�
��
�
��
��
�
�
�
�

���	��
������� ������	��
������� ����������

�

�

��

��

��

��

��

��

�
�
�
��
�
��
��
	


��
�
�
��
�
��
��
�
��
�
��
��
�
�
�
�

���	��
������� ������	��
������� ����������

��

���

���

���

���

���

�
�
�
��
�
��
��
	


��
�
�
��
�
��
��
�
��
�
��
��
�
�
�
� ���	��
������� ������	��
������� ����������

�

��

���

���

���

���

���

�
�
�
��
�
��
��
	


��
�
�
��
�
��
��
�
��
�
��
��
�
�
�
� ���	��
������� ������	��
������� ����������

Figure 8: Average and maximum number of unfiltered accesses per Strata region

�

��

���

����

�����

�
��
�
��
��
�
�
��
	

�
��

�
�
��
��

�������������	 ��
��������������	 ��
������	

�

��

���

����

�����

�
��
�
��
��
�
�
��
	

�
��

�
�
��
��

�������������	 ��
��������������	 ��
������	

��

���

����

�����

�
��
��
�
�
��
�
�
�	

�

�
�
�
�
�
�
�
�

�

�
�

��
�
�
�

�
��
�
�
��
��
�
�
�
��
�
�
�
��
�

�������������	 ��
��������������	 ��
������	

�

��

���

����

�����

�
��
��
�
�
��
�
�
�	

�

�
�
�
�
�
�
�
�

�

�
�

��
�
�
�

�
��
�
�
��
��
�
�
�
��
�
�
�
��
�

�������������	 ��
��������������	 ��
������	

Figure 9: Effectiveness of b-bound and Cache Hit Filtering (CHF) in reducing Strata log size and offline analysis overhead
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Figure 10: Strata log size and offline analysis overhead for different b-bounds

��

���

����

�����

������

�
��
�
��
��
�
�
��
	

�
��

�
��
�
��

�� �� �� ���

�

��

���

����

�����

������

�
��
�
��
��
�
�
��
	

�
��

�
��
�
��

�� �� �� ���

��

���

����

�����

�
��
��
�
�
��
�
�
�	

�

�
�
�
�
�
�
�
�

�

�
�

��
�
�
�

�
��
�
�
��
��
�
�
�
��
�
��
��
�

�� �� �� ���

�

��

���

����

�����

�
��
��
�
�
��
�
�
�	

�

�
�
�
�
�
�
�
�

�

�
�

��
�
�
�

�
��
�
�
��
��
�
�
�
��
�
��
��
�

�� �� �� ���

Figure 11: Strata log size and offline analysis overhead for different number of processors

and new values of memory operations which in turn reduces the
legal follower set for a memory operation. On average, compared
to SC(d10.c10000), SC+CHF(d10.c10000) shows 6% of improve-
ment on offline analysis overhead. However, together with b-bound,
SC+CHF(b10) shows impressive improvements: 3x less Strata log
size and 4.8x less offline analysis time on average.
6.6 Sensitivity Studies

In this section, we present sensitivity studies varying b-bounds to
illustrate the tradeoff between Strata log size versus versus offline
analysis time. Figure 10 shows that on average, Strata log size in-
crease approximately linearly as the b-bound decreases from 100 to
5: 122KB/sec, 242KB/sec, 1185KB/sec, and 2333KB/sec, respec-
tively. On the other hand, it takes 54261 seconds with b-bound of
50 to analyze one second of 8-threaded execution, whereas it only
takes 258 seconds with b-bound of 10, which is about 210 times
of improvement. The user or the operating system can specify the
bound based on the trade-off that one is willing to pay.

We also present scalability results with different number of pro-
cessors for a constant b-bound of 10. Figure 11(a) shows that on
average Strata log size increases by 3.1x, 1.6x, and 2.4x as the num-
ber of cores doubles from 2 to 16. Similarly, Figure 11(b) shows
that offline analysis cost increases by 1.8x, 3.3x, and 2.5x respec-
tively.

7. Related Work
Over the last few decades, there have been a number of propos-

als for developing replay systems from both software and hardware
communities. However, most of them are limited to the SC mem-
ory model due to its simplicity. Supporting relaxed consistency
memory model remains to be a challenging problem. To the best
of our knowledge, only a few replay systems support replay under
a relaxed memory model. RTR [40] is the first to propose a solu-
tion for TSO. It proposed to dynamically detect loads that violate

SC while executing on a TSO processor and then explicitly record
their values. Detecting SC violation requires monitoring if a load
memory location is modified between the time the load accesses the
location and the time when all the preceding memory accesses have
finished. In addition, RTR requires hardware support for detecting
and logging shared-memory dependencies precisely. Instead, we
propose to record Strata along with cache miss information. Strata
require no communication between processor cores or changes to
coherence mechanism to record them. Instead, at fixed periodic
intervals each processor core records their memory counts and out-
standing stores in the store buffer. Thus the required modifications
are “local” to a processor core. We believe that a local solution is
simpler than a solution that require changes to the coherence mech-
anism, as coherence protocol design and verification is hard. Effec-
tively, our solution reduces hardware complexity of the recorder by
relaxing the precision required in recording shared-memory depen-
dencies.

ReRun [18] also uses the same technique as RTR to detect po-
tentially SC-violating loads. LReplay [13] records pending period
information and supports some relaxed models such as the Godson-
3 consistency by logging load instructions violating SC. However,
it only considers store atomic multiprocessor systems, which is not
the case for the TSO memory model in x86 processors.

Recent hardware-assisted replay systems [13, 18, 26–28, 37, 39,
40] show that recording shared memory dependencies with hard-
ware support only incur less than 1% of performance overhead.
Therefore, they have focused on reducing the hardware cost to de-
tect and log shared memory dependencies and also reducing the
log size for longer recording. Unlike other hardware-assisted sys-
tems, Replay-SMT [22], which we improve upon in this paper, does
not record shared memory dependencies during recording. Instead,
it determines shared memory dependencies offline. As a result,
Replay-SMT requires much simpler hardware support.



Recent work on software-only replay systems achieved relatively
low logging overhead by not eagerly recording shared-memory de-
pendencies and relaxing the fidelity level of replay. ODR [4], PRES
[32], and Respec [23] record less information than necessary to re-
produce the same interleaving between threads. Though the over-
head of the solutions are significantly better than earlier software
solutions, they are still on the order of 20-30% or more. Whereas,
processor based solutions including ours incur negligible perfor-
mance cost, which may allow us to monitor production runs. Also,
ODR and Respec solutions are output-deterministic in that they
only guarantee that a replayed execution’s output is same as that
of original execution. Deterministic guarantee of our system is
stronger because we reproduce the exact same sequence and control
flow for each thread’s execution along with their input and output
values. Respec [23] does not support offline replay, incurs at least
2x throughput overhead, and also cannot record and reproduce a
non-SC execution. PRES [32] logs hints such as happens-before
synchronization order, path trace, or share-memory order and re-
peated replays till it produces an execution that matches the trace
logged. However, without a bounded and guided search, replay is
not guaranteed to find a valid order. Especially, non-SC execution
may not be reproduced through repeated replays. ODR [4] also
logs hints such as system input trace and path traces, and employs
a symbolic analysis. ODR models only a hypothetical lock-order
consistency, which is weaker than TSO. As a result, ODR may find
an impractical schedule on race, which requires that some memory
operations in the derived schedule need to be flipped to understand
racy behavior correctly. Also, offline search in ODR is over the en-
tire execution and is not bounded. The authors mention that it may
not complete for some executions. Whereas, we bound the search
by logging Strata hints during recording. It is based on a technique
that estimates the number of shared-memory dependencies.

Recent work has produced solutions for ensuring that every mul-
tithreaded execution would follow the same schedule for a given
program input [6, 8, 9, 14, 31]. Thus, causal order need not be
logged, and only program input need to be recorded to reproduce an
execution. Also, guaranteeing determinism at the language level [8,
9] could improve programmability. However, these solutions re-
quire additional runtime support to enforce restricted thread sched-
ules which may also reduce performance [6, 9, 14]. Solutions that
guarantee determinism at the language level may also impose re-
strictions on programmers [8] and the type of parallelism that can
be exploited [9].

8. Conclusion
Deterministic replay could significantly help programmers un-

derstand a multi-threaded program execution. In this paper, we take
an important step towards supporting replay of executions under a
relaxed consistency model. We built upon a cache-miss logging ap-
proach which was sufficient to deterministically replay each thread.
We employed a new offline analysis to determine the causal or-
der between shared operations under the TSO model. We also dis-
cussed complexity-effective solutions for logging Strata hints that
allowed us to bound the offline analysis, and cache-hit filtering op-
timization to reduce the number of memory operations that need
to be analyzed to determine the causal order. These optimizations
reduced the Strata log size by 3x and offline analysis time by 4.8x
on average. We showed that offline analysis could in fact be 30%
more efficient for a TSO execution that an SC execution.
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