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Abstract
This paper presents Clover, a compiler directed soft error detec-
tion and recovery scheme for lightweight soft error resilience. The
compiler carefully generates soft error tolerant code based on idem-
potent processing without explicit checkpoint. During program ex-
ecution, Clover relies on a small number of acoustic wave detec-
tors deployed in the processor to identify soft errors by sensing the
wave made by a particle strike. To cope with DUE (detected unre-
coverable errors) caused by the sensing latency of error detection,
Clover leverages a novel selective instruction duplication technique
called tail-DMR (dual modular redundancy). Once a soft error is
detected by either the sensor or the tail-DMR, Clover takes care of
the error as in the case of exception handling. To recover from the
error, Clover simply redirects program control to the beginning of
the code region where the error is detected. The experiment results
demonstrate that the average runtime overhead is only 26%, which
is a 75% reduction compared to that of the state-of-the-art soft error
resilience technique.

Categories and Subject Descriptors B.8.1 [Performance and Re-
liability]: Reliability, Testing, and Fault Tolerance; D.3.4 [Pro-
gramming Languages]: Processors—Compilers

General Terms Reliability, Languages

Keywords Soft Error Resilience; Compilers; Tail-DMR Frontier;
Idempotent Processing; Acoustic Wave Detectors

1. Introduction
Resilience against soft errors is one of the key research challenges
for current and future computing systems. Soft errors have been
the cause of a significant number of failures in real-world systems,
ranging from embedded systems to large-scale high performance
computing (HPC) systems [7, 13, 21, 22, 25, 31]. Unfortunately,
due to technology scaling, electronic circuits are likely to be more
susceptible to radiation-induced soft errors (also known as transient
faults). Soft errors are typically caused by cosmic rays and alpha
particles from packaging material. Soft errors may lead to appli-
cation crash or even worse, silent data corruptions (SDC) which
are not caught by the error detection logic but may cause the pro-
gram to produce incorrect output. Another worst type of results are
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detected unrecoverable errors (DUE) that often directly impact the
reliability of the computer systems. To achieve the resilience, it is
essential to have both the detection and the correction of soft errors.

In the dark silicon era, soft errors are becoming increasingly
important concern for computer system reliability. Ever-growing
power density due to the limited supply voltage scaling is leading
toward the advent of near-threshold computing that can improve
energy efficiency by an order of magnitude, but at the expense
of near-threshold voltage and lower frequency [33, 36]. However,
the near-threshold voltage and the process variation make it harder
to predict the response of the circuits to a particle strike, thus
making them much more susceptible to soft errors. According to
Shafique et al. [32], near-threshold voltage operation may cause
up to 30x higher soft error rate than nominal voltage operation.
Similar trends have been observed by other researchers as well [14,
16]. Consequently, soft error resilience is essential not just for
guaranteeing program correctness, but also for realizing the full
potential of near-threshold voltage computing to maximize energy
efficiency, which is particularly important for energy constrained
embedded systems.

These trends have motivated researchers to devise effective re-
silience mechanisms to mitigate the side effects of soft errors. Un-
fortunately, existing techniques often suffer from too high perfor-
mance overhead [23, 28, 29] or require costly hardware support
and resource consumption (e.g., occupying entire cores or lever-
aging special microarchitecture) [2, 4, 24, 26]. Despite increased
hardware, performance and power costs, these techniques may not
eliminate both the SDC and the DUE, or need for expensive check-
pointing. To address these issues, this paper presents Clover, a com-
piler directed lightweight resilience scheme that can detect and cor-
rect soft errors without the need for checkpointing and high perfor-
mance overhead.

Clover leverages recent advances on a sensor-based soft er-
ror detection technique. It detects a soft error by sensing the
acoustic wave generated by a particle strike rather than the con-
sequence (e.g., program crash), thereby causing no direct per-
formance penalty [34, 35]. For soft error recovery, Clover com-
bines this soft error detection technique with idempotent process-
ing [8, 9, 11]. The compiler generates idempotent code regions,
the re-execution of which does not change the output of the re-
gions. Such side-effect-free re-execution enables Clover to correct
errors occurred in a region by simply jumping back to its beginning
without explicit checkpoint, provided they are detected within the
same region. However, naively combining the sensor-based soft er-
ror detection and the idempotent processing does not automatically
guarantee correct program execution.

Curse of DUE The crux of the problem is that the sensor-based
soft error detection incurs a certain detection latency. It can be
minimized at the expense of adding more sensors (i.e., chip area
overhead). Therefore, in practice there would be non-negligible
error detection latency. Unfortunately, this makes it possible for a



soft error to be detected across idempotent regions, which leads to
DUE. For example, an error occurring in one idempotent region
ends up being detected in the next idempotent region. Thus, simply
re-executing the idempotent region will not correct those errors that
have occurred in the previous region(s) but were detected in this
idempotent region whose inputs (live-in) may have been corrupted
by the errors.

To overcome this challenge, Clover intelligently augments these
techniques with the instruction level dual modular redundancy
(DMR) where instructions are duplicated, verified and intertwined
with the original instructions. In this approach (referred to as DMR
hereafter), the compiler inserts checks to determine if the original
instructions and their duplicated copies have the same computed
values at certain synchronization points in the combined code for
error detection [28]. In general, this approach can achieve zero
detection latency since the checks instantly identify soft errors.
However, such an advantage comes with the significant overheads
in terms of performance and power, due to the increased instruction
count.

Tail-DMR To achieve low overheads, Clover attempts to mini-
mize the use of DMR by exploiting sensor-based soft error detec-
tion. The idea is that as long as the error is detected in the same
idempotent region, its re-execution can correct the error. In light of
this, this paper proposes tail-DMR where the compiler delineates a
boundary in each region to break it into two parts: (head and tail).
The first part (head) relies on soft error detection via sensors while
the second part (tail) on DMR to detect errors, i.e., tail-DMR. This
paper calls such a boundary tail-DMR frontier. In particular, the
compiler determines the frontier so that the DMR-enabled part (i.e.,
tail) has to be as long as the worst-case sensor-based error detection
latency. This ensures that all soft errors are detected in the same
region, enabling re-execution of idempotent regions to guarantee
correct execution. Since the detection latency is typically small as
shown in Section 2, the length of the DMR-enabled part can also
be small, and hence execution of the DMR-enabled part will in-
cur only low overhead; Section 4 investigates the trade-off between
the sensor area overhead and performance penalty caused by the
DMR execution. Consequently, Clover can transparently provide
soft error resilience without significant resource consumption and
performance degradation. The following are the contributions of
this work:

• This paper proposes a novel technique to detect and recover
soft errors with low performance overhead. This is the first
technique to exploit the advantages of idempotent processing,
dual-modular redundancy and sensor-based support for detect-
ing soft errors, toward achieving this goal. We show that Clover
intelligently combines these techniques and offsets the draw-
back of each technique to provide a low-cost and low-overhead
mechanism against soft errors. It neither requires microarchi-
tecture modification nor occupies additional cores.

• This paper explores and quantifies the trade-offs in exploiting
sensor-based support for soft error detection, instruction-level
DMR, and idempotent processing. We show that these trade-
offs yield a practical design point for Clover to be applied in
real-world scenarios.

• Finally, the evaluation shows that Clover can detect and recover
from soft errors without significant performance degradation.
Clover incurs an average performance overhead of 26% for a
range of Mediabench applications which is a 75% reduction
compared to that of the state-of-the-art approach. Moreover, un-
like prior work, Clover does not increase code size significantly,
which is particularly important for embedded systems.

2. Background
Sensor-Based Soft Error Detection Recently, researchers have
proposed a new approach that detects the actual particle strike
rather than its consequence (i.e., the program crash, hang or incor-
rect output) [34, 35]. For example, Upasani et al. [34] deploy a set
of acoustic wave detectors with cantilevers on silicon and propose
techniques to precisely detect the particle strike without requiring
redundant micro-architectural structure.

Clover relies on this kind of sensor-based soft error detection
scheme to correctly execute a program in the event of soft errors.
The error detection latency determines how long the tail part of
idempotent regions (tail-DMR) should be to guarantee that its exe-
cution time is greater than the detection latency. Thus, the length of
the DMR-enabled part is subject to the error detection latency, i.e.,
a lower soft error detection latency allows a shorter DMR-enabled
part (lower performance overhead) but at the expense of more sen-
sors on the chip (higher area overhead).
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Figure 1. Soft error detection latencies varying the number of
sensors under the configurations of ARM cortex-A9 out-of-order
processors where the core part takes a quarter of total die size.

Error Detection Latency Exploration To this end, this paper in-
vestigates possible detection latencies on various processor config-
urations to find an appropriate detection latency with an accept-
able area overhead. Figure 1 shows different detection latencies
for ARM cortex-A9 out-of-order processors. Leveraging data pre-
sented by Upasani et al. [34], the detection latency was calculated
for a 25% core area ratio to the total die size 1. Given a total die
size (4.6 mm2) across different clock frequencies (0.5∼2.5 GHz),
we vary the number of sensors to understand how the resulting de-
tection latency changes. In the curves of Figure 1, we show several
interesting points to represent how many sensors can be deployed
within different area overhead budgets, i.e., 1% , 2%, 5%, 10% and
20%. We make two major observations:

• A short error detection latency can be achieved without increas-
ing the area overhead significantly, e.g., detection latency of 5
cycles can be achieved only by increasing the die size by 1%
with a 0.5 GHz frequency.

• As expected, lower clock frequency translates to shorter er-
ror detection latency, i.e., if NTV-like voltage scaling, which
inevitably decreases the clock frequency, is used to improve
energy efficiency, the resulting error detection latency will be
much shorter. This exactly fits the philosophy of Clover, since

1 The core part area excludes L1 and L2 caches.



it mainly targets NTV-enabled embedded systems that are par-
ticularly vulnerable to soft errors due to the aggressive voltage
scaling with NTV operation.

Based on the exploration, this paper makes the assumption that the
sensor-based soft error detection can achieve the worst case detec-
tion latency of 5 cycles, i.e., the default configuration of Clover.
According to the recent work of Upasani et al. [35], it is possible to
achieve much lower area overhead with a more careful placement
of sensors on the chip.

Idempotent Processing for Soft Error Recovery An idempotent
region is a part of program code that can be freely re-executed to
generate the same output. Thus, soft error recovery can be achieved
by simply jumping back to the beginning of the region. More
precisely, a region of code is idempotent if and only if its inputs
are not overwritten, i.e., no anti-dependence on the inputs, during
the execution of the region. Thus, the inputs to the entry of the
region will remain the same within the region, making idempotent
regions harmless to be re-executed many times. If some inputs are
overwritten within the region, their values do not remain the same
as it were at the region entry. Therefore, this makes the re-execution
of the region unsafe, i.e., ending up changing the expected output
produced by the region. Consequently, it is a requirement for the
idempotent execution that the inputs to the regions should never be
overwritten during the execution of the region.

With that in mind, researchers propose different techniques for
preserving the input as it is at the entry of the region. De Kruijf
et al. [8, 9] places boundaries to break the memory-level anti-
dependence, and leverages register renaming to eliminate the regis-
ter anti-dependence (i.e., a new pseudo-register is allocated to break
the dependence) on the inputs to the region. This enables the idem-
potence of the regions in an elegant manner without explicit check-
point but at the expense of increasing the register pressure. Once
soft errors are detected in the idempotent region, it can be simply
re-executed to recover from the errors.

On the other hand, Feng et al. [11] take a different approach to
get around the anti-dependence without significant increase of the
register pressure. They first identify all the non-idempotent regions
and selectively protect some of them by explicitly checkpointing
at the region entry those inputs that are overwritten within the re-
gion, i.e., all the regions are not protectable. For every protected
region, a recovery block is generated to restore the checkpointed
values from memory on a fault. Thus, the resulting code size in-
crease might not be acceptable for embedded systems. Finally, the
actual recovery process requires a rollback runtime that consults
the recovery block.

For complete soft error recovery, Clover extends the technique
of De Kruijf et al. due to its simplicity (i.e., lack of explicit check-
point and rollback) and insignificant code size increase.

Fault Model The fault model of Clover exactly follows that of
idempotent processing. First, memory, caches, and register file
are protected against soft errors, e.g., using error correcting codes
(ECC). Many commodity embedded processors have already inte-
grated ECC protection to these components [1]. Second, execution
of program is guaranteed to follow its static control flow paths; we
assume a low-cost, low-latency solution such as [18]. Third, stores
in the region has to be safely buffered as with branch mispredic-
tion until the region is verified. Finally, the address generation unit
is protected for stores to write in the correct locations. Those four
components are widely assumed in the literature on software-based
error recovery [8, 9, 28], and there have been many solutions to
realize them [18, 24, 27, 28]. All other microarchitectural units re-
main unchanged and can be protected by Clover. The takeaway is
that Clover can protect the processor core including random logic
state, that is hard to detect and correct soft errors at low cost. For

Figure 2. Problem of idempotent processing in the presence of
the sensor-based soft error detection scheme and its worst-case
detection latency (WCDL), and our tail-DMR solution.

example, Clover neither occupies additional cores nor require spe-
cial microarchitecture for error detection. Furthermore, Clover does
not even need to duplicate architectural status such as register file
(RF) and register renaming table (RAT) for error correction.

3. Clover Approach
The goal of Clover is to provide a low-cost hardware/software co-
operative technique for soft error resilience. Given a reasonable
amount of sensors and the resulting detection latency, Clover ex-
ploits a novel selective instruction duplication technique called tail-
DMR (dual modular redundancy), to eliminate DUE (detected un-
recoverable errors) caused by the sensing latency of error detection.
For soft error recovery, Clover leverages idempotent processing.
Once an error is detected, Clover recovers from it by re-executing
the region where it is detected. This error recovery process is per-
formed as in the case of an exception, the handler of which simply
redirects program control to the beginning of the region.

Achieving Complete Soft Error Recovery Although the merits of
sensor-based soft error detection scheme and idempotence-based
recovery scheme look complementary to each other, simply com-
bining them together cannot always achieve correct soft error re-
covery. As we illustrate next, soft errors may still corrupt the ar-
chitectural state of the processor core and these schemes can not
recover such soft errors correctly. We also show in Section 4 that
such a naive combination of both the schemes ends up leaving con-
siderable portion of dynamic instructions susceptible to soft errors.

To illustrate this, Figure 2 describes the idempotence-based
recovery scheme and highlights its limitation in the presence of
the sensor-based soft error detection scheme and its worst-case
detection latency (WCDL). Figure 2 (a) shows the original program
execution timeline. Here, vertical bars indicate idempotent region
boundaries during program execution, thus there are three regions



(i.e., r1, r2, r3) on each timeline. Figure 2 (b) represents an
ideal case where the idempotent region can recover correctly from
a soft error. At time t1, an energetic particle strikes the processor
and corrupts the architectural state. After the time of WCDL, the
detection scheme causes an exception for the system to initiate the
recovery process. Due to the idempotence of the region, the system
can recover from the soft error by simply jumping back to the most
recent region boundary, i.e., the beginning of the current region
(i.e., r1) where the error is detected. Note that the region r1 is
restarted at time t2 on the timeline.

In contrast, Figure 2 (c) demonstrates how the WCDL can make
an error go uncorrected even in the presence of the idempotence-
based recovery scheme. Suppose an energetic particle strikes the
processor at time t1. After as much time has passed as the WCDL
(i.e., at t3), the detection scheme causes an exception for the
soft error. However, the system jumps back to the most recent
region boundary (i.e., r2) instead of r1 due to the worst-case
detection latency. Hence, the error escapes from the former region
thereby corrupting the architectural states of the processor and
possibly causing a program crash/hang/silent data corruption. This
is referred to as the detected unrecoverable error (DUE).

3.1 Tail-DMR
To overcome this challenge, this paper proposes to utilize reason-
able amount of sensors (thereby, reducing the chip area overhead)
and to selectively duplicate those instructions that are under a risk
of DUE in the tail of an idempotent region (thereby, reducing the
runtime overhead while maintaining the correct error recovery in
all cases). This paper calls such a selective instruction duplication
as tail-DMR. For a given small number of sensors and the resulting
detection latency, the compiler delineates a boundary in each region
to break it into two parts, head and tail; the sensor-based detector
identifies the errors occurred in the head of region while the DMR
identifies those occurred in the tail. We call such a boundary tail-
DMR frontier. Figure 2 (d) shows the program execution timeline
after delineating the tail-DMR frontiers, where f1 and f2 represent
the tail-DMR frontiers of r1 and r2, respectively. The shaded zones
in the figure are protected by the tail-DMR for soft error detec-
tion. Figure 2 (e) describes how the proposed tail-DMR prevents
the DUEs. While an error can take place outside the shaded zone
at time t1, it can be detected still within the current region after
WCDL (i.e., at time t3). Hence, the recovery scheme can safely
redirect the program control to the beginning of the region (i.e.,
r1), thereby ensuring correct recovery from the error.

On the other hand, when an error occurs within the tail of a re-
gion (i.e., at time t5 of Figure 2 (e)), the DMR immediately detects
the error, and the re-execution of region r1 can correctly recover
from the error. After the time of WCDL (i.e., at t6), the error is
detected once more by the sensor causing an exception. Thus, the
program control is redirected to the beginning of the most recent
region r1 again. Note that this does not harm the program correct-
ness due to the side-effect-free nature of the idempotent region.
Moreover, since a soft error occurs once in a while, the overhead
of such redundant recovery will not have a negative impact on the
performance.

To guarantee that each soft error occurred in each region must
be detected within the same region, Clover carefully determines the
tail-DMR frontier so that the execution time of the DMR-enabled
part (i.e., tail of the region) is longer than the length (time) of
the WCDL. This is required to prevent errors from escaping the
region, where they occur, without being detected. As a result, the
idempotence-based recovery scheme can always correctly recover
from them by re-executing the region. Again, if errors occurring in
past regions remain uncorrected in the current region, re-executing

it cannot achieve the recovery. However, we show that the design
of Clover never allows such a case:

Theorem 1. Given a tail-DMR frontier that makes the execution
time of the DMR-enabled part longer than the time of WCDL, all
the errors occurred in each region are detected in the same region.

Proof. We provide the proof by contradiction. Suppose the argu-
ment is false, i.e., for an error occurred in the current region Rc,
the error is not detected in the current region Rc . Since a region is
divided into two parts by the tail-DMR, there are two possibilities
for the assumption.

• The error took place in the tail of Rc. This directly contradicts
the assumption, since the DMR detects all the errors that occurs
in the tail of the region. That is, if the error occurs in the DMR-
enabled part (i.e., tail) of Rc, the error must be detected by Rc.
This is a contradiction to the assumption.

• The error took place in the head of Rc. According to the tail-
DMR frontier, the DMR-enabled part of (i.e., tail) Rc takes
longer than the time of WCDL. Therefore, the error is to be
identified by the sensor-based detector before the tail of Rc

finishes. That is, it is impossible for the error to escape from
Rc. This is another contradiction to the assumption.

Therefore, Theorem 1 must be true.

Theorem 2. Given idempotent processing, all the errors that take
place in each idempotent region are corrected before the region
finishes.

Proof. We omit the proof due to the page limitation. It can be
trivially proved by induction using Theorem 1.

Intuitively, Theorem 1 means that all the errors occurred in a
region should be detected before the region finishes, while Theo-
rem 2 provides a strong guarantee that when program control en-
ters a new region, all the errors that previously occurred must have
already been correctly recovered. Thus, no error can escape from
the region where they take place without being detected and cor-
rected. Clover exploits these theorems as a basis for the idempotent
processing to successfully recover from all the errors occurring in
each region by re-executing it.

In particular, if a region is so small that all its instructions
should be protected by DMR (i.e., the tail-DMR frontier is set to the
beginning of the region), the sensor may detect an error occurred
in the region after it is finished. However, at this moment, the error
must have already been corrected based on Theorem 2. Therefore,
re-executing the most recent region (not the region where the error
occurred) does not break the program correctness due to the side-
effect-free nature of the idempotent region.

Consequently, the tail-DMR enables idempotent processing to
correctly recover from all the errors detected in an arbitrary region
by simply jumping back to the beginning of the most recent region
boundary, i.e., the beginning of the current region where the error
is detected. The takeaway is that Clover can eliminate detected
unrecoverable errors (DUE).

3.1.1 Clover Compiler Overview
Clover performs detailed compiler analyses to protect an entire
idempotent code region against soft errors. Clover introduces addi-
tional compiler backend passes to generate soft error tolerant code.
Figure 3 shows the compilation workflow of Clover. Once the com-
piler frontend translates source code into LLVM intermediate rep-
resentation (IR), Clover applies traditional compiler optimizations
on the IR. The optimized IR goes through idempotent region for-
mation passes so that the region becomes re-executable without any
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side effect. At the end of this stage, the LLVM IR is lowered to
the machine-specific IR, i.e., instruction selection has already been
done. Then, the compiler computes the tail-DMR frontier of an
idempotent region, and performs the tail-DMR to selectively du-
plicate necessary instructions and insert compulsory checking in-
structions for complete error recovery of the region with no DUE
(detected unrecoverable error). Finally, the compiler performs reg-
ister allocation and runs the rest of backend passes to emit an exe-
cutable. This section focuses on elaborating the tail-DMR frontier
generation pass.

The tail-DMR frontier pass is designed to recognize those in-
structions that are vulnerable to DUE in the tail of an idempotent
region. As mentioned in Theorem 1, it is essential that the frontier
must be properly set for the execution time of the DMR-enabled
part to be longer than the time of WCDL. To achieve this, Clover
conservatively represents the time in terms of the number of in-
structions to be executed. The time of WCDL is conservatively
approximated as the product of the WCDL and the commit-width
of processor’s pipeline, which is called ThresholdWCDL; if the
WCDL is 5 cycles and the commit-width is 2, the tail-DMR forms
the DMR-enabled part with only 10 instructions. Thus, Clover can
match the time of WCDL by simply counting instructions start-
ing from the end of an idempotent region. Note that the instruc-
tion counting should be applied to the resulting instructions of the
DMR, not to the original instructions. That is, during the backward
traversal of a region, Clover should increase the count not just for
the original instruction but also for the duplication and the check
instructions to be inserted for DMR, as if the region has already
been transformed by the next tail code duplication pass shown in
Figure 3. For this purpose, the tail-DMR frontier pass leverages a
cost model of DMR which categorizes the instructions of each re-
gion as follows:

Synchronization Instructions Originally, store and control flow
instructions fall into this category. They require equivalence ver-
ification to detect soft errors, e.g., for store instructions, the com-
piler inserts check instructions to ensure the correctness of the store
operands. In particular, the tail-DMR considers a region boundary
as a new synchronization point. This is necessary to prevent the
errors occurring in the tail of a region from escaping to following
regions. That is, any live-out registers, that are defined in the tail
of the region, are required to have check instructions before the re-
gion boundary. We define a synchronization instruction set as the
three types of instructions, and denote the set and the cost of the
instructions as SYN and Csyn, respectively. The value of Csyn is
one, thus it does not include the cost of check instructions which is
modeled separately.

Duplication Instructions These instructions are supposed to be
duplicated by the compiler thus generating one additional instruc-
tion in the region. Note that these instructions are only in the tail
of the region. Unlike traditional DMR approaches, Clover dupli-
cates all the instructions from the tail-DMR frontier to the end of
the region. Again, all the synchronization instructions will not be
duplicated. The cost of the duplication instructions is denoted as
Cdup. In general, the cost is two; one for the original instruction
and the other for the duplication instruction. In particular, Cdup of
PHI instructions is zero, since the compiler eliminates them in the

step of static-single-assignment (SSA) deconstruction for register
allocation.

Safe Instructions These instructions are in the head of the region,
preceding the tail-DMR frontier. In particular, they are not vulner-
able to DUE as long as the tail-DMR is correctly applied. Every
error occurring in these instructions will be detected within the re-
gion (i.e., before it finishes). Thus, safe instructions are never be
duplicated, i.e., there is no cost associated with them.

Check Instructions These instructions are supposed to be in-
serted to verify the operands and the live-out value of the instruc-
tions or the region boundaries. This is basically equivalence check-
ing of the values in the original instruction and the duplication;
Section 3.1.2 illustrates the insertion of check instructions in more
detail. The cost of check instructions is denoted as Cck. We define
a check instruction set as those instructions whose defined regis-
ter needs to be verified at synchronization points, and denote the
set and the cost of check instructions as CK and Cck, respectively.
Note that the Cck depends on underlying architecture. For example,
the Cck would be two for ARMv7-A instruction set; one instruction
for the compare instruction that updates the condition register, and
the other one for the branch instruction that transfers the control
flow based on the result of the condition register. The next section
presents the detailed algorithm of the tail-DMR frontier computa-
tion leveraging the cost model.

3.1.2 Region-based Vulnerability Analysis: Computing the
Tail-DMR Frontier on SSA

Clover iterates the instructions of an idempotent region backward
from its end by traversing the control data flow graph (CDFG).
For counting the instructions to match the time of WCDL for each
path, Clover consults the cost model of each visited instruction to
appropriately increase the count (i.e., path cost) depending on how
the tail-DMR treats the instruction. If the count reaches a threshold
that represents the time of WCDL, then Clover adds the last visited
instruction to the tail-DMR frontier of the region. Before discussing
the details, we define the following terms and notations that are
used throughout this section.

• VR: Vulnerable register set includes the registers whose value
may corrupt the architectural state if it is not verified.

• CK: Check instruction set denotes the instructions whose de-
fined register needs to be verified during the tail-DMR.

• TF: A set of instructions that belong to Tail-DMR frontier.
• PATHI: A set of visited instructions along one path during the

reverse depth-first-search traversal.
• Cpath: Accumulated path cost of visited instructions on the

current path. If the cost reaches ThresholdWCDL, then the
last-visited instruction is added to the tail-DMR frontier.

• KILL: A function that maps each defined register to a set of
instructions that kill the register.

Algorithm 1 describes how to compute the tail-DMR frontier.
Starting from each region boundary in the CDFG, Clover traverses
every path in a reverse depth-first-search (RDFS) order (line 25
∼ 40). Each path is first initialized and keeps track of its own set of



Algorithm 1 Region-based Vulnerability Analysis
Inputs: CDFG, SYN,R (i.e., a set of idempotent regions)
Outputs: TF,CK

1: function UPDATEVULREGSET(VR, I , PATHI)
2: // DefR is a register defined by I
3: // KILL[DefR] is the set of instructions that kill DefR.
4:
5: if I ∈ SYN then
6: VR← VR+ I ′s use registers
7: else if KILL[DefR]

⋂
PATHI = ∅ then

8: VR← VR+DefR
9: end if

10: end function
11:
12: function CALCULATECOST(C, I)
13: if I ∈ SYN then
14: C ← C + Csyn

15: else
16: C ← C + Cdup

17: end if
18: if DefR ∈ VR then // DefR is a register defined by I
19: C ← C + Cck

20: CK← CK+ I
21: end if
22: Return C
23: end function
24:
25: for each region boundary R ∈ R in CDFG do
26: for each path P in reverse-DFS order from R do
27: PATHI← ∅
28: VR← ∅
29: Cpath ← 0
30: for each Instruction I ∈ P do
31: PATHI← PATHI+ I
32: VR← UPDATEVULREGSET(VR, I,PATHI)
33: Cpath ← CALCULATECOST(Cpath, I)
34: if Cpath ≥ ThresholdWCDL ∨ I ∈ R then
35: TF← TF+ I
36: Terminate path P
37: end if
38: end for
39: end for
40: end for

visited instructions (PATHI), vulnerable registers (VR) and path
cost (Cpath) during the RDFS traversal (line 27 ∼ 29).

For each visited instruction in the path, Clover updates PATHI,
VR, and Cpath, correspondingly (line 31∼ 33). To update PATHI,
Clover simply inserts the visited instruction I into PATHI. Keep-
ing track of visited instructions is beneficial for analyzing the live-
ness of a register in static-single-assignment (SSA) form. Then, to
update the VR, Clover leverages a heuristic shown in line 1 ∼ 10.
If the visited instruction belongs to SYN set, Clover adds all their
used registers to the VR set since they are vulnerable. In the next
pass (i.e., the tail code duplication in Figure 3), necessary check in-
structions are therefore inserted to the original CDFG for verifying
the registers.

In particular, Clover does not need to protect those registers that
are live-in at the tail-DMR frontier. As discussed in the proof of
Theorem 1, all the errors occurring before the tail-DMR frontier
should be dealt with by the sensor-based soft error detection within
the region, i.e., its re-execution can correctly recover from the
errors. This allows Clover to safely assume that all the live-in
registers at the tail-DMR frontier are resilient against soft errors.

To this end, the next code duplication pass does not insert check
instructions for such live-in registers even if they belong to the VR
set.

Recall that Clover considers the region boundary as a synchro-
nization point. That is, every live-out register at the end of the re-
gion must be verified by the region if the live-out register is defined
within the tail-DMR frontier. The line 7 of Algorithm 1 shows how
Clover can easily compute such a live-out register on the SSA form.
Suppose KILL[DefR] is the set of instructions that kill the register
DefR. Then, the intersection of KILL[DefR] and PATHI repre-
sents the liveness of DefR at the end of the region along the path.
If the intersection is empty, i.e., the DefR is live-out, it is added to
VR for verification.

To calculate the path cost (i.e., Cpath), Clover just accumulates
the cost of visited instructions which is determined differently de-
pending on whether the instruction is in SYN set or it is a duplica-
tion instruction (line 13∼ 17). In addition, if the register defined by
the instruction I belongs to VR set, a check instruction cost (Cck)
is added to Cpath (line 18 ∼ 21). Accordingly, the instruction I
is added into CK set to inform the next code duplication pass of
where check instruction needs to be placed.

In line 34 ∼ 37, Clover terminates one path if Cpath reaches
the ThresholdWCDL, i.e., the time of WCDL is matched.
Thus, Clover adds the last-visited instruction to the tail-DMR
frontier (line 35). Currently, the default values of the WCDL
and the commit-width are 5 and 2, respectively, i.e.., the
ThresholdWCDL = 10. In addition, Clover also terminates the
path code calculation process when another idempotent region
boundary is encountered, i.e., the region is too short. In this case,
Clover simply considers the boundary instruction as the frontier,
thus all the instructions of such a short region are protected by
DMR.

3.1.3 Discussion and Limitation
DUE To eliminate DUE (detected unrecoverable errors), soft er-
rors have to be detected in the same idempotent region for its re-
execution to successfully recover from them. This is guaranteed by
Clover as shown in the proof of Theorem 1 and 2, i.e., all the idem-
potent regions are resilient against DUE. Consequently, Clover can
achieve zero DUE as long as program is compiled by Clover. On the
contrary, naively combining the sensor-based soft error detection
and the idempotent processing cannot avoid DUE. Rather, all the
regions are potentially vulnerable to DUE regardless of the length
of the region.

SDC Even if an energetic particle strike is the major source of
soft errors, they can also be induced by other sources, e.g., ran-
dom noise such as inductive/capacitive crosstalk and power supply
noise. Since these sources are not covered by the sensor-based soft
error detection, Clover might generate silent data corruption (SDC).

Multiple Soft Errors Occurring in One Region They can be
easily handled by Clover. As stated in Section 3.1, all the errors
are guaranteed to be detected and corrected within the same region.

Tail-Wait One might think of waiting for the time of WCDL
as an alternative to Tail-DMR. However, as the next evaluation
section shows, many regions are very short, i.e., the waiting time
is relatively long compared to the execution time of such short
regions. The runtime overhead makes the waiting approach less
attractive, but it would be worth exploring the approach due to the
energy efficiency. We leave this as future work.

4. Evaluation
We implement the compiler passes of Clover on top of LLVM Com-
piler Infrastructure [19]. The idempotent region formation algo-



rithm is also integrated in LLVM. We perform the experiments with
17 applications from Mediabench [20] and MIbench [12] bench-
marks in different categories. All the applications were compiled
with standard -O3 optimization. We conduct our simulations on
Gem5 [3] with system call emulation mode for a modern 2-issue
out-of-order 0.5 GHz processor whose L1 (2-way/2-cycles) and L2
(8-way/20-cycles) LRU caches are 32KB and 2MB, respectively.
The pipeline widths are all 2 including commit-width, and the ROB
and physical integer RF have 128 and 256 entries, respectively.

We first analyze the length of idempotent regions, since it is a
critical factor that affects the performance of Clover; in general,
the longer region, the better performance. For example, in longer
regions, the portion of the DMR-enabled part is relatively small,
whereas in short regions, the majority of their instructions have to
be duplicated by DMR. Then, we analyze the execution time over-
head of Clover comparing it to the state-of-the-art technique, i.e.,
combination of idempotent processing and full-DMR [9]. Finally,
we provide sensitivity analysis results to understand the trade-off
between the sensor area overhead and the resulting performance of
Clover.

4.1 Region Characteristics

Application #Total #Total Aver. #Vulner. Vulner.
insts (103 ) regs (103 ) leng. insts (103 ) insts ratio

adpcmdecode 6557 149 44 1486 22.66%
adpcmencode 8346 223 37 1231 14.75%
epic 59759 1186 50 8370 14.00%
unepic 9898 941 10 6847 69.17%
jpegdecode 4382 280 15 2252 51.39%
jpegencode 17335 1205 14 9335 53.85%
mesatexgen 204820 8497 24 68748 33.56%
pegwitencrypt 35616 2600 13 18586 52.18%
g721decode 512016 14239 35 94027 18.36%
g721encode 268789 7766 34 51155 19.03%
gsmdecode 68406 2270 30 19625 28.68%
gsmencode 110750 3350 33 27756 25.06%
mpeg2decode 165491 5792 28 49946 30.18%
mpeg2encode 1320760 17867 73 143323 10.85%
sha 120338 1121 107 9530 7.91%
susanedges 78967 2190 36 15526 19.66%
susancorners 27265 455 59 2823 10.35%
geomean 58368 1822 31 13736 23.53%

Table 1. Dynamic region characteristic with 5-Cycle-WCDL

Figure 4 (a) shows a cumulative distribution of dynamically
executed idempotent regions of all the applications listed in Ta-
ble 1. The x-axis (in log scale) represents the number of instruc-
tions in regions. We highlight unepic and adpcmdecode. As shown
in Figure 4 (b), the majority of regions in unepic are comprised of
less than 10 instructions, and they occupy considerable amount of
the total execution time. The implication is that the tail-DMR will
cause significant performance overhead for unepic. In contrast, ad-
pcmdecode has many long regions as shown in Figure 4 (c). That
is, most of the regions are long enough to hide the performance
penalty caused by the tail-DMR, thus it will cause negligible per-
formance overhead for adpcmdecode.

Table 1 further details on the dynamic region characteristics of
the benchmark applications. Column 2 and 3 show the dynamic in-
struction count and the number of idempotent regions executed, re-
spectively. Column 4 presents the average region length, i.e., (2nd
column/3rd column). The geometric mean of the average region
length is 31, which makes it possible for the tail-DMR to be practi-
cally realized without causing significant overhead. Column 5 and
6 represent the total number of vulnerable instructions and the ra-
tio (i.e., 2nd column/5th column), respectively. Note that simply
relying on the naive combination of the idempotent processing and
sensor-based detection scheme leave all the regions potentially vul-
nerable to DUE. On average, total 23% of dynamic instructions are

vulnerable to soft errors. This indicates that only a small portion
of instructions need to be protected by the tail-DMR. More pre-
cisely, the portion is almost cut in half in that the number of in-
structions are doubled after the DMR is performed, i.e., not all the
vulnerable instructions are protected by Clover. This is because the
tail-DMR inserts duplication and check instructions to the original
region, which allows some vulnerable instructions to be placed be-
yond the tail-DMR frontier. Consequently, Clover can achieve very
low performance overhead.

4.2 Performance Overhead and Code Size
Figure 5 represents the runtime overhead of different soft error re-
silience schemes, which is normalized to the baseline execution
time with no resilience scheme. For each application, the first bar
corresponds to the runtime of the state-of-the-art scheme [9] where
full-DMR is combined with idempotent processing, while the sec-
ond bar to the runtime of Clover. In the figure, each bar is broken
into two parts; the bottom and the top represent the overheads of er-
ror detection and recovery, respectively. For example, the top parts
of the first and the second bars (i.e., Idem-W/-FullDMR and Idem-
w/-TailDMR) represents the overheads due to idempotence-based
error recovery in the presence of full-DMR and Clover’s tail-DMR,
respectively. As shown in Figure 5, the idempotence-based recov-
ery is not that significant i.e., on average 14% (Idem-w/-FullDMR)
and 8% (Idem-w/-TailDMR. Thus, most of the overhead is caused
by the error detection schemes, i.e., on average, 91% (FullDMR)
and 18%(TailDMR). Overall, the full-DMR with with idempotent
processing incurs 105% runtime overhead on average. In contrast,
Clover incurs only 26% runtime overhead on average, which is a
75% reduction, at the expense of only 1% chip area overhead.

It is important to note that prior approaches [9, 10] do not dupli-
cate load instructions since they assume a fault-tolerant load unit.
However, this is not likely the case for embedded systems, and they
will miss soft errors occurring from a load unit without the shield-
ing. With that in mind, we duplicate load instructions in FullDMR
and TailDMR. If Clover assumed such a fault-tolerant load unit, the
overhead would be significantly reduced. Figure 5 also confirms
that the length of regions is critical to Clover’s performance over-
head (i.e., 2nd bar). The general trend is that the higher ratio of
vulnerable instructions shown in Table 1 translates to higher per-
formance overhead.

Table 2 summarizes the code size increase of the full-DMR with
idempotent processing versus Clover. The number of additional
static instructions inserted to the original program is represeted in
Column 2 (the full-DMR approach) and Column 3 (Clover). Col-
umn 4 shows the reduction Clover achieves as percentage compared
to the full-DMR approach. On average, Clover achieves a static in-
struction reduction of 46%. With the importance of binary size in
embedded systems in mind, we also show the ratio of the binary
size increase to the original binary size for the full-DMR approach
and Clover in Column 5 and Column 6, respectively. Overall, the
average binary size increase of the full-DMR approach is 86%,
whereas that of Clover is only 30%. Column 7 shows the reduction
Clover achieves as percentage compared to the full-DMR approach.
On average, Clover achieves a binary size reduction of 53%.

4.3 Sensitivity Analysis
The worst-case detection latency (WCDL) of the sensor-based soft
error detection is another critical factor that affects the performance
overhead of Clover. Note that the sensor-based detection scheme
can adjust its WCDL by varying the amount of sensors being de-
ployed and their placement on the processor core. As illustrated in
section 2, larger amount of sensors will result in higher area over-
head. To highlight the trade-off, we perform a sensitivity analysis
of WCDL to the resulting performance overhead shown in Figure 6.
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Application #Full DMR #Tail DMR Insts Full DMR binary size Tail DMR binary size Binary size
insts insts reduction increase ratio increase ratio reduction

adpcmdecode 408 146 64.21% 47.24 % 1.34 % 97.17%
adpcmencode 411 146 64.47% 47.24 % 1.34 % 97.17%
epic 9314 5443 41.56% 106.54% 58.96 % 44.66%
unepic 7179 5210 27.42% 108.46% 69.70 % 35.74%
jpegdecode 52209 34728 33.48% 124.79% 82.13 % 34.19%
jpegencode 50282 33326 33.72% 130.77% 79.86 % 38.93%
mesatexgen 183345 104805 42.83% 128.74% 68.18 % 47.04%
pegwitencrypt 12297 7144 41.90% 96.63 % 50.01 % 48.24%
g721decode 2524 1393 44.80% 66.87 % 34.81 % 47.95%
g721encode 2659 1481 44.30% 68.02 % 35.88 % 47.26%
gsmdecode 10687 5490 48.62% 68.65 % 31.20 % 54.55%
gsmencode 10687 5490 48.62% 68.65 % 31.20 % 54.55%
mpeg2decode 15884 9580 39.68% 107.01% 58.29 % 45.53%
mpeg2encode 23680 11528 51.31% 112.55% 49.24 % 56.25%
sha 857 407 52.50% 61.02 % 26.05 % 57.30%
susanedges 7187 2522 64.90% 102.50% 33.03 % 67.77%
susancorners 7187 2522 64.90% 102.50% 33.03 % 67.77%
geomean 7552 3858 46.23% 86.60 % 30.42 % 53.02%

Table 2. Code size comparision: Full-DMR vs. Tail-DMR. gsmencode and susancorners share the same binaries with gsmdecode and
susanedges, respectively. Therefore, they have the exact same data.

adpcmdecode

adpcmencode
epic

unepic

jpegdecode

jpegencode

mesatexgen

pegwitencrypt

g721decode

g721encode

gsmdecode

gsmencode

mpeg2decode

mpeg2encode sha

susanedges

susancorners

geomean
100

120

140

160

180

200

220

ru
nt

im
e

ov
er

he
ad

(d
m

r/o
rig

in
%

)

111 115 110
122

134 130

110

177

103 103
113 120

112 110
101

121
106

116123 125
117

146

167
150

123

158

109 108

128
135

119 112 108

128
113

126
142 140

125

171

195

174

130

191

123 129
145

159

131
118 123

139 142 144

DL2
DL5
DL10

Figure 6. Impact of WCDL change on the performance overhead of Clover

Other than 5-cycles-WCDL (DL5) that is Clover’s default config-
uration, we pick two other practical detection latencies taking into
account the resulting chip area increase. Here, DL2 represents 2-
cycles-WCDL which can be realized with 2% area overhead for a
0.5 GHz processor as shown Figure 1. Similarly, DL10 stands for

10-cycles-WCDL and can be realized with less than 1% area over-
head for a 0.5 GHz processor. As expected, the performance over-
head of Clover is proportional to the detection latency except for
pegwitencrypt. This is mainly due to cache performance variance.
Overall, lower detection latency implies higher area overhead as



well as higher hardware complexity, and vice versa. Consequently,
Clover can provide a flexible and practical approach to adapt differ-
ent WCDL settings, and it achieves lightweight soft error resilience
with reasonable chip area overhead (i.e., DL5).

5. Other Related Work
Soft Error Detection Soft error detection relies on either hard-
ware or software instruments to identify the errors. Software-based
detection schemes often refer to N-modular redundancy execution.
SWIFT is one of the state-of-the-art single-threaded software de-
tection schemes [28]. It checks the value of registers with their du-
plication counterpart at certain synchronization points, i.e., mem-
ory and control flow instructions. Rotenberg takes the advantage
of simultaneous multithreading (SMT) to run a trailing thread that
verifies the leading thread [30]. Although these methods achieve a
high fault coverage, they suffer from significant performance over-
head or occupying one more processor core.

With that in mind, researchers explore the program character-
istics to find opportunities for reducing the performance overhead
while still maintaining an acceptable fault coverage [17][6]. They
all exploit some heuristics to identify the instructions that are criti-
cal to the program output and selectively protect these instructions
with DMR. Especially, Khudia and Mahlke leverage the value-
locality of instruction results to improve the fault coverage [17].
However, these approaches achieve low performance overhead at
the expense of reduced fault coverage. In contrast, this paper selec-
tively protects some of the instructions (i.e., only those instructions
vulnerable to DUE) without sacrificing the fault coverage. Chen
and Yang propose a technique, that identifies the minimum set of
instruction results being compared and checkpointed for the error
resilience, to reduce the performance overhead while achieving full
coverage [5]. However, the resulting runtime overhead reduction is
not stated in their paper.

Hardware-based detection schemes introduce redundant hard-
ware to verify the execution in the processor. DIVA [2] relies on
a simple in-order core to verify the program execution while Ar-
gus [24] leverages invariant checking to ensure correctness. How-
ever, these approaches often introduce excessive hardware com-
plexity increase which is not acceptable in embedded systems. Re-
Store [37] advocates to utilize symptoms of soft errors to detect
them without significant overhead. Shoestring [10] enhances Re-
Store by selectively duplicating some vulnerable instructions with
simple heuristic. However, both ReStore and Shoestring incur long
detection latency which may result in DUE. Similar to the recent
work of Khudia and Mahlke [17], Racunas et el [26] proposes to
make use of the value-locality to detect soft errors. However, the
high false positive rate and the mediocre fault coverage prevent us
from adapting their methods. Fortunately, Upasani et al. propose to
detect soft errors with configurable amount of acoustic wave sen-
sors [34, 35]. Their sensor-based detection scheme achieves low
soft error detection latency with reasonable hardware overhead. Ac-
cording to the recent work of Upasani et al. [35], it is possible to
detect all the soft errors in an old ARM cortex-A5 core within one
cycle by meticulously deploying only 17 sensors on the core. How-
ever, their technique requires the core size and the frequency to be
extremely small, which is not realistic for modern processors. This
paper takes advantage of such sensor-based detection scheme and
selectively duplicates only the instruction vulnerable to DUE in the
tail of an idempotent region for guaranteed soft error recovery.

Soft Error Recovery Checkpointing the whole program states
(memory and registers) guarantees recovery from soft errors by al-
lowing programs to roll back to the previous safe checkpoint[10,
34, 37]. However, full checkpointing often comes with significant
performance loss and high power consumption. With that in mind,

researchers propose techniques that can reduce the checkpointing
overhead, but they require costly hardware support and resource
consumption. For example, the recent work of Upasani et al. [34]
keeps two copies of the register file and the register allocation table
(RAT) to achieve low performance overhead. Jeyapaul et al. [15]
explore multicore CMP architecture to recover from soft errors with
an efficiently modified cache structure. However, they rely on only
parity checking to sequential logic for detecting a soft error, i.e.,
combinational logic is still vulnerable to soft errors thus they may
generate SDC. Flushing the pipeline to recover from a soft error
[26, 35] is another alternative. This approach is expected to be very
efficient in term of runtime overhead. However, this approach is
often based on the assumption that detection can be done before
the faulty instruction is committed, i.e., the error detection latency
should be zero. Such low detection latency inevitably requires high
performance/hardware overhead as stated in Section 5. In partic-
ular, Clover avoids such high overhead by integrating idempotent
processing that recovers from soft errors by simply re-executing the
region in which they occur. That is, even if soft errors have already
corrupted architectural states, Clover can recover from the errors,
and the detection latency does not need to be zero. However, idem-
potent processing requires soft errors to be detected within the same
region as stated in Section 3. Clover overcomes such a challenge
with a novel tail-DMR technique in the presence of sensor-based
soft error detection.

6. Conclusion
This work presents Clover, a compiler directed soft error detec-
tion and recovery scheme. This is a fundamentally new approach to
achieving lightweight soft error resilience with zero DUE (detected
unrecoverable error). Clover is a low-cost hardware/software coop-
erative scheme. On the hardware side, Clover relies on a small num-
ber of acoustic wave detectors deployed in the processor to identify
soft errors by sensing the wave made by a particle strike [34, 35].
On the software side, Clover leverages a novel selective instruc-
tion duplication, called tail-DMR (dual modular redundancy), to
cope with DUE caused by the sensing latency of error detection. In
addition, Clover generates soft error tolerant code based on idem-
potent processing for soft error recovery. Once a soft error is de-
tected, Clover recovers from it by re-executing the idempotent re-
gion where it is detected. This error recovery process is performed
as in the case of an exception, the handler of which simply redirects
program control to the beginning of the region. The experiment re-
sults demonstrate that the runtime overhead of Clover is only 26%,
which is a 75% reduction compared to that of the state-of-the-art
soft error resilience technique.
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