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Abstract
Ability to replay a program’s execution on a multi-processor
system can significantly help parallel programming. To re-
play a shared-memory multi-threaded program, existing so-
lutions record its program input (I/O, DMA, etc.) and the
shared-memory dependencies between threads. Prior proces-
sor based record-and-replay solutions are efficient, but they
require non-trivial modifications to the coherency protocol
and the memory sub-system for recording the shared-memory
dependencies.

In this paper, we propose a processor-based record-and-
replay solution that does not require detecting and logging
shared-memory dependencies to enable multi-processor ex-
ecution replay. We show that a load-based checkpointing
scheme, which was originally proposed for just recording pro-
gram input, is also sufficient for replaying every thread in a
multi-threaded program. Shared-memory dependencies be-
tween threads are reconstructed offline, during replay, using
an algorithm based on an SMT solver. In addition to sav-
ing log space, the proposed solution significantly reduces the
complexity of hardware support required for enabling replay.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures

General Terms
Design, Performance, Reliability

Keywords
Multi-processor Replay, SMT solver, Shared-Memory Depen-
dencies

1. Introduction
Ability to replay a program’s execution has a number of ap-

plications. Using a record-and-replay system, one can build a
time-travel debugger [11]. It also helps a programmer debug
non-deterministic bugs that are prevalent in multi-threaded
programs. Heavy-weight dynamic analysis tools, such as data-
race detectors, cannot be used to analyze an unperturbed nat-
ural program execution. However, with an efficient recorder,
one could record a realistic program execution, and then an-
alyze that execution using any heavy-weight dynamic analy-
sis tool by replaying it [5]. If the recording overhead is in-
significant, then even production runs could be continuously
recorded. In the event of a software failure, recorded infor-
mation would provide programmers with significantly more
information than crash dumps used today.
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Recently, several hardware techniques [10,16,17,22,27] have
been proposed for efficiently recording a program’s execution.
To replay a shared-memory multi-threaded program’s execu-
tion on a multi-processor system, existing solutions record two
types of information at runtime – the program’s input and the
shared-memory dependencies between concurrent threads.

A program’s input can be recorded by checkpointing the
program’s initial register and memory state, and then logging
all the non-deterministic system events such as I/O, DMA,
interrupts, etc. This information can be recorded in the op-
erating system (or virtual machine) using a copy-on-write
checkpointing mechanism. This could be made efficient using
processor support [24,25]. However, this approach is system-
dependent. Instead, we could use a system-independent load-
based checkpointing scheme called BugNet [22] for record-
ing a program’s input. This scheme records the initial regis-
ter state and the values of load instructions executed by the
recorded program. The recorded load values implicitly cap-
ture the system input from I/O, DMA, interrupts, etc., and
thereby avoids the complexity in detecting and logging numer-
ous types of non-deterministic system events. Thus, BugNet
is system-independent, and we will refer to this approach as
load-based checkpointing scheme.

In addition to recording a program’s input, existing solu-
tions, including BugNet, assume support for detecting and
recording shared-memory dependencies between concurrent
threads. Any software based solution to this problem [?, 20]
would require monitoring every memory access, and there-
fore would result in an order of magnitude slowdown. There
has been significant work in the recent years to provide ef-
ficient hardware support [10, 16, 19, 27, 28] for detecting and
logging shared-memory dependencies. Processor-based solu-
tions not only detect and log shared-memory dependencies,
but they also optimize the log size by not logging a depen-
dency if it is transitively implied by an earlier dependency log.
However, significant changes need to be made to a processor
design to accomplish these tasks. For example, the state-of-
the-art solution called ReRun [10] maintains read/write sets
in each processor core using bloom filters, tracks a Lamport
Scalar Clock [12] in each core, piggy-backs coherence messages
with additional information, and detects shared-memory de-
pendencies by monitoring those coherence messages. The co-
herence mechanism is one of the most difficult to verify sub-
system in a processor. For instance, AMD64 processor had
9 design bugs that can be attributed to multi-processor sup-
port [18]. Our goal is to enable a low-cost hardware solution
that does not require changes to the coherence sub-system,
and thereby make it feasible for processor manufacturers to
provide support for multi-processor execution replay.

We propose a record-and-replay solution that does not re-
quire any support for detecting and logging shared-memory
dependencies. We assume sequentially consistent memory
model in this work, but we can extend our solution to sup-
port relaxed memory models as well. We show that if we
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use a load-based checkpointing mechanism for recording pro-
gram input [22] (instead of a system-dependent program in-
put recording scheme), we do not have to record shared-
memory dependencies at all. The reason is as follows. For
each thread in a multi-threaded program, a load-based check-
pointing mechanism records the thread’s initial register state
and the values of a subset of the load instructions executed
by the thread. We observe that this information alone is suf-
ficient for deterministically replaying each thread in isolation,
independent of the other threads. This does not require us
to record and replay shared-memory dependencies. By deter-
ministically replaying each thread in isolation, we can repro-
duce the exact same sequence of instructions executed by a
thread during recording. The replay also reproduces the input
and output values of those instructions (input of a memory
operation includes its address as well).

Thus, using load-based checkpoints, we can deterministi-
cally replay each thread in isolation without having to re-
produce shared-memory dependencies between the threads.
However, to debug a multi-threaded program, a programmer
would still need to be able to understand the interactions be-
tween the threads. This would require reproduction of shared-
memory dependencies during replay. This information, how-
ever, can be determined using an offline analysis, which works
as follows.

Using load-based checkpoints, we deterministically replay
each thread. This gives us the trace of all the memory op-
erations executed by a thread along with the address and
input/output values of those memory operations. From the
final core dump, we also obtain the final state of every mem-
ory location. Using all of this information, we determine the
program order and input/output constraints for all the mem-
ory operations executed by all the threads. These constraints
are then encoded in the form of a satisfiability equation. The
solution for this equation is found using a SMT (Satisfiability
Modulo Theory) solver called Yices [9]. The solution gives
us the total order for the memory operations executed by all
the threads, using which a programmer can reason about the
dependencies between the threads.

To bound the time complexity of the SMT solver, processor
logs hints during recording. These hints consist of instruction
counts logged independently by each processor core at regular
intervals. The length of an interval is fixed and it is specified
in terms of the number of processor cycles. Thus, to log these
hints, we do not require additional communication between
the processor cores.

In addition to logging hints, we require hardware support
for supporting load-based checkpointing, which essentially re-
quires support for logging cache misses. Thus, we are able to
significantly reduce the hardware support required for record-
ing a multi-threaded program’s execution by avoiding the
need for detecting and logging shared-memory dependencies
altogether.

The proposed solution has a trade-off. It drastically reduces
the complexity of hardware and software support required for
recording a program. But, we have to pay the cost for offline
analysis before we can replay a recorded execution. The of-
fline analysis need to be performed only once and not every
time we replay. In other words, our solution increases the
time to replay, but not the replay performance itself (there-
fore, debugging using replay could still be interactive). We
believe that the cost of offline analysis is an acceptable trade-
off, because efficiency matters most for a recorder than for
a replayer. Using an efficient hardware recorder, production
runs can be monitored. Also, it enables programmers and

beta-testers to record a realistic execution of a program, and
analyze them using various heavy-weight dynamic analysis
tools such as a data race detector by replaying it. Though an
efficient replayer would also be useful, an efficient recorder is
more important. We hope that our low-complexity hardware-
based recording solution would convince processor manufac-
turers to incorporate replay support in the next generation
processors.

2. Background and Motivation
Success of multi-core processors depends largely on whether

we can make parallel programming accessible to mainstream
programmers. This could be aided through technologies such
as record and replay. Record and replay is especially useful for
debugging multi-threaded programs as concurrency bugs are
notoriously difficult to reproduce and understand. Industry
has recognized this need as many leading companies includ-
ing IBM, VMWare, Microsoft and Intel have all invested in
developing replay solutions [5,7,21,29].

Software community has been working on replay solutions
for over two decades [13]. Recent developments such as Re-
Virt [8], Flashback [26] and ReTrace [29] can record and replay
a program’s execution on a uni-processor system for less than
10% performance overhead. Mostly, these solutions record
just the program input, which is sufficient for replaying an
execution on a uni-processor system. The most common so-
lution used to record program input consists of a copy-on-
write checkpointing scheme that records a program’s initial
register and memory state, and a system event logger that
records return values and timestamps of all non-deterministic
system events (such as system calls, DMA, I/O, etc.). We re-
fer to this approach as system-dependent program input log-
ging approach, because an execution recorded using this ap-
proach can be replayed only in a system environment that
is same as the one in which the execution was recorded. In
depth discussion of the disadvantages and the complexity of
a system-dependent program input recording solution can be
found here [21,22].

Thus, there are solutions for efficiently recording and re-
playing program executions on a uni-processor system. Re-
playing an execution on a multi-processor system, however,
remains a very challenging problem. Because, in addition to
recording program input, existing solutions require support
for logging shared-memory dependencies as well. For a soft-
ware recorder to detect and log shared-memory dependencies
between threads, it has to examine the execution of every
memory operation. This is clearly expensive in terms of per-
formance cost. Several researchers in the recent past have
proposed to address this problem using hardware support.

Bacon and Goldstein [3] proposed to record all the coher-
ence traffic in a snoopy-bus based multi-processor system.
FDR [27], RTR [28], Strata [19], DeLorean [16], and Re-
Run [10] are all recent developments that improved the hard-
ware design for logging shared-memory dependencies. They
all focused on reducing the log size and the amount of hard-
ware states required to detect and log shared-memory depen-
dencies. While they succeeded in reducing the cost of hard-
ware real estate, the hardware complexity of those solutions
is so high that processor manufacturers have been reluctant
to adopt them.

To illustrate the complexity of a shared-memory depen-
dency logger, we now discuss two recently proposed hardware
solutions, DeLorean [16] and ReRun [10]. In Section 5, we
compare the sizes of our logs to those of ReRun’s.

DeLorean assumes support for BulkSC [6]. It divides a
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thread’s execution into what are called as chunks. The un-
derlying BulkSC mechanism ensures that each chunk is ex-
ecuted atomically. Given this execution environment, each
core in DeLorean just needs to record the size of each chunk
that it executes. Also, a global arbiter records the total or-
der between chunks executed in different cores. DeLorean
drastically reduces the log size required for recording shared-
memory dependencies. However, it introduces additional hard-
ware complexity for supporting BulkSC [6], a global arbiter
for logging the order between chunks, and support for logging
chunk sizes.

ReRun [10] forms episodes and records their sizes along with
a total order between them. Similar to a chunk in DeLorean,
an episode is also a sequence of instructions that appear to be
atomic in an execution. But ReRun differs from DeLorean in
implementation details, such as the conditions for terminating
an episode. Before sending an invalidation acknowledgment or
a data update message to any coherence request, a processor
core in ReRun terminates its episode if it detects a read-write
or a write-write conflict between the requesting access and one
of its past memory accesses. An episode is also terminated
when a cache block gets evicted, because the core would no
longer receive any coherence message for the evicted cache
block. Thus, ReRun guarantees atomicity property for an
episode.

ReRun is very efficient in terms of log size (about 4 bytes/kilo-
instruction) and performance. However, it needs significant
hardware support. For each core, ReRun needs two bloom fil-
ters, a timestamp register to hold the Lamport Scalar Clock
per core, and a memory counter. Each memory bank in the
shared-cache also has a timestamp register. The coherence
messages are piggy-backed with the timestamps. While Re-
Run is efficient in terms of area cost, the complexity of ad-
ditional control logic in correctly creating the episodes based
on shared-memory dependencies and logging a total order be-
tween them is significant.

ReRun and DeLorean can record shared-memory depen-
dencies efficiently. But to support replay, in addition, we also
need system support for recording program input. Capo [17]
discussed the problem of interfacing software system support
with a hardware-based record-and-replay system. It advo-
cated software system support for recording program input,
which requires a copy-on-write checkpoint mechanism and
support for logging non-deterministic system events. But the
performance cost of a software-based program input record-
ing approach could lead to about 20% to 40% performance
loss as shown in Capo [17]. However, hardware techniques
like SafetyNet [25] or ReVive [24] could be used to reduce the
cost of copy-on-write checkpointing mechanism.

Instead of using a combination of a software-based program
input recorder and a hardware-based shared-memory depen-
dency recorder, we propose a design that requires just a hard-
ware supported load-based program input recorder similar to
BugNet [22]. In the original proposal, BugNet had assumed
additional support for logging shared-memory dependencies.
But, we show that BugNet’s program input log is sufficient for
deterministically replaying each thread in isolation indepen-
dent of the other threads. We also discuss an algorithm based
on Yices SMT solver [9], which can be executed offline to
determine shared-memory dependencies from the load-based
program input checkpoints.

Our approach has three main advantages over prior solu-
tions such as ReRun [10]. First, it is complexity-efficient.
To support load-based checkpointing scheme, essentially we
only need hardware support for logging cache blocks fetched

on cache misses, and support for logging the values of each
processor core’s memory counter at periodic intervals (which
serve as hints for bounding the search space of our SMT
solver). Also, unlike ReRun, we do not need software system
support for logging non-deterministic system events (which
could be very tedious to support in an operating system as
there are numerous types of non-deterministic system events
to detect and log). Therefore, we also reduce the complex-
ity of the software component of a record-and-replay system
as well. Second, we reduce the space overhead as the hint
log is about four times smaller than the ReRun’s log. Fi-
nally, a load-based logging approach is system-independent,
which gives developers working in remote sites the flexibil-
ity to replay a program’s execution in different system ver-
sions/environments.

3. Load-Based Checkpointing Architecture
The load-based checkpointing scheme was originally pro-

posed in the BugNet architecture [22] as an alternative to
the system-dependent logging scheme for recording program
input. The original goal of BugNet was to avoid the sys-
tem complexity in detecting and recording all types of non-
deterministic system input. For this reason, Microsoft’s soft-
ware replayer called iDNA [5] also uses a load-based check-
pointing scheme for recording program input. Using iDNA,
we can record and replay a multi-threaded program on a
multi-processor system. Another software tool called pin-
SEL [21, 23], currently used at Intel, also implements a load-
based checkpointing scheme using Pin [14] to enable replay of
multi-threaded programs. However, iDNA and pinSEL incur
more than ten times performance overhead [5,23] when com-
pared to the native execution. Also, unlike our proposal, they
also record inter-thread dependencies [23] to replay multi-
threaded programs.

In this paper, we show that there is an added advantage
to using a load-based checkpointing as we do not have to
record shared-memory dependencies. These dependencies can
be determined offline by analyzing load-based checkpoint logs.
Though our focus in this paper is an efficient hardware solu-
tion, our solution could also help reduce the recording over-
head of software tools based on load-based checkpointing such
as the pinSEL [23], which currently record shared-memory de-
pendencies.

In this section, we briefly describe our load-based check-
pointing scheme. Our scheme is a modified version of BugNet [22].
We extend the original design to support replay of the full
system and programs with self-modifying code. We discuss a
complexity-effective architecture design to support this scheme
efficiently. We also describe its unique property that allows us
to replay each thread in a multi-threaded program in isolation
without the information about shared-memory dependencies.
Then we describe additional architectural support required
for logging hints that help us bound the complexity of our
offline analysis described in Section 4.

3.1 Load-Based Program Input Logging

Let us first consider recording a single-threaded program’s
execution on a uni-processor system without any system events
such as I/O, DMA, context switches or an interrupt. A key in-
sight in BugNet [22] is that to replay an interval of a program’s
execution, it is sufficient to record the program’s initial regis-
ter state, and then record the values of all the load instructions
executed by the program during the interval. The value of a
load instruction is recorded along with the instruction count
corresponding to the load instruction. The instruction count
of a memory instruction is the number of instructions that the
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Figure 1: Load-Based Logging Example

program had executed since the beginning of the recorded in-
terval. Unlike in BugNet [22], we also consider instruction
read as a load. This extension allows us to handle programs
with self-modifying code.

Using the recorded log, a tool like Pin [14] could be used to
replay. The replayer emulates the states of the register and
the virtual memory of the recorded program. It starts by ini-
tializing the register states by reading from the log. It includes
the program counter state as well. All the memory states are
initialized to invalid. Once initialized, the first instruction
specified by the program counter is executed. Since our sys-
tem treated an instruction read as a load, its machine code
can be found in the recorded log. An instruction is replayed
as follows. If the instruction is a non-memory operation, it is
executed by reading the input values from the emulated reg-
ister states, and then writing back the result to the emulated
register state. If the instruction is a load, its effective address
is computed from the input register states. In addition, the
load’s value is read from the log and the emulated memory
state is updated with that value. If the instruction is a store,
its input values are read from the emulated register state,
its effective address is computed, and the emulated memory
state is updated with the store value (so that later loads to
the same location can get their values). Thus, a program is
deterministically replayed with exactly the same sequence of
instructions along with their input and output values. The
register and memory states for the program is also determin-
istically reproduced at every instruction replayed.

Recording every load value (including instruction reads) is
expensive in terms of log size. But, BugNet logs a load, only
if that load is the first memory access to the location that it
accesses. Such loads are called as first-loads. The values of
non-first-loads need not be logged, as they can be read from
the emulated memory state.

Figure 1 shows a sample execution. Assume that all the
instructions in the example access the same memory location.
Consider just the first four instructions executed by the pro-
cessor P1 for now. R1 is the first-load (with a return value 1),
and it is logged (indicated by the solid dot on the right-side of
the instruction). The values of the next three memory opera-
tions are not logged as they can be deterministically replayed
using the emulated memory state.

To begin logging a program’s execution, the operating sys-
tem first creates a checkpoint by recording the context header

and turns on logging for the processor core. The context
header contains the initial register state, a process identifier
and the value of the timestamp counter of the processor core.
To detect and log first-loads we need processor support.

BugNet [22] used a bit per cache word in the private cache of
a processor core to determine if that location has been logged
for the program or not. We use an even simpler design, where
we just log the cache block fetched on a (load or store) cache

miss, because any first access to a location would result in a
compulsory cache miss. In the case of a store miss, the data
recorded for the cache block are the values before executing
the store.

In BugNet, a memory location’s value need not be logged if
the first access to it is a store. Because, any store, including
the first-store, can be deterministically replayed using the em-
ulated register and memory states. However, we log the cache
block fetched on a store miss, because it is possible that later
on, the program could execute a first-load to a different word
in the same cache block. This might slightly increase the log
size when compared to the BugNet design. But it avoids the
need to use a bit per cache word, and also helps our offline
analysis explained in Section 4. W2, W5, and W7 operations
(denoted with cross marks) in Figure 1 are store misses and
are logged in our design.

The data logged for a memory access consist of the instruc-
tion count of the memory operation that causes the cache
miss, and the data of the cache block fetched. To simplify the
design, we choose to not use any additional local log buffers.
Instead, we directly write-back the cache block to the log
space allocated in the main memory. Note that any read
from an uncacheable memory-mapped location would always
be logged as it will always result in a cache miss. Thus, non-
deterministic input read from system devices such as network
cards are correctly captured. Also, RDTSC (Read TimeStamp
Counter) instruction in the x86 architecture is also treated as
a uncacheable load, and its return value is recorded.

A checkpoint for a program is created first when logging is
turned on for that program. Thereafter, a new checkpoint is
created at regular intervals. The checkpoint interval length
is defined based on the available memory space for logging
similar to the original BugNet architecture [22]. To create a
new checkpoint, the operating system flushes the data in the
private caches of the processor, logs the checkpoint header,
and then continues to log the data of every cache block fetched
on a cache miss.

3.2 Handling System Events

The previous section assumed a uni-processor system, and
also that there are no system events that affect a program’s ex-
ecution. We now relax the latter constraint. Unlike BugNet [22],
we choose to record the execution of the full system including
the operating system code. An interrupt, a system call, or
another program can context switch a program executing on
a processor core.

On a context switch, the operating system terminates the
current log by logging the current instruction count for the
processor core (so that the replayer would know when to con-
text switch during replay). It then logs a context header for
the new program that is context switched in.

We assume physically tagged private caches. Therefore, on
a context switch, private cache blocks are not flushed. This
could cause an issue for our logging scheme, as the first access
to a virtual memory location by the newly context switched
in program might not result in a cache miss. We solve this
problem by tracking an additional log-bit per cache block,
which is reset on a context switch or when a new checkpoint
is created. Either when a memory access results in a cache
miss, or when the log-bit is not set for the cache block ac-
cessed, we log the physical address of the cache block and set
the log-bit. This additional information allows us to emulate
the physical address space for the memory state during replay.
During replay of the full system, when a program accesses a
virtual address for the first time, we can determine its equiv-
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alent physical address from the log. Thus, we can establish a
map between the virtual and physical addresses for a program
during replay and emulate the physical address space.

The mapping between physical addresses and virtual ad-
dresses could change after a page fault. We solve this problem
by just flushing the private cache blocks on a page fault.

Replaying by emulating physical address space also allows
our offline analysis to correctly determine shared-memory de-
pendencies between multiple processes (and of course threads)
that concurrently run on different cores.

To replay a checkpoint interval, the replayer starts from
the first context header and continues to emulate the register
state and the physical memory state of the system. When we
find a record for a memory access in the log during replay,
the replayer gets the physical address of the memory state
that needs to be updated with the value read from the log.
When the execution during replay reaches the next context
header (determined by comparing the emulated instruction
count with the instruction count that was logged on a con-
text switch), the emulated register state is updated with the
values from the next context header. Then the replay pro-
ceeds normally.

The above approach ensures replay of the full system exe-
cution on a processor core for an interval. We can replay on
any operating system as long as we have a tool that emulates
the ISA (Instruction Set Architecture) of the recorded proces-
sor. Using the process identifier logged in the context header,
the replayer could provide the programmer with information
about which application is replayed at any instant.

3.3 Multi-Processor Replay

We now discuss support for recording a full system exe-
cution on a processor with multiple processor cores (which
includes a DMA processor as well). Each processor core has
log space allocated to it in the main memory by the operat-
ing system. To start recording for a checkpointing interval,
the operating system first records the context header for each
core, and then lets each core log their cache misses into the
private log allocated to it. When a thread on a core is context
switched out, the operating system performs the same tasks
that we described earlier for a uni-processor system.

Consider the logs of two processors shown in Figure 1. All
the memory operations shown in the figure access the same
memory location. The memory operations marked with a
cross are the ones that result in a cache miss, and therefore
result in a log record. Notice that there are shared-memory
dependencies between the two executions. In any cache co-
herent multi-processor, before a node can write to a memory
block, it has to first gain exclusive permission to that cache
block. This results in invalidation of cache blocks privately
cached in all the other nodes. As a result, when a processor
core tries to read a value that was last written by another pro-
cessor core, it triggers a cache miss. W7 and W5 shown in the
figure are examples. Thus, our logging mechanism implicitly
captures the new values produced by remote processors. This
is the key property that allows us to replay the execution of
a processor core independent of the other cores. We achieve
this without any changes to the coherence protocol.

To replay the execution of P1 in this two processor multi-
core system, the replayer simply takes the log recorded by P1,
initializes the register state, and starts the replay. The replay
produces exactly the same sequence of instructions as in the
recording phase, along with the input and output values of
those instructions. For each memory operation, the replayer
can determine its memory address. Also, it reproduces the

value read or written by a memory operation, which we refer
to as the new value for the memory operation. Finally, as
we described earlier, for a write cache miss we log the value
before it is modified by the write. Thus, the replayer can also
reproduce the old value for a memory operation, which would
be the value of the memory location before it was modified
by the memory operation.

Thus, without any additional support for a multi-processor
system, just by using the program input log for each pro-
cessor core, the replayer reproduces the exact same sequence
of memory operations that were executed during recording,
along with their addresses, old and new values. The figure on
the right in Figure 1 shows the information reproduced after
replaying the execution of the two processor cores. The mem-
ory operations are labeled using the address location that they
access (in this example, all the accesses are to the same loca-
tion x). The left super-script of a memory operation denotes
its old value, and the left sub-script denotes its new value.

The operating system also records the final memory system
state at the end of recording (similar to the core dump col-
lected after a system crash). In the example, the final state
of x is 3. In Section 4, we discuss how all this information can
be used to determine the shared-memory dependencies.

3.4 Discussion

We summarize the key additions to the operating system
and hardware to support the logging approach that we dis-
cussed. The operating system needs to provide support for
creating a checkpoint at regular intervals or on a page fault.
Creating a checkpoint requires logging the context header for
each processor core in its local log (context header does not
contain the memory state). Also, on a context-switch it needs
to log the context header for the newly scheduled process or
thread and reset the log-bits (a log-bit per cache block is not
required if we simply choose the flush the private caches on
a context switch). The processor on the other hand needs
to provide support for logging the data of the cache block
fetched on a cache miss, its physical address, and the instruc-
tion count. Also, log the physical address of a memory access
if the log-bit for the cache block accessed is not set. When
compared to the system-dependent logging approach that we
discussed in Section 2, we believe that this approach is a lot
simpler.

With the above system support, we can deterministically re-
play the execution of a processor core in a multi-processor sys-
tem. This approach is also system-independent. The recorded
information can be replayed on an operating system different
from the one where it was recorded, which could improve the
usability of such a record-and-replay solution. In fact, Intel’s
pinSEL tool [21, 23] exploits this property to enable cross-
platform architectural simulation. Capo [17] discusses about
recording and replaying a subset of the processes executing
in a system using a notion of replay spheres. We believe
that such a flexibility could also be provided in our system
(in fact, our system might be able to support replay spheres
that includes just a subset of the threads in a multi-threaded
program), but we leave that design for future work.

4. Offline Analysis Using SMT Solver
In Section 3 we described why a load-based checkpoint is

sufficient for deterministically replaying an execution of a pro-
cessor core without having to concurrently replay executions
in the other cores. However, a programmer would still to
replay shared-memory dependencies between concurrent ex-
ecutions in different cores to understand and debug a multi-
threaded program.
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In this section, we describe an algorithm based on an SMT
solver [9] for determining shared-memory dependencies offline
by replaying the execution of each processor core using the
load-based checkpoint logs. We also describe processor sup-
port for recording light-weight hints during recording in order
to bound the complexity of our offline analysis.

4.1 Problem Statement and Offline Analysis Overview

An interval of a multi-processor execution is recorded using
a load-based checkpoint log for each processor core. Using
this information, a replayer can deterministically replay the
execution of each core and produce a trace of memory op-
erations for that execution. The trace contains the physical
address, the old value and the new value for every memory
operation that is replayed.

Figure 2 presents two example traces collected for two dif-
ferent multi-processor executions. Given a trace for a multi-
processor execution, the goal of an offline analyzer is to de-
termine the shared-memory dependencies between concurrent
executions of threads on different cores. That is, it needs to
determine a total order for the memory accesses. The total
order should satisfy the following two constraints.

The first constraint is that the derived order should obey
the load-store semantics. That is, a memory operation Q can
be dependent on another operation P in the derived total
order, only if Q’s old value is equal to the new value of P (in
Figure 2, y2 can only follow y6). The new value of the last
access to a memory location in the derived total order should
be equal to the final state of that location in the core dump.

The second constraint is that the derived total order should
preserve the program order between all the memory accesses
executed in a processor core. This second constraint is nec-
essary to ensure that the derived memory order is valid for
a concurrent execution on a sequentially consistent memory
model (which is what we assume in our work). By relaxing
this constraint we might be able to support relaxed consis-
tency models.

The two constraints can be determined for each memory
operation from the traces that are obtained by replaying the
execution of each processor core. These constraints are then
encoded as a first-order logic formula, which is then solved
using an SMT solver. Section 4.4 describes this in detail.

4.2 Replay Guarantees

Using load-based checkpoint logs we can deterministically
replay a processor core’s execution to reproduce the exact
same control flow and sequence of instructions along with
their input and output values. In addition, the offline analy-
sis produces a valid total order for all the memory operations
that satifies the two constraints mentioned earlier. Thus, we
can reproduce an execution that has the same input/ output
and final program state as the recorded execution.

However, it is possible that for a recorded execution there
are multiple valid memory order that satisfy our constraints.
For the example in Figure 2(a), there are multiple valid to-
tal orders that satisfy our constraints. Total orders y6->x1-

>y2->x2->x3->x4->y7 and y6->x1->y2->x3->x4->y7->x2 are
both valid. Note that for accesses to location y, the only valid
order is y6->y2->y7. For x, however, x5 can be ordered be-
tween x1 and x3, or as the last access to the location x.

If multiple memory orders can satisfy the above constraints
for a recorded execution (which is rare), our tool produces all
of them, including the memory order seen during recording.
Running a data-race detector for each of those interleavings
is guaranteed to find the data-race that exists in the recorded
execution. In fact, producing multiple interleavings that pro-
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Figure 2: Two trace examples after replaying the execution
of each processor core independently using load-based input
logs. The dotted line represents a Strata hint.

duce the same incorrect state is equivalent to producing mul-
tiple proofs for the same bug, which could be more valuable
to a programmer.

4.3 Recording Strata Hints

A multi-processor execution for a checkpoint interval could
contain millions or even billions of memory accesses. This
leads to an astronomical search space for the SMT solver.
Therefore, we need to bound the analysis window to a reason-
able limit. We achieve this by log hints during recording. We
now explain what the hints are and how they can be recorded
without incurring significant hardware complexity.

Our hints are similar to Strata [19]. A stratum log con-
sists of the (committed) instruction counts of all the proces-
sor cores at an instant in the recorded execution. In Figure 2,
a stratum hint is shown using a dotted line. A stratum log
recorded at a particular instant of time t during an execution
gives the replayer a happens-before relation between all the
memory accesses that were executed before t and all the mem-
ory operations that were executed after t. For example, the
replayer uses the stratum log shown in Figure 2 to determine
that x1, y2, x3, x5, y6 executed before x4, y7.

All the cores in a multi-core processor can log a stratum
without any synchronization or communication between them.
In modern multi-core processors, each core already has a times-
tamp counter, which is read by instructions like RDTSC. It
is updated by every core at every cycle, and they are kept
synchronous across the cores [1]. After every N cycles, each
processor core records its current instruction count in its load-
based program input log (described in Section 3) along with
a type bit that specifies that this instruction count belongs
to a stratum. Using this information recorded in each proces-
sor’s program input log, the replayer constructs the strata
offline. Note that the strata that we log does not record
the shared-memory dependencies, unlike in the earlier de-
sign that used Strata [19]. A stratum in our design simply
bounds the window of our offline analysis. Whereas, in previ-
ous work [19] strata were used to record the shared-memory
dependencies and therefore its semantics are very different
from that of the strata hints we use. As a result, previous
work that uses strata [19] also has the same complexity issues
that we described in Section 2 for designs like ReRun [10] and
DeLorean [16].

In Section 5 we analyze how frequently we need to log a
stratum and show that logging a stratum every ten thousand
processor cycles is sufficient for most applications, and the
space overhead is more than 4 times less than the race logs
recorded in ReRun [10].

We refer to the memory operations executed between two
strata as a strata region. The offline analysis can analyze one
strata region at a time, and thus its search space is bounded.
However, for analyzing a strata region, the analyzer needs
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to know the final memory state at the end of the strata re-
gion. For the last strata region in the recorded execution, we
know the final state from the core dump. Thus, we analyze
the last strata region first. Once a strata region is analyzed,
the initial memory state for that region can be determined.
The initial memory state of a strata region is guaranteed to
be same as the final memory state of the strata region that
immediately precedes it. This is an important property, as
it ensures that we do not have to backtrack our analysis for
older strata regions. We now provide an informal proof for
why this property is true.

Consider the second example shown on the right in Fig-
ure 2. All the memory operations are to the same location
x. Analysis over this strata region produces a total order for
these memory operations. The old value for the first memory

operation in the total order derived for this strata region is
the initial value for x at the beginning of the strata region.
We need to show that this initial value will be the same in
any valid total order that satisfies the load-store semantics
constraint (described in Section 4.1). Observe that there is
an one-to-one mapping between the set of old values (which
includes the final state) and the set of new values for the
memory operations accessing a memory location, except for
one element in the old-value set. That one unmatched old
value has to the be initial value. In the right example in Fig-
ure 2, the set of old values is {2, 1, 2, 1, 1} (which includes
the final state 1) and the set of new values is {1, 2, 1, 1}. The
only unmatched old value is 2. The first memory operation x

in the derived total order has to be a memory operation with
its old value as 2. Otherwise, load-store semantics would be
violated. Notice that there are two valid total orders for op-
erations accessing x. In one order, the first memory operation
to x is x4 and in the other it is x1. The offline analyzer might
produce either of these valid orders, but both will have exactly
the same initial value as in the recorded execution. Thus the
initial values determined for a strata region is deterministic.

4.4 Offline Symbolic Analysis

Now we describe how we encode the load-store semantics
and program order constraints for memory accesses in a strata
region as a first-order formula. Before we perform the encod-
ing, we perform two reductions. One, we eliminate read-only
accesses. It includes all accesses to a location that is only
read in the strata region, because any order between them is
a valid order. Two, we eliminate local accesses. It includes all
accesses to a location that is accessed in only one processor
core. Note the read-only and local property needs to be true
only within a strata region. A memory access in a smaller
strata region will have a higher probability of being either
local or read-only. We also eliminate read/write accesses to
uncacheable memory locations.

4.4.1 Encoding Satisfiability Equations

Satisfiability modulo theories (SMT) generalizes Boolean
satisfiability (SAT) by adding linear (in)equalities, arithmetic,
arrays, lists and other useful first-order theories. By imple-
menting theories like arithmetic and inequalities, SMT solvers
have the promise to provide higher performance than SAT
solvers that work on bit level encodings. Formally speaking,
an SMT instance is a formula in first-order logic, where some
function and predicate symbols have additional interpreta-
tions, and SMT is the problem of determining whether such
a formula is satisfiable. We use the Yices [9] SMT solver.

The algorithm to encode the constraints for a set of mem-
ory operations in a strata region is shown in Algorithm 1. We

introduce one symbolic variable for each memory event. The
variable is called the Event Order (EO) variable represented
as Oi, whose values give us a total order for all the memory
operations and ensures the program order for memory events
of a processor core. We explain our encoding using the ex-
ample in Figure 2 without assuming that there is a strata log
(that is encoding for the entire execution is presented just for
clarity).

The encoding for a strata region takes two kinds of in-
puts: a set of concurrent memory event traces and a final
state dump. The set of final state dump is defined as D =
{(v1, val1), . . . , (vn, valn)}, where vi is a memory location and
vali is its final value. The set of memory event traces is de-
fined as E = 〈E1, . . . En〉, where Ep is the memory event trace
obtained from processor core p. Let |E| be the total number of
events. A memory event ei ∈ Ep has the form (v, val1, val2),
where v is the physical address, val1 is the old value and val2
is the new value. The domain of EO variables is [1..|E|]. Thus
for the left example in Figure 2, we have O1, . . . , O7 : [1..7].

Lines 1 − 4 in Algorithm 1 encode the program order con-
straints. For our example, the program order constraints are
(O1 < O2 < O3 < O4) ∧ (O6 < O7). Lines 5 − 9 in the algo-
rithm specify the uniqueness constraint for the EO variables.
This is necessary for EO variables to ensure that we get a
total order for memory events.

Lines 10 − 17 encode the load-store semantic constraints.
For each event ei we define two sets: Follower to the Same
Memory Location (FSMLi) and Follower to the Same Mem-
ory Location with the Same Value (FSMLval

i ). Let ei =
(v, valold, valnew) be an event in the processor core p, ej =
(v′, val′old, val′new) ∈ FSMLi iff (1) v = v′, and (2) if ej is also
an event in p, ej is the immediate follower to ei that access v.
FSMLval

i ⊆ FSMLi and for any ej = (v′, val′old, val′new) ∈
FSMLval

i , valnew = val′old. A memory event ei ∈ Ep can
have an empty FSMLi or FSMLval

i if e is the last memory
access to a location v in the processor core p.

We provide the load-store constraints for memory events e1

and e7 for the example on the left in Figure 2. For e1 that
accesses x1, we have FSML1 = FSMLval

1 = {e3, e5}. Its
constraint is (O1 < O3 ∧ (O5 < O1 ∨ O3 < O5)) ∨ (O1 <

O5 ∧ (O3 < O1 ∨O5 < O3)), which can be simplified to (O5 <

O1 ∨ O3 < O5) ∨ (O1 < O5 ∧ O5 < O3) because O1 < O3 ≡
true. For e7 that accesses y7, we have FSML7 = {e2} and
FSMLval

7 = ∅. Its constraint is O2 < O7, because y’s final
state value matches the new value of y7 (lines 13-14).

The SMT formula is then given to the Yices SMT solver [9].
The satisfiable solution that it finds gives us the values for the
total order and partial order variables of every memory event,
which gives us the shared-memory dependencies.

5. Results
A key advantage of our proposal is that it is complexity-

efficient. In this section, we analyze the log size and perfor-
mance overhead of our approach. We also compare the Strata
hint log size (required for our offline analysis) to the memory
race log size in ReRun [10], which is the state-of-the-art hard-
ware solution for recording shared-memory dependencies.

5.1 Evaluation Methodology

We use Simics [15] as the front end for full system functional
simulation, and our cycle accurate simulator as the back end.
We analyze four processor configurations: 2,4,8, and 16 cores.
We model MESI coherence protocol. We model a ring net-
work for the 2,4,8-core system with two memory controllers.
We use a mesh for the 16-core system also with two mem-
ory controllers. Other processor configurations are listed in
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Algorithm 1 Encoding(StrataSet E, FinalState D)

1: for p = 1; p ≤ P ; p + + do

2: Let Ep = 〈em, em+1, . . . , en〉;
3: add constraint Om < Om+1 < . . . < On;

//Program order constraint

4: end for

5: for all (ei, ej) ∈ E × E do

6: if processor(ei) 6= processor(ej) then

7: add constraint Oi 6= Oj ;
//Uniqueness constraint

8: end if

9: end for

10: for all ei = (x, iold, inew) ∈ E do

11: let FSMLi be the FSML set of ei

12: Ci =
W

ef∈F SMLi
(Oi < Of ∧

V

ek∈F SMLval
i

∧ef 6=ek
(Ok < Oi ∨ Of < Ok));

// Load-store semantic constraint

13: if x = inew ∈ D and ei is the last access to x in
p = processor(ei) then

14: Ci = Ci ∨
V

ef∈F SMLi
(Of < Oi);

15: end if

16: add constraint Ci

17: end for

Table 1. We picked a representative set of benchmarks from
various benchmark suites, which are listed in Table 2. All the
following experiments are performed on 8 core configuration,
unless not explicitly mentioned.

5.2 Strata Region Length

Our first analysis is to determine the appropriate length for
the Strata regions to bound the search space of offline analy-
sis. As discussed in Section 4.4, we eliminate local, read-only,
and uncacheable memory accesses in each Strata region, and
only analyze unfiltered memory accesses that is left after filter-
ing. Filtering the local accesses and read-only accesses within
a Strata region eliminates over 99% of memory accesses from
offline analysis. Figure 3(a) shows this result for a configu-
ration where the Strata regions are constructed when 10,000
cycles has elapsed. Here, Swim show the most portion of un-
filtered accesses, which was 0.4%.

More memory events per Strata region would increase the
cost of offline analysis. Therefore, we would like the unfil-
tered accesses per Strata region to be less than some thresh-
old. Figure 3(b) shows the time taken (y-axis uses a log scale)
to analyze Strata regions with different numbers of unfiltered
accesses. This includes the execution of all test applications
where the Strata regions are constructed with rough cycle
bound. The result shows the exponential increase of offline
analysis cost. Therefore, we would like to make most of Strata
regions have less than 500 unfiltered accesses and prevent
Strata regions from containing more than 1000 unfiltered ac-
cesses.

Based on this observation, we experimented with four dif-
ferent processor cycle bounds. Figure 4 shows the distribu-
tion of Strata intervals for each bound. Each Strata interval
would have different number of unfiltered memory accesses de-
pending on the program characteristics, and the intervals are
classified over four ranges. Figure 4 shows that for programs
like Fmm even if we use a bound of a million cycles (a stra-
tum is created after a million processor cycles has elapsed),
most intervals would still be left with less than 500 unfiltered
accesses. But for programs like Swim we need a lower cycle

bound, because we find many intervals with more than 1000
unfiltered accesses if we use a higher bound. Based on the
application to be recorded, the operating system can set the
cycle bound appropriately.

We also tried to define a bound that is based on a metric dif-
ferent from the processor cycles. Each core counts the number
of downgrade requests (invalidation or downgrade exclusive
permission), and if any core reaches a predefined bound, then
it sends a message to all the nodes to log a stratum. This ap-
proach is more complex than using a cycle-bound approach,
but could reduce the offline analysis overhead (the result is
discussed later in Section 5.3). Since we filtered out local
and read-only accesses, the number of unfiltered accesses re-
flects how many read/write sharing has been occurred. More-
over, the number of cache misses within a Strata includes
the effect of capacity misses. Therefore, downgrade counts
can work better than the cache miss counts. Figure 6(a) and
Figure 6(b) plot the number of unfiltered accesses versus the
cache miss count and downgrade count respectively for all
applications with the cycle bound of 10,000. As one can see,
there exists significant correlation between the downgrade re-
quests and unfiltered accesses, because they are a better indi-
cator of the sharing behavior in an application (more sharing
would result in more memory accesses in an interval). Fig-
ure 5 shows results for downgrade bound approach for four
different d values. For example, for barnes and swim, the
downgrade bound approach reduce the portion of intervals
with greater than 1000 unfiltered accesses.

5.3 Strata Log Size and Symbolic Analysis Perfor-
mance

Our second analysis is to see how each cycle or downgrade
bound affects Strata hint log size and offline analysis overhead.
The user or the operating system specifies the bound based on
profiling the program characteristics (it could also be based
on the log size versus offline cost one is willing to make).
Figure 7 shows the log size in mega-bytes and offline analysis
time in seconds per one second of program execution with
varying bound configurations on applications Barnes, Fmm,

Wupwise and Apache. The average bars include the result of
all test applications including these four. On average, we can
see the expected pattern that with lower cycle bound the log
size increases, but offline analysis cost decreases. Moreover,
with lower downgrade bound, the log size also increases, but
offline overhead decreases. The result was anticipated in that
reducing such bounds will generate the Strata region with
less number of unfiltered accesses, leading to make symbolic
analyzer easier to find a valid total order.

However, there are more interesting points on the Figure 7.
First of all, Fmm with cycle bound of 100,000 and 10,000 shows
that offline analysis overheads are almost same. There are two
reasons. As can be seen in the Figure 4, there is no big dif-
ference in Strata distribution between cycle bound of 100,000
and 10,000. Furthermore, with smaller cycle bound, we need
to analyze more number of Strata, which offsets the bene-
fit of analyzing smaller and simpler Strata. Second, Barnes
shows the effectiveness of downgrade bound compared to cy-
cle bound. Figure 4 show that with cycle bound of 100,000 on
Barnes, around 30% of Strata contain more than 1000 unfil-
tered accesses, which causes high overhead on offline analysis.
Here, we can reduce the cycle bound or apply the downgrade
bound. Figure 7 shows that cycle bound approach reduce
offline overhead by 20x at the cost of 10x log size, whereas
downgrade bound of 10 reduces offline overhead by 800x while
increasing the log size only by 7x. Third, Wupwise shows
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Processor Pipeline 2 GHz processor, 128-entry instruction window
Fetch/Exec/Commit width 2 instructions per cycle in each core; only 1 can be a memory operation
L1 Caches 32 KB per-core (private), 4-way set associative, 32B block size, 2-cycle latency, write-back, split I/D

caches, 32 MSHRs
L2 Caches 1MB banks, shared, 8-way set associative, 64B block size, 6-cycle bank latency, 32 MSHRs
Main Memory 4GB DRAM,up to 16 outstanding requests for each processor,320 cycle access, 2 on-chip Memory

Controllers.
Network Router 2-stage wormhole switched, virtual channel flow control, 6 VC’s per Port, 5 flit buffer depth, 8 flits

per Data Packet, 1 flit per address packet.
Network Topology a ring for 8-core, and 4x4 mesh for 16-core, each node has a router, processor, private L1 cache, shared

L2 cache bank (all nodes), 2 Memory controllers, 128 bit bi-directional links.

Table 1: Baseline Processor, Cache, Memory, and Network Configuration

Programs Description
SPLASH 2 SPLASH is a suite of parallel scientific workloads. We consider barnes, fmm, ocean from this suite. Each benchmark

executes same number of worker threads as number of cores. Fast forwarded up to second barrier synchronization
point. Trace collected for 500 million instructions.

Parsec 2.0 Parsec is a new benchmark suite for CMP. We present the results from blackscholes, bodytrack and x264. Each
benchmark runs same number of worker threads as number of cores. Fast forwarded up to second barrier synchro-
nization point except x264. Fast forwarded up to the middle of encoding for x264. Trace collected for 500 million
instructions.

SPEComp We use SPEComp2001 as another representative workload. We present the results from wupwise and swim.
OMP NUM THREADS is set to the same number of cores. Fast forwarded up to second OMP parallelization point.
Trace collected for 500 million instructions.

Apache We use Apache 2.2.13 with MPM worker (multi-threaded) configuration. We use SURGE [4] to generate web requests
to the repository of 20,000 files (totaling 480 MB). We simulate 400 clients, each with 25 ms think time between
requests. Trace collected for 500 million instructions.

MySQL We use MySQL 5.1.37 with –with-pthread configuration to force pthread based parallelization. We create a table with
one million records and use SysBench [2] to generate database requests. We test on OLTP mode with 16 threads and
allow every type of queries. Trace collected for 500 million instructions.

Table 2: Benchmarks

the highest overhead on offline analysis among all test appli-
cations. Upon further investigation, we found that Wupwise

has more fine-grained sharing than other benchmarks. Most
Strata consist of multiple variable sharing with read/write
patterns, leading to high downgrade rates. Those fine-grained
multiple variable sharing causes offline analyzer to meet lots
of conflicts when finding a valid total order assignment. Since
the downgrade rates are high, similar to Barnes, we could see
1600x offline performance improvement on downgrade bound
approach. More in detail, we also could observe that d25
and d10 does not make a big difference with cycle bound of
100,000. In Wupwise there was a Strata where one producer
updates the value once and multiple consumers (here we have
seven consumers) read the value, which give rise to the down-
grade count to be one for each core, which is smaller than the
downgrade bounds. This Strata contains fairly large number
of unfiltered memory accesses and dominates overall offline
analysis time. Forth, for some applications like Apache, cycle
bound effectively generates Strata with small number of unfil-
tered accesses. Apache shows different pattern from Wupwise

in that it shows better offline performance on cycle bound
method, but also shows the same pattern on downgrade bound
approaches as Wupwise.

Figure 8 and Figure 9 show the Strata log size and symbolic
analysis overhead over all test applications with cycle bound
and downgrade bound. We need 2.89 and 3.21 mega-bytes
respectively to record Strata hints for one second of program
execution in the 8-processor configuration. We also show the
memory race log size for ReRun [10], one with ideal bloom
filter, and another that uses bloom filters of sizes 32 bytes
for read set and 128 bytes for the write set using Henkins’
hash function. ReRun requires a log that is 4 times larger.
But, more importantly, our approach is complexity-effective.
Offline analysis takes about 1.2 days to analyze a second of
program execution on average for cycle bound of 10000. This
cost is paid only once before replay. Once analyzed, the re-
player need not incur this analysis cost, and therefore can be

interactive. On most applications except Wupwise and Swim,
the results show that the simpler cycle-bound approach is suf-
ficient.

All the previous analysis have been done with 8 core con-
figuration. Figure 10 shows the results from different hard-
ware configurations. With more number of cores, we need
proportionally increased amount of Strata log because every
core should keep the memory count when a Strata is created.
Moreover, in order to bound the search space of offline sym-
bolic analysis, it is required to assign the lower bound for
Strata creation. The results show that our approach can be
tuned for more number of cores.

5.4 Input Log Size and Recording Performance

We analyze the performance overhead for the recording for
the processor configuration described in Section 5.1. On a
cache miss, the cache block fetched is directly written back to
the main-memory along its physical address and the current
instruction count of the processor core. We evaluated an op-
timization which the packets that write-back recorded logs
are given a lower priority in the routers. Table 3 shows input
log size and the performance degradation on 8 core configu-
rations. On average, we need 292 mega-bytes of memory to
record the memory count and cache blocks fetched on misses
for one second of program execution. Swim shows the highest
cache miss rates and requires largest input log size. The worst
degradation is also for Swim (1.57% slowdown). The priority
optimization reduces the overhead to 1.48%. On average, the
non-prioritized scheme incurs 0.35% slowdown, whereas pri-
oritized scheme incurs 0.29% overhead.

6. Conclusion
Support for deterministic replay could be extremely useful

for developing parallel programs. Over the past few years,
the architecture community has made significant progress is
developing hardware designs that are both performance and
space efficient. In this paper, we focused on reducing the hard-
ware complexity of a recorder. We discussed a solution, where
a program input log consisting mainly of the initial register
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input baseline slowdown slowdown
application log size average without with

(MB/sec) IPC priority priority
barnes 505.08 10.44 0.43% 0.33%
fmm 219.84 13.04 0.01% 0.01%
ocean 432.91 4.31 0.21% 0.2%

blackscholes 198.13 12.61 0.93% 0.59%
bodytrack 122.66 11.56 0.17% 0.15%

x264 147.21 13.71 0.03% 0.03%
wupwise 186.31 13.48 0.03% 0.02%

swim 884.26 1.74 1.57% 1.48%
Apache 77.62 13.34 0.04% 0.03%
MySQL 142.86 13.59 0.03% 0.02%
average 291.69 10.78 0.35% 0.29%

Table 3: Input log size and recording performance

state and cache miss data was sufficient for ensuring replay
of the execution in multi-processor system. Much of the com-
plexity is off-loaded to a novel symbolic analysis algorithm,
which uses a SMT solver and determines the shared-memory
dependencies from the program input logs. We believe that
the proposed approach is simple enough that the hardware
vendors could soon adapt it and include it in their next gen-
eration processors.
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