
Compiler-Directed Lightweight Checkpointing for
Fine-Grained Guaranteed Soft Error Recovery

Qingrui Liu∗, Changhee Jung∗, Dongyoon Lee∗ and Devesh Tiwari†
∗ Virginia Tech, Blacksburg, Virginia, USA

†Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Email: lqingrui@vt.edu, chjung@cs.vt.edu, dongyoon@vt.edu, tiwari@ornl.gov

Abstract— This paper presents Bolt, a compiler-directed soft
error recovery scheme, that provides fine-grained and guaranteed
recovery without excessive performance and hardware overhead.
To get rid of expensive hardware support, the compiler protects
the architectural inputs during their entire liveness period by
safely checkpointing the last updated value in idempotent regions.
To minimize the performance overhead, Bolt leverages a novel
compiler analysis that eliminates those checkpoints whose value
can be reconstructed by other checkpointed values without
compromising the recovery guarantee. As a result, Bolt incurs
only 4.7% performance overhead on average which is 57%
reduction compared to the state-of-the-art scheme that requires
expensive hardware support for the same recovery guarantee as
Bolt.

Keywords—Reliability, Checkpointing, Compiler

I. INTRODUCTION

Due to various factors including technology scaling and
near-threshold operation [1], [2], [3], [4], soft error resilience
has become as important as power and performance in high-
performance computing (HPC) systems. Soft errors (also
known as transient faults) may lead to application crashes
or silent data corruption (SDC) that could result in incorrect
program outputs. Thus, effective techniques for soft error
resilience are indispensable for HPC systems, and in fact it
is one of the key Exascale research challenges [5], [6], [7],
[8], [9], [10], [11].

The general idea behind soft error recovery is that when a
fault is detected, the processor takes the recovery procedure
to rollback to a fault-free state and continues execution.
For example, traditional periodic checkpointing, an industrial-
strength recovery paradigm, periodically checkpoints proces-
sor states [12], [13], [14], [15]. Upon an error, the system
triggers a rollback to a fault-free snapshot and continues
execution. However, periodic checkpointing is notoriously
expensive due to its coarse-grained checkpoint-interval which
is the period between two neighbouring checkpoints. First,
coarse-grained checkpoint-interval means that a large number
of states need to be checkpointed, incurring substantial per-
formance/area overhead. Further, the longer the checkpoint-
interval is, the more executed instructions are wasted upon
recovery, imposing significant recovery overhead [16].

Instead, emerging idempotence-based recovery schemes
become promising alternatives due to their fine-granularity
(<100 instructions) and simple recovery mechanism [17], [18],

[19], [20], [21], [22], [23], [24]. The compiler partitions and
transforms the entire program into idempotent regions [17],
[18]. At a high-level, a region of code is idempotent if it can be
re-executed multiple times and still preserves the same, correct
result [17], [18]. Therefore, the program can be recovered
from a soft error by simply re-executing the idempotent region
where the error occurred. Figure 1 shows an idempotent region
where the expected outputs are x = 8, y = z = 9. Assume
an error occurs in line 2, then y and z can be some random
numbers. However, if the error is detected within the region,
the program can simply jump back to the beginning of the
region and re-execute from it to recover the expected output
again.

1 x = m; %l i v e−i n v a r i a b l e m = 8 .
2 y = x + 1 ;
3 z = y ; %e x p e c t e d o u t p u t x = 8 , y = z = 9 .

Fig. 1. Idempotent region example

However, the existing idempotence-based recovery includes
the following limitations. First, prior idempotence-based re-
covery schemes cannot provide guaranteed recovery without
expensive hardware support (Section II), which greatly under-
mine the benefits brought by the fine-grained recovery [17],
[18], [19], [20], [21]. Second, even with the expensive hard-
ware support, prior schemes introduce a prohibitive perfor-
mance overhead due to their instrumentation/transformation.

In light of these challenges, this paper presents Bolt, a
practical compiler-directed soft error recovery scheme that
provides 1) guaranteed recovery without expensive hardware
support, 2) negligible performance overhead for fault-free ex-
ecution, and 3) fast and fine-grained error recovery on a fault.
Bolt leverages the following two key insights: First, it is still
possible to achieve the guaranteed recovery by checkpointing
only the necessary architectural states for idempotent region
boundaries without expensive hardware support. To this end,
this paper proposes eager checkpointing to preserve the value
of the registers that are live-in to the regions as soon as those
registers are defined, obviating expensive hardware support.

Second, there are correlations among the checkpoints cre-
ated by the eager checkpointing, That is, some checkpointed
value can be reconstructed by other checkpointed values,
thereby being removable without compromising the recovery
guarantee. This insight enables Bolt’s checkpoint pruning,SC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 ©2016 IEEE

a compiler technique to achieve negligible performance over-
head. Bolt explores the program dependence graph (PDG) [25]
among these checkpoints and identifies the subset of the
checkpoints, which is essential for soft error recovery, to
minimize the performance overhead.

Following are the major contributions of this paper:
• To the best of our knowledge, Bolt is the first fine-grained

soft error recovery scheme without expensive hardware
support and significant performance overhead.

• Bolt can correct soft errors even if the internal structures
(e.g., register file, instruction queue) are corrupted by
incorrect destination write events or multi-bit flips. Note
that unlike previous schemes Bolt requires no hardware
protection such as ECC for these internal structures.

• Bolt incurs only 4.7% runtime overhead across a large set
of applications which benefits from Bolt’s novel compiler
analysis to eliminate unnecessary checkpoints.

• To better understand the performance of Bolt, we also
implemented two state-of-the-art fine-grained recovery
schemes that require expensive hardware support for re-
covery guarantee. Bolt outperforms these schemes achiev-
ing 57% and 49% runtime overhead reduction on average.

II. BACKGROUND AND CHALLENGES

A. Terminologies

This paper refers the term inputs to the variables that are
live-in to a region. Such a variable has a definition that reaches
the region entry and thus has the corresponding use of that
definition after the region entry. For instance, the variable m
is an input to the region in Figure 1. This paper also refers the
term anti-dependence to a write-after-read (WAR) dependence
where a variable is used and subsequently overwritten.

B. Idempotence-based Recovery

An idempotent region is a SEME (single-entry, multiple-
exits) subgraph of the control flow graph (CFG) of the pro-
gram. It can be freely re-executed without loss of correctness.
More precisely, a region is idempotent if and only if it always
generates the same output whenever the program jumps back
to the region entry from any execution point within the region.
To achieve this, the region inputs must not be overwritten,
i.e., no anti-dependence on the inputs, during the execution
of the region. Otherwise, re-executing the region can generate
unexpected output since the inputs do not remain the same
when the program jumps back to the beginning of the region.

In light of this, researchers propose different kinds of
techniques to preserve the inputs. Any recovery schemes must
preserve both the memory and register inputs with regard to the
region boundary for correct recovery. Interestingly, previous
techniques [17], [21] have developed simple algorithms to
elegantly dismiss the overhead for preserving the memory
inputs by partitioning the regions such that the memory
inputs will never be overwritten in the regions (i.e., no anti-
dependence to the memory input). Therefore, preserving the
register inputs becomes the only source of cost.

De Kruijf et al. [17] (renamed as Idem hereafter) leverages
register renaming to eliminate the anti-dependence on the
register inputs, thus achieving idempotence at the expense of
increasing the register pressure. Figure 2 (b) shows how Idem
renames X to Z at S2 to eliminate the anti-dependence on
register X in the bottom region of the original code in Figure 2
(a). In contrast, Feng et al. [18] (renamed as Encore) preserve
the register inputs by logging at the region entry only the
register inputs that have anti-dependence. Figure 2 (c) shows
how Encore preserves the register inputs by checkpointing
only X at the region entry. Once a fault is detected during
the execution of the region, Encore consults the checkpointed
value to restore the inputs to the region for recovery.

S2: X = X+1
S3: = Y

(a)

S0: X =
S1: Y = ...

...

Z = X + 1
 = Y

(b)

X =
Y = ...

...
ckpt X

X = X + 1
 = Y

(c)

X =
Y = ...

...

X = X + 1
 = Y

(d)

X = ; ckpt X
Y = ; ckpt Y

...

X Y X Y X Y

Fig. 2. Idempotent processing and vulnerability window. (a) original code
(partitioned into regions in code boxes), (b) Idem[17], (c) Encore[18], (d)
Bolt

C. Challenges

However, prior idempotence-based recovery schemes nei-
ther guarantee recovery without expensive hardware support.
nor achieve insignificant performance overhead [17], [21],
[18], [26].

1) Lack of Recovery Guarantee: To provide guaranteed
recovery, previous schemes must assume the following expen-
sive hardware supports:

First, the contents in the internal structures (e.g., register
file, instruction queue etc.) must remain intact. To illustrate,
the vertical bars in Figure 2 (b) and (c) show the vulnerability
windows of input X and Y for the bottom region; each time
point of the window represents whether the input value in
the register file (RF) is recoverable (white) or unrecoverable
(black) from a fault at that time point. For example, if input
Y is corrupted in the RF after defined at S1, then both Idem
and Encore fail to recover from the soft error because the
re-execution starts from the corrupted states. Thus, previous
schemes assume ECC protection to the RF and other internal
structures which is excessively expensive in terms of power,
delay, and area for low-cost systems. It is reported that ECC
protection to RF can incur an order of magnitude larger
power consumption [27], [28], up to 3X the delay of ALU
operations [28] and 22% area overhead [29].

Second, all the writes events must write to the correct
destination (e.g., in Figure 1 line 3, the value in y must be
written to z instead of m). Thus, the read/write combinational
logic to those internal structure must be hardened, which is
exorbitant in commodity processors.

2) Significant Performance Overhead: Previous techniques
incur significant performance overhead due to register renam-
ing [17] or register logging [18]. We observe up to 40%
performance overhead in our experiments. Taking into account
that soft errors rarely occur (1/day in 16nm [30]), programmers
are reluctant to use idempotence for such rare error correction
at the cost of paying the high performance overhead all day.

D. Fault Model

Except the aforementioned hardware support in the inter-
nal structures, Bolt shares the other assumptions in prior
idempotent recovery schemes [17], [18], [26], [21], [19]:
(1) Store queue, caches, and main memory are protected
with ECC which has already existed in current commodity
processors [31], [32]. (2) As with branch misprediction, all
the stores must be verified. They are buffered until the region
reaches the end with no error detected. This is called store
verification. For this purpose, gated store queue [33], [34],
[35] is often used, and we evaluated its buffering overhead in
our experiments (Section VII-C1). (3) PC and SP are protected
as in prior schemes. However, we argue that only PC needs
parity checking while in fact all other special registers can be
handled by our scheme (see Section VI). (4) All the faults
should be detected within the regions (see Section VI),

III. OVERVIEW OF BOLT

Bolt proposes two novel compiler techniques to address the
above challenges and offers a practical fine-grained recovery
scheme. Eager checkpointing provides guaranteed recovery
without expensive hardware support. Checkpointing pruning
minimizes the performance overhead by eliminating unneces-
sary checkpoints.

A. Eager Checkpointing: Guaranteed Recovery without Pro-
hibitive Hardware Support

Bolt preserves the register inputs to the regions throughout
their entire liveness period. To achieve this, Bolt eagerly
checkpoints the value of register inputs to a region as soon as
they are defined (Figure 2(d)). Such define-time checkpointing
guarantees recovery of all the inputs to each idempotent code
region. In particular, Bolt checkpoints once for each register
input by tracking the last write. Even if an input is defined
multiple times in one region, Bolt checkpoints only one time
the value of the last definition.

Artificial Define-Checkpoint Vulnerable Window: One
may be concerned about a vulnerable window where the
register is defined and subsequently checkpointed. However,
such vulnerable window is considered artificial because in
eager checkpointing, the checkpoints in one region are for the
subsequent regions, not the current one. That is, even if a
checkpoint is corrupted during the define-checkpoint window
in a region r, the checkpoint will not affect the recovery of the
current region r and will be recreated (corrected) during the re-
execution of r upon recovery. Thus, such a vulnerable window
is implicitly eliminated in our eager checkpointing scheme.
In case the checkpointing store may corrupt other memory

S2: X = X + 1
S3: = Y

Recovery:
X = load[ckpt@S0]
Y = load[ckpt@S1]

S0:X = ; ckpt X
S1:Y = ; ckpt Y

...

Fault
detected

Jump back to Rg1 s
entry & re-execute

Rg0

Rg1

Fig. 3. Bolt’s recovery model.

locations, Bolt simply follows the aforementioned fault model
and buffers those stores until they are verified as with branch
misprediction.

B. Checkpoint Pruning: Minimizing Performance Overhead

The overhead of idempotent processing is proportional to
the number of checkpoints executed at runtime. With that in
mind, we propose a novel compiler analysis that can identify
unnecessary checkpoints in those eager checkpoints based on
the following insight. For a value corrupted due to a soft
error, the original value can be restored without checkpointing
it, as long as it can be recomputed by leveraging other
checkpoints. Without compromising the recovery capability,
Bolt formulates the problem of checkpoint pruning as that
of finding a recovery slice, which can recompute the value
of the pruned checkpoints (Section IV-C). Such a slice is
similar to traditional backward slices [36], however, with
more constraints. If the recovery slice is successfully built,
Bolt removes the corresponding checkpoint. On a fault, Bolt’s
recovery runtime will simply execute the slice to reconstruct
the original value.

The takeaway is that checkpoint pruning enables Bolt to
effectively offload the runtime overhead of fault-free execu-
tion to the fault-recovery, which is indispensable taking into
account the low soft error rate(1 error/day [30]).

C. Fault Recovery Model

Once a soft error is detected during the execution of the
region, Bolt’s runtime system first discards the buffered stores
in the faulty region. Then, it takes the control to execute a
recovery block that restores all the inputs to the faulty region,
i.e., the same live-in registers as they were at the beginning
of the region before the fault occurred. Bolt can generate the
recovery block either statically or dynamically (Section V-B).
Lastly, Bolt redirects the program control to the entry of the
faulty region and re-starts from it. Figure 3 describes such a
recovery model.

Motivating Example: Figure 4 shows how Bolt works as a
whole for the byte reverse function of sha in MiBench [37].
(a) shows the code snippet of the byte reverse function. (b)
illustrates the control flow graph divided into idempotent
regions (Rg0,Rg1) by using an adapted region partitioning
algorithm based on Idem [17] where dashed lines show the
region boundaries. (c) shows Bolt’s eager checkpointing to
provide guaranteed recovery where the register inputs to Rg0

are R0∼R7. (d) minimizes the performance overhead with

Loop:
 R7 = R2 + (R0 << 2)
 R3 = ldrb [R7, 0]
 R4 = ldrb [R7, 1]
 R5 = ldrb [R7, 2]
 R6 = ldrb [R7, 3]
 strb R6 [R7, 0]
 strb R5 [R7, 1]
 strb R4 [R7, 2]
 strb R3 [R7, 3]
 R0 = R0 + 1
 if (R0 < R1) goto loop

(a)

1 void byte_reverse
2 (unsigned *buf, int count) {
3 char *ct[4];
4 count /= sizeof(unsigned);
5 for (int i=0; i < count; i++) {
6 ct[0] = buf[0];
7 ct[1] = buf[1];
8 ct[2] = buf[2];
9 ct[3] = buf[3];
10 buf[0] = ct[3];
11 buf[1] = ct[2];
12 buf[2] = ct[1];
13 buf[3] = ct[0];
14 buf += sizeof(unsigned);
15 }
16 }

R0 = 0
R1 = count_val
R2 = buf_addr

(b) (c)

Region Boundary

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

Rg0

Rg1

BB0

BB1 Loop:

 R7 = R2 + (R0 << 2); ckpt R7

 R3 = ldrb [R7, 0]; ckpt R3

 R4 = ldrb [R7, 1]; ckpt R4

 R5 = ldrb [R7, 2]; ckpt R5

 R6 = ldrb [R7, 3]; ckpt R6

 strb R6 [R7, 0]
 strb R5 [R7, 1]
 strb R4 [R7, 2]
 strb R3 [R7, 3]
 R0 = R0 + 1; ckpt R0

 if (R0 < R1) goto loop

R0 = 0; ckpt R0

R1 = count_val; ckpt R1

R2 = buf_addr; ckpt R2

(d)

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S1

S2

S3

Rg1

Rg0

BB0

BB1 Loop:
 R7 = R2 + (R0 << 2); ckpt R7

 R3 = ldrb [R7, 0]; ckpt R3

 R4 = ldrb [R7, 1]; ckpt R4

 R5 = ldrb [R7, 2]; ckpt R5

 R6 = ldrb [R7, 3]; ckpt R6

 strb R6 [R7, 0]
 strb R5 [R7, 1]
 strb R4 [R7, 2]
 strb R3 [R7, 3]
 R0 = R0 + 1; ckpt R0

 if (R0 < R1) goto loop

R0 = 0; ckpt R0

R1 = count_val; ckpt R1

R2 = buf_addr; ckpt R2

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S1

S2

S3

Rg1

Rg0

BB1

BB0

Recovery block for Rg0:

 Recover R0;
 Recover R1;
 Recover R2;
 R7 = R2 + (R0 << 2);
 R3 = ldrb [R7, 0];
 R4 = ldrb [R7, 1];
 R5 = ldrb [R7, 2];
 R6 = ldrb [R7, 3];

(e)

Fig. 4. Motivating example with byte reverse code of sha in MiBench: only interesting part is shown

checkpoint pruning where (e) is the resultant recovery block
for Rg0. For example, the value of R7 can be reconstructed
by executing the recovery block that consults the checkpointed
values of R0 and R2. In this example, Bolt can achieve fine-
grained guaranteed recovery without expensive hardware and
over 80% performance improvement by pruning the check-
points in the loop.

Algorithm 1 The High-level Bolt Algorithm
Inputs: CFG PDG
Outputs: Minimal Checkpoint Set MIN CKPT

1: REGION← region formation(CFG)
2: BASE CKPT← eager checkpoint(REGION, CFG)
3: MIN CKPT ← checkpoint pruning(BASE CKPT,

CFG, PDG)

IV. BOLT COMPILER

Algorithm 1 shows a high-level Bolt algorithm which takes
the control flow graph (CFG) and program dependence graph
(PDG) as inputs. Bolt first partitions the entire CFG into
different regions (Section IV-A). Then, it performs the eager
checkpointing, that inserts checkpoints right after the last-
updated registers in each region, to preserve the register inputs
for guaranteed recovery without expensive hardware support
(Section IV-B). Finally, Bolt prunes those checkpoints that can
be reconstructed by other checkpointed value to minimize the
performance overhead (Section IV-C, IV-D).

A. Region Formation

Bolt is versatile in that it is applicable to many region
formation schemes [17], [18], [19], [20]. As discussed in Sec-
tion II-B, previous idempotence-base recovery schemes [17],
[21] have developed a simple region partition algorithm to
guarantee no memory anti-dependence in the regions, making
preserving register inputs the only cost.

For comparison of Bolt and other idempotence-based re-
covery schemes, this paper intentionally uses Idem’s region
formation algorithm [17] to partition the entire program (CFG)

into different idempotent regions. By doing so, we can fairly
compare Bolt with the other schemes that leverage different
methodologies for register input preservation.

Bolt also treats memory fences as region boundaries to obey
underlying memory models and handles the I/O instructions
as single instruction region as with [17], [18].

In particular, Bolt checks if the original idempotent regions
overflow the store buffer, in which case such regions are split.
This is particularly important for the store verification (See
fault model in Section II-D). Note that prior schemes do not
prevent the overflow, which is another reason why they cannot
achieve the guaranteed error recovery1.

Input: R1, R2, R3

BB0

BB1 BB2

BB3

Rg0

S9: R1 = R2+50

S6: R1 = R2%10
S7: R1 =R2 %5
S8: if (R1 >2)

S2: R2 = R3%10
S3: if (R2 >5)

S4: R2 = R3+10
S5: if (R2 > 0)

S0: R3 = ;

S1: if (R3 > 0)

BB4

BB5

BB6 BB7

BB8

Last updates for
the inputs of Rg0:
R1 : S6, S7, S9

R2 : S2, S4

R3 : S0

Fig. 5. An eager checkpointing example

B. Eager Checkpointing

To achieve guaranteed recovery in the absence of expensive
hardware support, Bolt employs eager checkpointing that
preserves register inputs to a region right after their definition.
That is, Bolt is interested in the last update instructions
that define the register inputs prior to the region entry. The
identification of register inputs (live-ins) to a region is a
standard analysis in modern compilers and is omitted due to
space constraints. Given the partitioned region REGION, for
each register input r of a region Rg ∈ REGION, Bolt reverses

1Bolt’s technique to avoid the overflow is implemented on top of Idem’s
region formation and used for other schemes in experiments for comparison.

the edges of CFG and traverses it starting from the entry of Rg
in a depth first order, to search for the last update instructions
of r. Figure 5 shows an example of the last updates to the
inputs of region Rg0 where the inputs are R1, R2, R3.

All those identified last update instructions form the baseline
checkpoint set BASE CKPT where some checkpoints in the
set might be eliminated by Bolt’s checkpoint pruning tech-
niques. Therefore, in the worst case, Bolt can just instruments
right after these last update instructions in BASE CKPT
with checkpointing stores to achieve the guaranteed recovery,
but at a worse performance overhead. Upon recovery, Bolt’s
runtime system simply recovers the checkpointed input as in
Figure 3. Hereafter, we refer the last updates in BASE CKPT
as checkpoints in ease of illustration.

C. Checkpoint Pruning

To reduce the runtime overhead, Bolt prunes the check-
points in BASE CKPT without compromising the recovery
capability. The problem of checkpoint pruning is to find an
minimal subset MIN CKPT out of BASE CKPT that still
allows Bolt’s recovery runtime to restore all the register inputs
of a faulty region in the event of a soft error. To address this,
Bolt leverages the following axiom:

Axiom 1: Given a register input r of a region Rg, if r’s
value can be safely reconstructed, the checkpoints for r’s last
updates are unnecessary for Rg.

At the first glance, the checkpoint pruning problem simply
seems like a program slicing problem [36], [38] by exploring
the backward slice of the register inputs. However, traditional
backward slicing cannot guarantee the value of the register
inputs to be safely reconstructed, i.e. restoring the register
inputs to their original value. Note that such a guarantee
is required according to axiom 1. Therefore, eliminating
checkpoints with the traditional backward slicing is unsafe.
For instance, Figure 6 shows examples of unsafe checkpoint
pruning with the traditional backward slicing. (a) tries to
eliminate the checkpoint for input R2 of region Rg1 at S3 by
leveraging S1 and S2. However, the checkpoint for R1 at S1 is
unsafe as it will be overwritten by the checkpoint at S5. Note,
each register has one checkpointing location in a specially
reserved region of the stack frame. Thus, the value of R2

cannot be recovered upon recovery. (b) attempts to eliminate
the checkpoints for input R1 of region Rg1 at S5 and S9

leveraging backward slicing to recover input R1. However, the
checkpoint of R3 at S1 is unsafe as it might be overwritten
by S7, thus failing to recover R1 due to the lack of control
flow consideration.

Therefore, Bolt introduces recovery slice which guarantees
to restore all the register inputs upon recovery. To determine
whether it is safe to eliminate the checkpoints for a register
input, we must guarantee that the integrity of both the data
flow and control flow of the recovery slice such that the
recovery slice can precisely reconstruct the value of register
inputs without eagerly checkpointing them.

To construct a recovery slice from the program dependence
graph (PDG), Bolt must depend on (1) Data dependence back-

(a)

Input: R1,R2

S4: R1 = ...
S5: ckpt R1

S1: ckpt R1

S2: R2 = R1

S3: ckpt R2

Rg1

S4: R1 = R2

S5: ckpt R1

S6:R3 = ...
S7:ckpt R3

S8:R1 = R3

S9: ckpt R1

Input: R1,R2,R3

S1: ckpt R3

S2: ckpt R2

S3: If (R3 > 0)

Rg1

(b)

BB0

BB2
BB1

BB3

BB0

BB1

BB2

Rg0

Rg0

Fig. 6. Examples of unsafe checkpoint pruning.

tracking to ensure that the resulting slice recomputes the value
of register input from only safe checkpoints and statements;
and (2) Control dependence backtracking to guarantee the
right control flow in the recovery slice. Note, in a PDG, all
the statements are represented as vertices and connected with
edges annotating control/data dependence relationship.

1) Data Dependence Backtracking: To reconstruct the data
flow of register inputs, Bolt traverses backwards through the
vertices of the PDG via the data-dependent edges in a depth-
first search manner. We use the notation v

r−→
δd

v′ to denote

v is data dependent on v′, i.e., v′ defines the register r that
can reach v, and v uses r. Given a register input r of a region
Rg, Bolt backtracks along a sequence of vertices (RgE

r1−→
δd

v1
r2−→
δd

. . .
rn−→
δd

vn), where RgE represents the entry of region
Rg which is data-dependent on r1 and vn is the last node in
a PDG path. In particular, the backtracking terminates along
the path when one of the following is met:
• The vertex vn has no data-dependent edge;
• The vertex vn has already been in MIN CKPT set;
• The vertex vn is an unsafe statement.
First, if there is no vertex on which vn depends, it is

in form of r = const, On a fault, the register can be re-
assigned with the constant value, thus Bolt can recover r
without checkpointing it.

Second, if vn has already been in in MIN CKPT set, it
means vn fails in previous data/control-dependence backtrack-
ing. Therefore, Bolt terminates backtracking along the path
and validates whether vn is a safe checkpoint to ensure data
flow integrity. That is, the checkpoint must not be overwritten
along all the reachable control flow paths (RCFP). We
use the notation v

r−→
∆

v′, where v defines r used by v′,
to denote the control flow paths on which v can reach v′

without intervening definition of r along the path. To validate
a checkpoint (vn) along the path, vn

rn−→
∆

vn−1
rn−1−−−→

∆
. . .

r1−→
∆

RgE, Bolt simply traverses the path to ensure there is no
other checkpoints for the same register rn. If the validation
succeeds, Bolt terminates backtracking along this path. Other-
wise, Bolt return to the most recent vertex (vi) that are in the
BASE CKPT set and validate the vertex until Bolt find a safe
checkpoint and place the checkpoint to MIN CKPT. Then,
Bolt terminates backtracking along this path. Note, whenever

Bolt puts a checkpoint into MIN CKPT, Bolt needs to verifiy
whether the checkpoint breaks any existing recovery slices,
i.e. the checkpoint overwrites the checkpoints depended by the
existing recovery slices. In such cases, Bolt needs to invalidate
those broken recovery slices and re-construct them.

Lastly, Bolt also terminates backtracking if vn is an unsafe
statement, e.g., load, call. Same with validating checkpoints,
if the value in the memory location of the load is overwritten
along RCFP, Bolt cannot rely on the value to build the
recovery slice. Thus, Bolt must validate the load same as
validating checkpoints to ensure the no stores overwrite the
same memory location. As Bolt limits itself to intra-procedural
in its current form, Bolt also stops backtracking from call
instructions and applies the same procedure to call instructions
as with dealing unsafe checkpoints.

BB0

BB1

BB2

S7: R1 =R2 %5

S2: R2 = R3%10 S4: R2 = R3+10

S0: ckpt R3

BB4

BB6

BB8Input: R1

S6: R1 = R2%10

BB3

BB5

S9: R1 = R2+50 BB7

S6

S7

S9

Rg0

Fig. 7. A data dependence backtracking example

Figure 7 shows a data dependence backtracking example
following the example in Figure 5 for a live-in register R1

with respect to region Rg0. Assuming the checkpoint at S0

is already in MIN CKPT, all data-dependent paths terminate
at S0 during the data dependence backtracking. The reachable
control flow paths (RCFP) via R1’s last update instructions
(i.e., S6, S7, and S9) are shown in with different type of line.
The checkpoint for R3 at S0 is not overwritten along all the
RCFP. Thus, Bolt ensures the integrity of the data flows for
register input R1.

2) Control Dependence Backtrack: Suppose a vertex vi
has a set of data-dependent vertices (V) for register r, i.e.,
∀v′i ∈ V, vi

r−→
δd

v′i. Once all the data-dependent paths via vi

successfully finish data dependent backtracking, Bolt should
ensure the control flow integrity so that the recovery slice
can produce the expected value of r at vi. We consider the
following 3 cases according to the size of V, i.e., the number of
data-dependent vertices of vi, and whether all these dependent
vertices are checkpointed or not:

• If |V| is 1, the control always reaches vi after its singular
data-dependent vertex.

• If |V| is greater than 1 and all the data-dependent vertices
are checkpointed, there is no need to distinguish the
checkpoints as they store the checkpointed value to the
same location reserved in the stack frame. Thus, we can
restore the value of r from the location.

• If |V| is greater than 1 but not all of the data-dependent
vertices are checkpointed, Bolt needs to distinguish them
by tracking their control flow.

Only for the third case, Bolt backtracks control dependence
to ensure that only one of the values produced by the data-
dependent vertices in V can reach the vertex vi. To achieve
this, Bolt first computes the nearest common dominating
predicate Predncd of the data-dependent vertices based on a
dominator tree [39]. Then, it traverses control-dependent edges
backwards from each vertex in V up to Predncd validating the
visited control predicates.

To simplify presentation, our discussion below assumes that
each basic block in CFG contains at most one predicate. We
use the notation v −→

δc
v′ to represent v is control dependent

on v′. For each vertex v′i in V, Bolt inspects the sequence of
vertices is v′i −→

δc
vc0 −→

δc
. . . −→

δc
vcn where vc0 . . . vcn are the

control dependence predicates, and vcn is the Predncd vertex.
Then, Bolt validates the control dependence predicates, e.g.,
vc0 . . . vcn by exploring the recovery slice of each predicate
{vci|i ∈ {0 . . . n}}. Note that every vertex in the recovery
slice of vci should be validated by traversing the reachable
control flow paths not only to vci, but also to the region entry
RgE. In other words, every vertex in the recovery slice of vci
should also be validated along the paths: vci −→

∆
vi

ri−→
∆

. . .

RgE. Specifically, vci −→
∆

vi represents all the control flow
paths that can reach vi after vci.

Input: R1

BB0

BB1
BB2

BB3

Rg0

S7: R1 =R2 %5
S8: if (R1 >2)

S2: R2 = R3%10
S3: if (R2 >5)

S4: R2 = R3+10
S5: if (R2 > 0)

S0: ckpt R3

S1: if (R3 > 0)

BB4

BB5

BB6 BB7

BB8

S1

S3

S5

S8

Fig. 8. A control dependence backtracking example

As shown in Figure 8, once all the paths via the data
dependent vertices (e.g., S6, S7, S9 in Figure 5) of register
input R1 are successfully backtracked, Bolt starts the control
dependence backtracking. First, Bolt determines the nearest
common dominating predicate of S6, S8, S9 as S1. Then, from
each data dependent vertex (i.e., S6, S7, S9) to the nearest
common dominating predicate, Bolt validates each control-
dependent vertex, i.e., S1, S3, S5 and S8. In this example, Bolt
can validate the checkpoint S0 in the predicate S3’s recovery
slice along the reachable control flow path (RCFP) to S3

(BB0 → BB1) as well as every RCFP from S3 to the region
entry. In Figure 8, as the checkpoint for R3 is not overwritten
along all the RCFP via each control dependence predicate.
Therefore, Bolt consider the control flow of the recovery slice

of register input R1 are well-formed and the checkpoints for
the last updates of R1 (S6, S7, S9) can be safely eliminated.

D. Checkpoint Pruning for Loop

Loop:
S1: ++R0; ckpt R0

S2: if (R0 < 0)
S3: goto loop

S0: R0 = 0;

Rg0

BB1

BB0

S4: = R0

S0:R0 = 0;ckpt R0

Rg0

BB1

BB0

S1: = R0

BB2

(a) (b)

S2: ++R0; ckpt R0

S3: if (R0 < 0)
S4: goto loop

BB2

Fig. 9. An illustrating example of ineliminable checkpoints for loop

Incorporating loops into the checkpoint pruning complicates
the analysis, since they cause issues in the data/control de-
pendence backtracking. Figure 9 (a) corresponds to the case
where the data dependence backtracking fails in the loop
while Figure 9 (b) to the case where the control dependence
backtracking fails. Suppose that R0 is live-in to a region, Rg0

starts at BB2 in Figure 9 (a). The last update of R0 happens in
the instruction S1. As Bolt tries to eliminate the checkpoint for
S1, it runs into infinite backtracking as S1 is data dependent on
itself. To solve the problem, Bolt tracks the history of visited
vertices and treats any of them as unsafe statements during
the backtracking.

Figure 9 (b) demonstrates the infeasible case of the control
dependence backtracking. Here, Rg0 starts at BB1, and R0

is live-in to Rg0. Even if the data dependence backtracking
may be successful in this case (i.e., checkpoint at S0 can be
eliminated), Bolt cannot differentiate definitions of R0 at S0

and S2 by the control dependence backtracking. Fortunately,
these two cases only happen for basic induction variables and
other non-linear induction variables [40]. To get around the
problem, Bolt places the last updates of such variables into
MIN CKPT.

V. IMPLEMENTATION

The Bolt compiler described in Section IV is a series of
passes for the LLVM compiler framework [41]. After check-
point pruning, Bolt instruments each last update instruction
in MIN CKPT with corresponding checkpointing stores. In
addition, Bolt also considers the following implementation
details.

A. Limiting the Backtrack Depth for Recovery Time

In the limit, the exploration of recovery slice for a check-
point explores all the way to the initial input of the program.
That is, one can always recover by restarting the entire execu-
tion. Besides, this also influences scalability for compilation.
Therefore, it is important for Bolt to set a reasonable backtrack
depth which limits the depth of the dependence backtracking.

For example, a backtrack depth of 5 prevents Bolt from
backtracking more than 5 data/control-dependent vertices in
the program dependence graph (PDG). If the dependence
backtracking does not terminate by itself within the depth,
Bolt simply treats the last-visited vertex as if it is unsafe,
applying the same procedure to deal with invalid statements.
In particular, we discover that a small backtrack depth (10)
is enough to achieve the significant reduction of checkpoint
candidates compared with that of a high backtrack depth (100).
The implication is two-fold: First, our compiler is scalable;
Second, the fault-recovery execution time is reasonably small.
Section VII evaluates different backtrack depths in more
details.

B. Just-in-time Recovery Slice Generation

Before jumping back to the beginning of a faulty region
where the error is detected, Bolt’s runtime system needs to
executes a recovery slice to restore the inputs to the region (See
Section III). For this purpose, Bolt can generate the recovery
slice either statically or dynamically.

Bolt can statically generate the recovery slice during the
exploration to prune the checkpoints. However, two problems
limit a static approach: (1) It significantly increases the code
size by generating the recovery block for each region, which
is prohibited for low-end embedded systems. (2) More impor-
tantly, the static slice generation cannot exploit the opportunity
to prune the checkpoints for the inputs to a function boundary
which is also a region boundary. Recall that Bolt’s checkpoints
store the register value to a reserved location in the stack
frame of each function. Therefore, the checkpoints of the
callee do not overwrite that of the caller, even if they save
the same register for checkpointing. That is, we can leverage
the checkpoints in the caller to reconstruct the checkpoints
in the callee. However, it is very expensive to determine the
calling contexts statically.

In contrast, a dynamic approach is much more preferable
due to the lack of these problems. Code size will not increase,
because the recovery slice is built dynamically. For the second
problem of the static approach, Bolt’s runtime system first
builds the program dependence graph by analyzing the binary.
Then, it generates the recovery slice using the algorithm
in Section IV-C. Note that since all required analyses are
performed after the register allocation, there is no technical
problem in achieving such just-in-time slice generation without
relying on source code. By looking at the return address of
the callee’s stack, Bolt can determine the caller function and
continue the recovery slice exploration from the call site. In
essence, Bolt can “inter-procedurally” generate the recovery
slice. Section VII-D further investigates the overhead of Bolt’s
just-in-time recovery slice generation.

VI. DISCUSSION

a) Error Detection: Detection schemes are orthogonal
to our proposed recovery scheme. As with other region-based
recovery schemes [17], [26], [18], soft errors must not escape

the region where they occur to achieve full recoverability. Ex-
isting software [19], [20], [42], [30] and hardware [13], [43],
[44] approaches can be employed for the previous work [17],
[26], [18] to achieve full detection coverage within the region.
For example, Idem [17] leverages dual-modular-redundancy
(DMR) [42], [44] to detect the errors before leaving the faulty
region. However, DMR-based detection schemes come with
expensive performance/area overhead which might overwhelm
the benefits brought by the fine-grained recovery schemes.

Fortunately, Clover [19], [20] proposes an efficient error
detection scheme to contain the errors within the idempotent-
region while incurring negligible area and moderate perfor-
mance overheads. Clover detects all the soft errors before
leaving the region where they occurred by using the acoustic
sensors [13] and partial instruction duplication. In fact, Clover
can further reduce their overhead: 1) The area overhead and
detection latency of the sensors can be significantly reduced
with careful placement of the sensors on top of the processor-
die rather than naive mesh-like placement [45], [13]. 2)
Extending the idempotent-region length for less instruction-
duplication can dramatically reduce the performance overhead;
previous work [21] shows that the region can be lengthen
by orders of magnitudes with precise points-to analysis thus
tolerating a much higher detection latency. Thus, we believe
said scheme would serve well for Bolt.

b) Special Register Protection: There are various special
register in the register file such as stack pointer (SP), condition
status register (e.g. EFLAGS) and program counter PC, etc.
While all other special registers can be checkpointed in the
stack frame as with the regular registers, Bolt checkpoints SP
in a global array in case of multithreaded program. Thus,
upon recovery, we first leverage instruction like rdtscp to
retrieve the thread ID. Then, Bolt safely reloads SP from the
element in the global array with the thread ID. Last, using the
recovered SP, Bolt can retrieve all other checkpointed register
value safely from the stack frame.

c) Impact on HPC applications: As soft-errors are be-
coming more dominant in large scale HPC systems [11], it is
critical to innovate new schemes that can reduce the overhead
of checkpointing and soft-error recovery. Unfortunately, pure
software-based schemes incur very high overhead and often
have high barrier to entry for adoption since it may require
changing the application source code. On the other hand,
hardware-based schemes impose high chip area and perfor-
mance overheads. Therefore, a compiler-based scheme, such as
proposed in this study, is likely to positively impact scientific
applications running on HPC systems, since it does not require
expensive hardware support for register file protection and
manual code changes. As shown in our evaluation section, Bolt
reduces the soft-error recovery overhead by 95% for a number
of pthread applications taken from SPLASH benchmark suites,
and relieves chip designers from providing expensive ECC
protection for register file and other internal structures such as
instruction queue – potentially reducing the chip design and
testing cost as well.

VII. EVALUATION AND ANALYSIS

To evaluate Bolt, we first analyze the checkpoint pruning
optimization and how different backtrack depths impact this
optimization. In particular, how this affects the number of
checkpoints to be removed. Then, we evaluate Bolt’s overhead
and compare with the state-of-the-art idempotence-based soft
error recovery schemes. Finally, we evaluate our fault-recovery
execution overhead after fault occurrence.

A. Experimental Methodology

We conduct our simulations on top of the Gem5 simu-
lator [46] with the ARMv7 ISA, modeling a modern two-
issue out-of-order 2 GHz processor with L1-I/D (32KB, 2-
way, 2-cycle latency, LRU), and L2 (2MB, 8-way, 20-cycle
latency, LRU) caches. The pipeline width is two; and the ROB,
physical integer register file, and load/store buffer have 192,
256, and 42 entries, respectively.

For the experiments, we use three sets of benchmarks:
SPEC2006 [47] for general-purpose computation, Medi-
aBench/MiBench [48], [37] for embedded systems, and
SPLASH2 [49] for parallel systems. All the applications
are compiled with a standard -O3 optimization and fully
simulated with appropriate inputs.

B. The Breakdown of Checkpoint Candidates

Figure 10 shows how Bolt’s checkpoint pruning works
across different backtrack depths with the breakdown of
checkpoint candidates set, i.e., BASE CKPT (See Sec-
tion IV-B). In the breakdown of each bar, the top portion
corresponds to the checkpoints that can be eliminated while
the rest correspond to the necessary checkpoints that must be
instrumented. We classify the necessary checkpoints as loop
and other. The loop checkpoints are the ones Bolt cannot
prune due to limitations for loop discussed in Section IV-D,
thus they remain the same regardless of the backtrack depth. In
contrast, other checkpoints are affected by different backtrack
depths because they are the ones identified by the recovery
slice exploration. For each application, we show such five
breakdown bars corresponding to the backtrack depths of
5, 10, 20, 50, and 100, respectively (from left to right in
Figure 10). We make the following observations:
• Bolt’s checkpoint pruning technique is effective at de-

creasing the number of checkpoints. It can eliminate on
average more than 60% of the checkpoint candidates
(BASE CKPT).

• For most of the applications, the portion of the eliminated
checkpoints start to saturate when the backtrack depth is
greater than 10. Such small backtrack depth is beneficial
in two-fold: (1) the compilation will be scalable as the
number of backtrack is dramatically reduced, (2) The
recovery time is reasonably small after fault occurrence
because at most 10 instructions will be executed to
recover one register input.

With those in mind, we empirically determine the backtrack
depth as 10 for the remaining experiments.

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

m
ilc

na
m

d

so
pl

ex lb
m

gm
ea

n

ad
pc

m

ep
ic

g7
21

gs
m

jp
eg

m
es

a

m
pe

g2

pe
gw

it

sh
a

su
sa

n

gm
ea

n

ra
yt

ra
ce

ch
ol

es
ky fft

fm
m lu

oc
ea

n

ra
di

x

w
at

er
-n

s

w
at

er
-s

p

gm
ea

n

to
ta

lg
m

ea
n0

10
20
30
40
50
60
70
80
90

100

ch
ec

kp
oi

nt
s

br
ea

kd
ow

n
[%

]

SPEC2006 MediaBench/MiBench SPLASH2

loop other eliminated

From left to right, the columns demonstrate the fraction of necessary (ineliminable and other) checkpoints after applying our checkpoint pruning optimization to prune the
checkpoint candidates with different backtrack depths (5, 10, 20, 50, 100).

Fig. 10. Checkpoint Breakdown

m
cf

gc
c

bz
ip

2

pe
rlb

en
ch

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

xa
la

nc
bm

k

as
ta

r

m
ilc

na
m

d

so
pl

ex lb
m

gm
ea

n

ad
pc

m
de

c

ad
pc

m
en

c

ep
ic

un
ep

ic

jp
eg

de
c

jp
eg

en
c

m
es

a

pe
gw

it

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

m
pe

g2
de

c

m
pe

g2
en

c

sh
a

su
sa

ne
dg

e

su
sa

nc
or

gm
ea

n

ra
yt

ra
ce

ch
ol

es
ky fft

fm
m lu

oc
ea

n

ra
di

x

w
at

er
-n

s

w
at

er
-s

p

gm
ea

n

to
ta

lg
m

ea
n

100

105

110

115

120

125

130

no
rm

al
iz

ed
ex

ec
tim

e[
%

]

SPEC2006INT/SPEC2006FP MediaBench/MiBench SPLASH2

130

140
132

133 133Idem Encore Bolt-no-opt Bolt

Fig. 11. Performance overhead in terms of execution time (cycles) considering the architectural effect of store buffering.

m
cf

gc
c

bz
ip

2

pe
rlb

en
ch

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

xa
la

nc
bm

k

as
ta

r

m
ilc

na
m

d

so
pl

ex lb
m

gm
ea

n

ad
pc

m
de

c

ad
pc

m
en

c

ep
ic

un
ep

ic

jp
eg

de
c

jp
eg

en
c

m
es

a

pe
gw

it

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

m
pe

g2
de

c

m
pe

g2
en

c

sh
a

su
sa

ne
dg

e

su
sa

nc
or

gm
ea

n

ra
yt

ra
ce

ch
ol

es
ky fft

fm
m lu

oc
ea

n

ra
di

x

w
at

er
-n

s

w
at

er
-s

p

gm
ea

n

to
ta

lg
m

ea
n100

105

110

115

120

125

130

no
rm

al
iz

ed
in

st
co

un
t[%

]

SPEC2006INT/SPEC2006FP MediaBench/MiBench SPLASH2

134
135Idem Encore Bolt-no-opt Bolt

Fig. 12. Architectural-neutral performance overhead in terms of total dynamic instruction count.

C. Overheads

We compare performance overhead with that of the state-
of-the-art’s recovery techniques. For comparison, all the tech-
niques employ the same region construction algorithm de-
scribed in Idem [17]. We set the baseline to the original appli-
cation binary without any recovery support. Before presenting
more detailed discussion, we categorize and summarize each
technique as follows:

• Idem [17] uses register renaming to preserve the live-in
registers that have anti-dependence. Idem may increase
the register pressure, thus degrading the performance
due to the resulting register spillings and reloadings. It
requires expensive RF protection to guarantee soft error
recovery.

• Encore is our version of Encore [18]. It checkpoints the
live-in register, that have anti-dependence, at the region
entry. As with Idem, Encore also assumes RF protection.

• Bolt-no-opt checkpoints all the live-in registers as soon
as they are defined (Section IV-B), offering guaranteed
soft error recovery without RF protection.

• Bolt is equipped with the checkpoint pruning, that elim-
inates unnecessary checkpoints, offering guaranteed soft
error recovery at low overhead without RF protection.

We present performance overhead in two forms. The first
one reflects the architectural effect of store buffering which
buffers the unverified stores until their region ends (See fault
model in Section II). For the other form, we provide a
architecture-neutral performance overhead in terms of total
dynamic instruction count [17], [18], [21].

1) Runtime Overhead with Architectural Effect: Fig-
ure 11 shows the architectural performance overhead in terms
of execution time (cycles) where the y-axis represents the
overhead as percentage compared to that of the original
program. We modified the simulator to model the effect of
store buffering, i.e. the processor holds the stores in one region
until the region ends. Then, those stores will be drained to
the caches if there is available bandwidth between the store
queue and caches. For those regions (<0.001%) that contain
stores more than the size of store queue (42 entry in intel i7
haswell), we can place additional region boundaries to break
those regions into smaller ones so that they won’t overflow
the store queue.

Store buffering might adversely degrade the performance.
If the stores in the previous region cannot be drained to cache
due to the bandwidth congestion, those stores have to stay in
the store queue. Thus, later stores in the current region cannot
get executed if the store queue is full, causing pipeline stall.

However, we found out that such situation is rare and store
buffering trivially affects the performance by < 1% (not shown
in the figure).

Idem incurs more overhead in most of the applications
compared to other schemes. Idem can introduce on average
an 11% performance loss and up to a 30% performance loss.
This is reasonable as Idem preserves the region inputs by
register renaming which may ends up with more spillings
and reloadings. Worse, reloading instructions (load) are on
the critical path of processor which might greatly degrade the
performance. In contrast, other schemes just need to pay the
overhead of checkpointing stores which are off the critical
path. Besides, the performance overhead of Idem will further
degrade given the effect of ECC protection to the register file.
It’s interesting to observe that Idem outperforms Encore and
Bolt-no-opt in the SPLASH2 applications. This is because the
regions in the applications of SPLASH2 generally have larger
region sizes which hide Idem’s overhead as register pressure
is higher in larger regions. This phenomenon is corroborated
by the previous work [17], [21].

Encore in general performs better than Bolt-no-opt as it
only checkpoints the live-in register with anti-dependence in
the region resulting in 9.2% overhead on average. In a few
applications (e.g. gobmk, cholesky, lu etc.), Encore incurs
much more overhead (upto 40%) than Bolt-no-opt. This is
because Bolt-no-opt employ eager checkpointing and thus
avoid putting some checkpoints in the loops. As with Idem,
Encore also have to pay the overhead of RF protection.

Without RF protection, Bolt-no-opt achieves a comparable
performance overhead with Encore and Idem resulting in
9.5% on average. Since the effect of adding ECC to a RF
is not considered in our experiments, the power efficiency and
performance hits to Encore and Idem are not visible. But,
with good reason Bolt-no-opt should dominate both Encore
and Idem respectively.

To further reduce and shift the runtime overhead of fault-
free execution to that fault-recovery execution, Bolt applies
the checkpoint pruning optimization. This pruning greatly
shrinks overall overhead leading to an average overhead of
4.7%, which is 57% and 49% reduction compared to Idem
and Encore respectively. Again, the improvements are under-
estimated since our simulation does not reflect the ECC delay
of the prior work. In summary, Bolt provides guaranteed soft
error recovery at low overhead without expensive RF hardware
protection schemes.

2) Architecture-Neutral Performance Overhead: Fig-
ure 12 shows architecture-neutral performance overhead across
different schemes. A similar trend as in Figure 11 is observed
in the dynamic instruction count overhead. As expected, Bolt
executes much less instructions than Idem and Encore. Note
that a checkpoint approach is in general preferable over a
register renaming approache as stores are off the critical
path in modern out-of-order processors. The downside of the
checkpoint approach is that it needs to restore checkpointed
data for recovery making it slightly slower. However, as soft
errors happen once in a while, it is much more desirable to

Generation time (ms) ≤5 ≤10 ≤20 ≤50
Ratio in all regions (%) 95.72 3.02 0.97 0.28

TABLE I
DISTRIBUTION OF THE TIME TO GENERATE RECOVERY SLICE.

make the common fault-free case faster.

D. Fault-Recovery Overhead

After a fault occurrence, Bolt invokes the exception handler
to generate the recovery slice and execute the recovery slice
to recover the region input before releasing the control to
the entry of faulty region. Thus, fault-recovery time in Bolt
contains two parts: (1) time to generate recovery slice and; (2)
time to execute the slice and the faulty region.

As we limit the backtrack depth to 10, the maximum number
of instructions in the slice is less than 10 ×#RF, where #RF
is the size of register file. Since the region sizes are < 30
instructions on average, the time to execute the slice and
faulty region are trivially small relative to the time to generate
recovery slice.

We perform dynamic recovery slice generation to examine
Bolt’s practicality. For each recovery slice, we first generate
the program dependence graph (PDG) and dominator tree (DT)
information. Then, we generate the recovery slice based on
the PDG and DT information with our adapted algorithm.
Then the total cycles are recorded. Table I shows the recovery
time distribution for all the regions generated from all the
applications reported. We use a 2GHz processor frequency to
calculate the time in millisecond (ms) scale. As we can see,
over 95.72% of regions can generate their recovery slice within
5 ms., and 99.99% of the region can generate their recovery
slice within 50 ms, which is negligible for user as soft error
happens rather infrequently.

VIII. OTHER RELATED WORK

This section describes the prior works related to soft error
recovery. We also explain how our proposed scheme advances
the state-of-art and differs from previous approaches in this
domain.

There exists a large body of work on soft-error recovery
with software/hardware approaches. For commercial systems,
hardware/software recovery schemes [12], [13], [14], [15]
involve taking a snapshot of the system status including
register file and memory. To achieve that, they usually maintain
multiple copies of register files and a memory log to check-
point the whole system status. For example, Upasani et al. [13]
requires two additional copies of the architectural state units
(register files, RAT, etc.) with their ECC protection. Besides,
they modify the cache structure and its coherency protocol for
memory logging. Such recovery schemes usually introduce
exorbitant performance/energy/area overhead making them
only viable in high-end commercial server systems.

Flushing the pipeline to recover from a soft error [50],
[51] is another alternative. However, such recovery schemes
require the errors to be detected before the instruction is

committed in the pipeline implying a high-cost detection
scheme. Other techniques also explore simultaneous multi-
threading (SMT) [44] to recover the leading thread from the
trailing thread which occupy the computing resource leading to
performance degradation. Chang et al. enable fault recovery at
the granularity of a single instruction by incorporating triple-
modular-redundancy (TMR) [52]. TMR essentially copies the
original execution to two more redundant executions and
recovers the error by majority voting among those three
versions. However, they also introduce significant performance
overhead preventing their adoption in commodity systems.

In contrast, idempotent-based recovery is a promising re-
covery approach. Our proposed schemes eliminate the perfor-
mance/hardware overhead problem with our novel compiler
analysis making our idempotence-based recovery scheme re-
alistic to be applied in low-cost commodity systems.

IX. SUMMARY

This paper presents Bolt, a lightweight soft error recovery
scheme. Bolt guarantees 100% recovery without expensive
register file protection. It can recover from soft errors even
in the case when the RF is corrupted. To the best of our
knowledge, Bolt is the first compiler-directed recovery solution
that does not require expensive RF protection mechanisms for
idempotence.

We also demonstrate that Bolt can effectively shift the
runtime overhead of fault-free execution to that of fault-
recovery execution for lightweight idempotent processing. The
experiment results show that Bolt incurs only 4.7% perfor-
mance overhead on average which is 57% and 49% reduction
compared to two state-of-the-art schemes that require expen-
sive hardware support for the same recovery guarantee as Bolt.

X. ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their valuable comments. This work was in part supported
by the National Science Foundation under the grant CCF-
1527463 and Google Faculty Research Awards. This work
was also supported by the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is
managed by UT Battelle, LLC for the U.S. DOE (under the
contract No. DE-AC05-00OR22725).

REFERENCES

[1] L. Wang and K. Skadron, “Implications of the power wall: Dim cores
and reconfigurable logic,” IEEE Micro, pp. 40–48, 2013.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pp. 365–376, 2011.

[3] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, 2011.

[4] M. B. Taylor, “Is dark silicon useful?: Harnessing the four horsemen of
the coming dark silicon apocalypse,” in Proceedings of the 49th Annual
Design Automation Conference, DAC ’12, pp. 1131–1136, 2012.

[5] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra, A. Geist, G. Grider,
R. Haring, J. Hittinger, A. Hoisie, D. Klein, P. Kogge, R. Lethin,
V. Sarkar, R. Schreiber, J. Shalf, T. Sterling, and R. Stevens, “Top ten
exascale research challenges,” tech. rep., U.S. Department of Energy
ASCAC Subcommittee, Boston, MA, USA, Feburary 2014.

[6] S. Borka, “The exascale challenge,” in International Symposium on VLSI
Design Automation and Test, 2010.

[7] J. Torrellas, D. Quinlan, A. Snavely, and W. Pinfold, “Thrifty: An
exascale architecture for energy-proportional computing,” 2013.

[8] J. Ang, B. Carnes, P. Chiang, D. Doerfler, S. Dosanjh, P. Fields,
K. Koch, J. Laros, M. Leininger, J. Noe, T. Quinn, J. Torrellas, J. Vetter,
C. Wampler, and A. White, “Exascale hardware architectures working
group,” tech. rep., Lawrence Livermore National Laboratory, 2011.

[9] S. Amarasinghe, M. Hall, R. Lethin, K. Pingali, D. Quinlan, V. Sarkar,
J. Shalf, R. Lucas, K. Yelick, P. Balanji, P. C. Diniz, A. Koniges, and
M. Snir, “Exascale programming challenges,” in Proceedings of the
Workshop on Exascale Programming Challenges, Marina del Rey, CA,
USA, U.S Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research (ASCR), Jul 2011.

[10] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elno-
hazy, R. Harrison, W. Harrod, J. Hiller, S. Karp, C. Koelbel, D. Koester,
P. Kogge, J. Levesque, D. Reed, R. Schreiber, M. Richards, A. Scarpelli,
J. Shalf, A. Snavely, and T. Sterling, “Exascale software study: Software
challenges in extreme scale systems,” 2009.

[11] M. Snir, R. W. Wisniewski, J. A. Abraham, V. Adve, S. Bagchi, P. Balaji,
J. Belak, F. C. P. Bose, B. Carlson, A. A. Chien, P. Coteus, N. A.
Debardeieben, P. Diniz, M. E. C. Engelmann, S. Fazzari, A. Geist,
R. Gupta, F. Johnson, Krishnamoorthy, S. Leyffer, T. M. D. Liberty, Mi-
tra, R. Schreiber, J. Stearley, and E. V. Hensbergen, “Addressing failures
in exascale computing,” ”International Journal of High Performance
Computing Applications”, vol. 28, no. 2, 2014.

[12] P. Ramachandran, S. K. S. Hari, M. Li, and S. V. Adve, “Hardware
fault recovery for i/o intensive applications,” ACM Trans. Archit. Code
Optim., vol. 11, pp. 33:1–33:25, Oct. 2014.

[13] G. Upasani, X. Vera, and A. Gonzalez, “Avoiding core’s due & sdc via
acoustic wave detectors and tailored error containment and recovery.,”
in ISCA, pp. 37–48, 2014.

[14] D. Sorin, M. Martin, M. Hill, and D. Wood, “Safetynet: improving
the availability of shared memory multiprocessors with global check-
point/recovery,” in Computer Architecture, 2002. Proceedings. 29th
Annual International Symposium on, pp. 123–134, 2002.

[15] T. Slegel, I. Averill, R.M., M. Check, B. Giamei, B. Krumm, C. Kry-
gowski, W. Li, J. Liptay, J. MacDougall, T. McPherson, J. Navarro,
E. Schwarz, K. Shum, and C. Webb, “Ibm’s s/390 g5 microprocessor
design,” Micro, IEEE, vol. 19, pp. 12–23, Mar 1999.

[16] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems,” in Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on, pp. 25–36,
June 2014.

[17] M. A. de Kruijf, K. Sankaralingam, and S. Jha, “Static analysis and
compiler design for idempotent processing,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, (New York, NY, USA), pp. 475–486, ACM,
2012.

[18] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August, “Encore:
low-cost, fine-grained transient fault recovery,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 398–409, ACM, 2011.

[19] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” in Proceedings of the 16th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems 2015 CD-ROM, LCTES’15, (New York, NY, USA),
pp. 2:1–2:10, ACM, 2015.

[20] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler directed soft
error detection and recovery to avoid due and sdc via tail-dmr,” ACM
Transactions on Embedded Computing Systems (TECS), vol. XX, no. X,
2016.

[21] M. de Kruijf and K. Sankaralingam, “Idempotent code generation:
Implementation, analysis, and evaluation,” in Code Generation and
Optimization (CGO), 2013 IEEE/ACM International Symposium on,
pp. 1–12, IEEE, 2013.

[22] G. Gupta, S. Sridharan, and G. S. Sohi, “Globally precise-restartable ex-
ecution of parallel programs,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’14, pp. 181–192, 2014.

[23] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam, “Conair:
Featherweight concurrency bug recovery via single-threaded idempotent
execution,” in Proceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pp. 113–126, 2013.

[24] D. A. Popescu, E.-D. Tirsa, M. I. Andreica, and V. Cristea, “An
application-assisted checkpoint-restart mechanism for java applica-
tions.,” in International Symposium on Parallel and Distributed Com-
puting (ISPDC) (N. Tapus, D. Grigoras, R. Potolea, and F. Pop, eds.),
pp. 190–197, IEEE, 2013.

[25] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[26] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An ar-
chitectural framework for software recovery of hardware faults,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, (New York, NY, USA), pp. 497–508, ACM,
2010.

[27] ARM, “Developer suite,” 2003. Version 1.2.
[28] G. Memik, M. T. Kandemir, and O. Ozturk, “Increasing register file

immunity to transient errors.,” in DATE, pp. 586–591, 2005.
[29] D. H. Yoon and M. Erez, “Memory mapped ecc: Low-cost error

protection for last level caches,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA ’09, pp. 116–
127, 2009.

[30] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” in Proceedings of the Fifteenth Edi-
tion of ASPLOS on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XV, (New York, NY, USA), pp. 385–
396, ACM, 2010.

[31] ARM., “Cortex-a57 technique reference manual.”
[32] Intel., “Xeon e7 processor - ras servers white paper.”
[33] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,

A. Klaiber, and J. Mattson, “The transmeta code morphing™ soft-
ware: Using speculation, recovery, and adaptive retranslation to address
real-life challenges,” in Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and Runtime
Optimization, pp. 15–24, 2003.

[34] Q. Liu and C. Jung, “Lightweight hardware support for transparent
consistency-aware checkpointing in intermittent energy-harvesting sys-
tems,” in Proceedings of the IEEE Non-Volatile Memory Systems and
Applications Symposium (NVMSA), 2016.

[35] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Low-cost soft error resilience
with unified data verification and fine-grained recovery for acoustic sen-
sor based detection,” in Proceedings of the 49th International Symposium
on Microarchitecture (MICRO), 2016.

[36] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, (Piscataway, NJ, USA),
pp. 439–449, IEEE Press, 1981.

[37] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pp. 3–14, IEEE, 2001.

[38] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 1, pp. 26–60, 1990.

[39] S. Muchnick, Advanced Compiler Design Implementation. Morgan
Kaufmann Publishers, 1997.

[40] M. Wolfe, “Beyond induction variables,” in Proceedings of the ACM
SIGPLAN 1992 Conference on Programming Language Design and
Implementation, PLDI ’92, (New York, NY, USA), pp. 162–174, ACM,
1992.

[41] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization, CGO ’04, (Washing-
ton, DC, USA), pp. 75–, IEEE Computer Society, 2004.

[42] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in Proceedings of the
international symposium on Code generation and optimization, pp. 243–
254, IEEE Computer Society, 2005.

[43] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-cost, comprehen-
sive error detection in simple cores,” in Microarchitecture, 2007. MICRO
2007. 40th Annual IEEE/ACM International Symposium on, pp. 210–
222, IEEE, 2007.

[44] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault toler-
ance in microprocessors,” in International Symposium on Fault Tolerant
Computing, pp. 84–91, 1999.

[45] G. Upasani, X. Vera, and A. Gonzlez, “A case for acoustic wave
detectors for soft-errors,” IEEE Transactions on Computers, vol. 65,
pp. 5–18, Jan 2016.

[46] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, Aug. 2011.

[47] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[48] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” in Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 30, (Washington, DC, USA),
pp. 330–335, IEEE Computer Society, 1997.

[49] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-
2 programs: characterization and methodological considerations,” in
Computer Architecture, 1995. Proceedings., 22nd Annual International
Symposium on, pp. 24–36, June 1995.

[50] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee,
“Perturbation-based fault screening,” in High Performance Computer
Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on, pp. 169–180, IEEE, 2007.

[51] G. Upasani, X. Vera, and A. Gonzalez, “Framework for economical error
recovery in embedded cores,” in On-Line Testing Symposium (IOLTS),
2014 IEEE 20th International, pp. 146–153, IEEE, 2014.

[52] G. Reis, J. Chang, and D. August, “Automatic instruction-level software-
only recovery,” Micro, IEEE, vol. 27, pp. 36–47, Jan 2007.

