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GETTING TO SCALE WITH INNOVATIONS THAT RESTRUCTURE DEEPLY

HOW STUDENTS LEARN MATHEMATICS

Jeremy Roschelle, Deborah Tatar, and Jim Kaput

Most people enter the field of educational research with good intentions of

improving education and the lives of children. However, countless good ideas remain in

university halls. Curricular and pedagogical innovations rise and fall in schools because

there is insufficient understanding of how the innovation can and will be used. At the

same time, technological innovations in schools are becoming more and more politically

contentious. People, reasonably, want to know that we are giving their children “proven”

curricular materials. To Congress, this means that evaluators should engage in

“scientifically based research” ("No child left behind act", 2001). Not willing to cede the

definition of scientific methodology to lawmakers, educational researchers have begun

their own vigorous debate. Fundamentally, they ask (and this book asks): “What should

count as a scientific warrant that evidence supports a claim?”

Partisans of two important educational research perspectives have made strong

progress toward defining and defending their answers. Taking the perspective of program

evaluation and educational psychology, some researchers ask: “What works?” (Shavelson

& Towne, 2002). The objects of their inquiry are selected from available materials or

programs and the measures are related closely to today’s critical tests. Although

researchers in this group acknowledge the utility of multiple research methods, they make

their strongest case for the virtues of experimentation, preferably with randomized

controlled designs (Cook, 2000; Torgerson, 2001).
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Taking the perspective that builds on cognitive science insights and aims for the

design of new materials, technologies, or practices, another group (Design Based

Research Collaborative, 2002) asks: “What could work?” Their object of inquiry is the

design of materials for students to learn important yet vexingly difficult mathematics and

science concepts. Proposals often argue that existing materials do not meet this challenge,

and, therefore, research must be coupled tightly with design. Although researchers in this

group acknowledge the utility of multiple methods too, they make the strongest case for

design research methods. Research methods that reveal students’ deep progress on

difficult concepts and that yield theoretical insight into the “active ingredients” of

innovations are valued especially (Cobb et al., 2002; Edelson, 2002).

In this chapter, we highlight a third perspective. Like the design researchers, the

third perspective attends to innovation. And like the program evaluators, this perspective

also is concerned fundamentally with what works. Linking these two concerns is a drive

toward scale. We ask: “What could scale up?”

Getting to scale is an increasingly important mandate for educational research

(Elmore, 1996; Fullan, 2000), but the history of educational change is largely the history

of failure, either failure to be sustained or failure to reach what Elmore (1996) calls the

“core”—what happens in classrooms on a daily basis. Innovations, particularly those

involving technology, have often been cited as having high potential to address our

largest learning challenges (President’s Committee of Advisors on Science and

Technology, 1997). However, vociferous critics point out the long history of failures of

innovations to solve real problems in schools at scale, particular those involving

technology (Cuban, 2003).
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In mathematics education, technology has achieved an impressive scale already in

the form of the graphing calculator. Evidence from the National Assessment of

Educational Progress (NAEP) shows that “eighth-graders whose teachers reported that

calculators were used almost every day scored highest” (National Center for Education

Statistics, 2001, p. 144). This evidence is correlational and thus does not constitute proof

that technology causes high scores (perhaps smart students are more likely to use

calculators). The link between technology use and high test scores on NAEP does suggest

that careful research about the effects of scaling up technology in mathematics education

could address questions of great interest to parents and policy-makers.

The authors of this chapter affiliate with a group of researchers who believe that

this failure or success of innovations in education is not the result of an intrinsic match or

mismatch between technological innovations and educational problems but, rather, a

failure of past research to address the problems of scaling up innovations (Blumenfeld et

al., 2000). Research on scaling up innovation, we argue, is different from research on

“What works?” or “What could work?” Like “what-could-work” research, scaling-up

research is concerned with the potential of new innovations that may achieve ends not

measured in established tests. Like “what-works” research, scaling-up research is

concerned with the presence of a systematic effect despite environmental variability.

Thus, scaling-up research can be concerned with showing that an outcome is reproducible

and measurable at scale despite the fact that the outcome (a) does not have an established

benchmark already and (b) may occur infrequently in current conditions.

Research on scaling up innovation is not merely a matter of extending

interventions to a larger number of subjects (Cobern, 2002). In addition to extending the
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number of subjects (n), research on scaling up involves an intellectual agenda with new

foci, methods, and warrants coming into play over time. The research seeks explicitly to

move from a concept to a scalable intervention. This research starts before an innovation

is well specified (and thus long before conclusive evaluation research could begin).

Researchers must resolve a large set of design details before research at scale can begin

sensibly, while at the same time they must build evidence that makes a convincing

provisional case that the research program is promising and deserving of continued

support. This process takes a long time, spanning multiple, two-to-four-year, funding

cycles.

By using a case study, we seek to clarify issues at the heart of research programs

concerned with scaling-up innovation. We will analyze the case at two levels. First, we

use the case to draw out characteristics of research programs that incorporate a drive to

scale. The case will reveal how a program of scaling-up research is different from a

program of basic research or evaluation research. Second, we highlight three driving

questions that lie at the transition of projects from design research to implementation

research. We consider what sorts of warrants are appropriate to link evidence to claims in

the context of these driving questions.

The case study presents the research trajectory of SimCalc

(http://www.simcalc.umassd.edu/software) , an innovation that supports learning the

mathematics of change and variation. By presenting this case, we aim to ground our

arguments in details about the evolution of a research program over time. We describe

SimCalc research synoptically as occurring in six phases, each moving successively

closer toward scale. We group the six phases roughly into two larger parts containing
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three phases each. The first part of the case is about research in the context of design. The

second part of the case is about research in the context of implementation. We begin each

section with a brief presentation of a theoretical framework that helps to organize the

case.

PART 1: RESEARCH IN THE CONTEXT OF DESIGN

International comparisons (Schmidt et al., 2001) as well as national tests

(National Center for Education Statistics, 2001) have highlighted the gaps between (a)

the Americans’ aspiration to provide world-class mathematics and science education and

(b) the middling inequitable outcomes of the current for kindergarten through grade 12

educational system. To close these gaps, leaders and policy-makers call for an increased

role for research in determining how to scale up new approaches to improving

mathematics and science education (National Science Foundation, 2004; President’s

Committee of Advisors on Science and Technology, 1997).

Technology is often featured in discussions of opportunities to improve

mathematics and science education (e.g., Bransford et al., 2000). Prior literature

particularly draws out the importance of leveraging the unique representational

affordances of technology (Roschelle et al., 2000b). By 1990, basic cognitive research on

the use of representation in learning difficult mathematics and science concepts had

concluded largely that the application of technology must be domain-specific (J. Kaput,

1992). This leads to a central design problem—the problem of designing representations

particular to subject matter that unlock cognitive potential for learning.
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This design problem is at the heart of the first part of the SimCalc case that we

present here. As we shall see, the SimCalc team was deeply concerned with using

cognitive (and later social cognitive) perspectives to improve mathematics education.

Team members sought to employ the innovative potential of technology and they sought

warrants at the level of mathematical cognition to relate evidence to claims.

In the first few years of the SimCalc project(J.  Kaput, 1987a; J. Kaput, 1987b) (J.

Kaput, 1994, 1997, 2001; J. Kaput et al., 2001; J. Kaput & Roschelle, 1998; Nemirovsky

et al., 1998; Nickerson et al., 2001; Roschelle et al., 2000a), the researchers worked

within a tacit framework, which we retrospectively call “Restructuring Knowing” (RK),

to express the coherence across varied design challenges. This framework may be

visualized as a Venn Diagram of three interlocking circles. The circles signify

overlapping perspectives. The challenge of designing for restructuring knowing is to find

overlaps that unite all three perspectives (Figure 1).

<Insert Figure 1 about here>

The three intertwined perspectives of the Restructuring Knowing design framework

are:

1.  Learners’ Strengths. RK designs build on a developmental analysis of well-

established cognitive, kinesthetic, and linguistic strengths and interests (as well as

misconceptions) that learners can bring to mathematics, rather than merely their level

of mastery of the current curriculum’s prerequisite structure.

2.  Representational Technology. RK designs emphasize the novel capability of

technology to represent important domain concepts dynamically, in ways that
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generate insights among learners.

3.  Reorganized Curriculum. RK designs reorganize the curricular sequence to be

more learnable and efficient, drawing on deep analysis of the historical precedents

and the conceptual structure of mathematical ideas.

Each of these perspectives has a strong base in educational and cognitive theory.

The perspective of learners’ strengths is intrinsic to constructivism: if students are to

construct knowledge, they must construct it from prior knowledge. The alternative (but

less sound) view is that we could eliminate bad knowledge (misconceptions) and start

with a blank slate (See J. P. Smith et al., 1993 for a critique of this view). The perspective

that technology provides novel representational capabilities also has a long-standing and

distinguished theoretical pedigree (Roschelle et al., 2000b). Finally, investigators have

noted that our present curricular structure is in many ways an artifact of the media

available for representing concepts (J. Kaput et al., 2002). We are not making the

problematic argument that media alone affect the quality of learning (Clarke, 1983);

rather, we argue that media enable and constrain curricular possibilities, and new media

can give rise to radically reorganized curricula (J. Kaput, 1994, 1997).

Thus, the cardinal principle of RK design is to:

Identify design elements that draw elegantly upon and unite the perspectives of

learners’ strengths, representational technology, and reorganization of the

curriculum and its underlying epistemology.
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One reason that design research is time-consuming is the difficulty of finding

design elements that work from all three perspectives. Table 1 describes the findings of

SimCalc (J. Kaput, 2001) (J. Kaput et al., 2001; J. Kaput & Roschelle, 1998; Nemirovsky

et al., 1998; Nickerson et al., 2001; Roschelle et al., 2000a) research using the tripartite

RK principle. We will refer to this table throughout the case study. We do not provide

detailed descriptions of SimCalc’s technology and curriculum here, but they are available

in related publications (J. Kaput & Roschelle, 1998; Roschelle & Kaput, 1996; Roschelle

et al., 2000a).

<Insert Table 1 about here>

Phase 1: Early Planning (Pre–1994)

The path to large-scale adoption of an innovation begins with the definition of a

problem and an approach. The problem should be enduring because it likely will take a

long time to arrive at a scalable implementation. The approach should draw upon at least

one mechanism that plausibly has the potential to affect change at scale.

In the case of SimCalc, Kaput (1994) captured the core goal in the title as

“Democratizing access to calculus” a concept which was later clarified as the

“mathematics of change and variation.” The essence of the SimCalc approach proposed

by Kaput was to integrate new curricula with new dynamic representational capabilities

made possible by computer technology. The argument for this problem and approach was

made using historical, curricular, and literature synthesis methods. By using historical

analysis, Kaput argued that changing representations play a fundamental role in
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determining what and how we think mathematically (J. Kaput, in press). Further, he

recognized that reasoning about motion situations was central in the emergence of

calculus (Kaput, 1994), but that calculus is taught today with only weak reference to

motion phenomena. He noted that the dynamic representational features of technology

(visual animation and simulation, in particular, linked to more conventional mathematical

representations of functions and graphs) could bring motion phenomena back to the

center of calculus education.

But Kaput (1994) did not want merely to improve the standard calculus course

(indeed, a parallel but different calculus reform movement was occurring

simultaneously). He argued that we are in the midst of a long-term trend requiring more

students to gain access to more complex mathematical ideas. For example, whereas only

a small percentage of students were expected to learn algebra a century ago, today, we

expect all students in the eighth or ninth grades to learn algebra. Thus, he anticipated a

need for a bigger and more diverse population of students to gain access to calculus

earlier (Kaput, 1997). A curricular analysis revealed that the target concepts had been

sequestered in a particular layer but could be unpacked into a strand that would begin in

middle school (Kaput & Nemirovsky, 1995).

Finally, his literature review and synthesis (J. Kaput, 1992) suggested that

dynamic representation was emerging as a powerful force for educational change.

Further, it was clear that the technology to support dynamic representation in schools was

becoming cheaper and more readily available and could become ubiquitous eventually.

Indeed, in the period from 1990 through 1997, graphing calculators—a dynamic

representational appliance costing $100 or less—have gone to scale. Likewise, over a
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similar time span, another dynamic representational tool, The Geometer’s Sketchpad

(Jackiw, 1988-97), has progressed from research prototype to the most used computer

software in mathematics classrooms in the United States (Becker, 1998). Hence, using

technology for its dynamic representation capabilities has turned out to be popular among

mathematics teachers.

In the planning phase of the SimCalc project, Kaput formulated the above

argument, created a movie to depict his concept, and brought together a team of

consultants to help him plan a first research effort. At this time, the concept was limited

largely to linking motion phenomena to mathematical formalisms (see the first row in

Table 1). This idea, present in the video, is still foundational for the SimCalc program 12

years later. However, no other significant design features depicted in the video remain;

later research phases discovered stronger alternatives.

Phase 2: Designing Representations for Difficult Mathematics (1994–1997)

In the second phase (1994-1997), the National Science Foundation funded a three-

year SimCalc project. The team’s objectives were of the “What could work?”

variety—how to design representations for key concepts in the mathematics of change

and variation that could help students learn. Thus, the research methods focused on

microanalyses of very small numbers of students as they tried to learn these topics with

preliminary materials and software. The team consisted of a mathematician, a

cognitive/computer scientist, and a developmental psychologist–educational researcher.

The technology used cost at least $10,000 per student to build because the team used it

with only tens of students.
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In the first year, the team explored a number of ideas to realize the vision of the

original movie. These were presented as video games, a design element that has largely

dropped out of the SimCalc program because none of these games proved compelling in

small-scale trials with students. Indeed, small-scale explorations suggested that extensive

game narrative and reliance on gaming goals stood in tension with the deep learning that

the team sought. Neither large-scale research nor a sophisticated methodology was

needed to rule out innovations with little potential.

A defining transition came when the team realized the powerful synergies

represented in the third row of Table 1, which occurred sometime in our second year of

research. Through microanalytic developmental studies, Nemirovsky and colleagues

(Monk & Nemirovsky, 1994; Nemirovsky, 1996) found that students reason naturally

about motion sequences by breaking the complex motion into intervals. Interval-based

analysis is more natural to them than continuous-function-based analysis. In

technological explorations influenced by his cognitive science training, Roschelle found

that computers made “direct manipulation” (Shneiderman, 1982; D. C. Smith et al.,

1982) of piecewise-defined functions easy to represent; potentially, students could “drag”

the shape of a piecewise velocity or position graph to a desired shape and see the

consequences as a simulation. The project lead, Kaput, saw the opportunity to create a

more learnable curricular sequence by exploring inversions of the normal prerequisites.

For example, in the normal sequence, position graphs are taught before velocity graphs,

symbolic algebra is taught before integration or differentiation, and continuous functions

are taught before piecewise functions. Through the use of directly manipulable piecewise

functions, all these normal prerequisites could be eliminated, along with the traditional
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stumbling block at the onset of a calculus course—the definitions of continuity and limit

processes.

At the end of this phase, the team was able to build on this insight (and the related

ones in Table 1) to develop a fairly complete software tool, called SimCalc MathWorlds,

in about a year. Kaput’s slogan at the time was “software without new curriculum is not

worth the silicon it’s written in.” Much parallel exploration sought to identify curricular

structures that could build off these newly recognized learners’ strengths, representational

capabilities, and curricular starting points. The SimCalc team carried out these

explorations in locally available classrooms with Kaput and other project staff teaching

the courses because the team did not have time yet to define suitable professional

development resources for teachers. The researchers gathered much video and field-note

data, which provided a compelling demonstration that students were learning. Pretest and

posttest data showed strong gains. But a rigorous, randomized, experimental trial would

have been very hard to plan and execute: What conditions would the team try? What

would make an appropriate control? Too many variables were still in flux, and the

research group was not sure yet of what the most important ideas of the innovation were.

Importantly, we had not defined yet a stable innovation package (materials, teachers’

professional development, curriculum, assessment) that could be tested in a normal

classroom setting. Phase Two was very much a design experiment deliberately probing

new territory.

Phase Three: Designing Technology-Rich Curricula (1997–2000)

In a third phase (1997–2000), with a second round of funding, the group began to

tackle additional issues of teachers’ preparation, curricula integration with core curricular
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sequences and newly important state and national standards, an assessment framework,

and more modular software. The research began to focus on replicated classroom design

experiments, each with a defined but varied curriculum and professional development for

the teachers. The group was not seeking to show that one package worked across all

settings but to understand the variance in settings and the range of curricular approaches

and teachers’ training that might work. Consequently, we expanded the team to involve

researchers at Rutgers University–Newark (New Jersey), Syracuse University (New York

State), and San Diego State University (California) and to engage teachers and schools in

Boston and the southeastern Massachusetts region. Under the theme of democratization

of access to important ideas, the target schools and populations were those where students

were least likely to have access to calculus in their academic futures, which in turn meant

that students at the (largely urban) sites typically had low or very low socioeconomic

status. The explicit assumption was that “if we can make it work here, it can be made to

work anywhere.”

The research team now included teacher–educators, master teachers, and more

frequent interaction with commercial publishers of similar innovations. We redesigned

our software to be more flexible, to run on as wide a hardware base as possible, and to the

extent it was technologically possible, to continue to allow low-cost, quick prototyping of

an ever-widening range of uses. In our design experiments, we deliberately included

studies with varied technology, including motion detectors, devices that translated graphs

into physical motion, and machines that enabled the exploration of chaotic motion.

Versions were built eventually for desktop computers, both Mac OS and Windows, as

well as handheld computers, the Palm OS, and the world’s most popular platform for
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school mathematics, the TI-83 Plus graphing calculator. These technological

investigations embodied the adaptability of SimCalc’s representational features to varied,

inexpensive, and readily available platforms, a prerequisite for scale.

One key accomplishment of this phase was independent replication of the value of

SimCalc; independent researchers tried it in varied settings and reported their video,

field-note, and pretest and posttest data. Importantly, however, these were not

“replications” in the traditional sense of replicating an experiment. The core SimCalc

curricular insights and technologies were used in each case, but in localized packages of

software-based lessons, curricula, teachers’ professional development, and assessment.

The implementation “package” was not standardized or replicated yet. Further, because

the content could be addressed at levels from middle school to university calculus,

parallel implementations were less important than implementations that explored the

wider curricular range of the innovations. In this way, the team was learning about the

variability of settings, implementers’ preferences, opportunities and constraints, and

alternative ways of packaging the materials, in preparation for tailoring its possibilities in

the most advantageous manner for current purposes.

Another important accomplishment was detailed analysis and experimentation

with how SimCalc materials could connect into, enrich, and render more learnable the

core content in the standard curriculum. This is a critical issue for scale, because an

innovation that is too distant from curricular reality will not be adopted widely. The team

defined and elaborated a strategy for both improving the learning of important but



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     15

Handbook of design research in mathematics, science and technology education

conceptually difficult topics in the curriculum already and simultaneously adding new

opportunities to learn the mathematics of change.

In this phase, we worked on the conceptual challenges presented in the latter three

rows of Table 1. For example, we came to understand that a key aspect of SimCalc across

all of its implementation was how the materials emphasized, advanced as a problem, and

worked through the relationships among rate and accumulation representations. From the

developmental theory and learners’ strengths perspectives, Walter Stroup joined the team

and brought a Piagetian focus to the question of how children come to understand the

difference between “how much” and “how fast”—the core developmental dilemma that

SimCalc addresses (Stroup, in press). Technologically, we related this to one of the most

cited benefits of technology in the cognitive science literature: the use of multiple

representations (Goldenberg, 1995; Kozma et al., 1996). But whereas “multiple

representation” is quite a generic term in that literature, for SimCalc it came to emphasize

the ability of students to think fluidly with and between both position and velocity graph

representations. During this time, we explored many other representations but rejected

them as more problematic, less powerful, or too difficult to fit into school mathematics

within existing constraints, for example, phase–space descriptions of motion or related

quantities. On the curricular side, the SimCalc group came to understand that a key

powerful functionality of SimCalc was “snap to grid”—a technological ability that could

be used to limit graphic adjustments of functions to whole number values. This has the

curricular benefit of producing a calculus in which computations can be guided

geometrically and executed within the arithmetic of whole numbers and simple fractions,

instead of algebraically.
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Thus, by the end of this phase, the team was increasing its warrant for the belief

that the underlying concept was strong and adaptable to a wide variety of settings. We

had a good understanding of which things among the many that varied across settings

were essential to success in all the settings, and which of the many ways to align the

learners’, technological, and curricular possibilities brought the most benefit within

existing school constraints (e.g., technological, curricular, and, to a lesser extent,

teachers’ capacity). Such understanding is critical to the issue of what to try to scale up

among the many variations of materials that are invented and tried.

Part Two: Research in the Context of Implementation

Toward the end of Phase Three, the concept of scaling up was in the air. The

Internet was beginning its exponential explosion in availability and use. Commercial

learning tools specific to mathematics, such as The Geometer’s Sketchpad and the TI-83

graphing calculator, were showing market success. Further, researchers and policy

makers in the community funded by the National Science Foundation were beginning to

ask questions about how innovative research materials and practices could go to scale.

The SimCalc team had always been driven by a vision of “democratizing access

to the mathematics of change and variation”—a vision that implies scale, especially to

include disadvantaged populations. Two strategies were developed to move toward scale.

One, encouraged strongly by the funders and led by Kaput, was to make SimCalc

commercially available—a move toward sustainability of the effort required to keep

materials available and up-to-date. The other strategy, led by Roschelle, sought to engage

in research relating to scale. Early on, the team recognized that it was not ready to engage

directly in large-scale research; thus, it sought and won a planning grant, followed by a
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Phase One grant and a Phase Two grant, all under the Interagency Educational Research

Initiative.

Although the restructuring knowing framework had served well to date, scaling

up exposed new design challenges, and a new framework was needed. The team turned to

the work of Cohen and Ball (1999), who had formulated a simple elegant theory of

scaling up classroom innovations (D. K. Cohen & Ball, 1999; D. K. Cohen et al., 2003).

Their theory called attention to the trade-off between the degree of ambition in an

innovation and its degree of elaboration (or careful specification). Innovations that are

not ambitious are close to current classroom practice and thus need little specification. On

the other hand, ambitious innovations like SimCalc that deal with deep changes in

representational infrastructure require a great deal of specification. Coupled with the

growing need to articulate our innovations to varied audiences, particularly teachers, this

work helped us realize that our innovation was not specified sufficiently yet.

Further, the Cohen and Ball (1999) framework is classroom-centric; it emphasizes

features of classroom learning in a school environment. In essence, Cohen and Ball call

attention to education as an interaction among teachers, students, and resources (i.e.,

textbooks, software) in an environment (Figure 2). Relative to this triangle, Phases One

and Two had dwelt mostly on the student-to-resource relationship and had bracketed the

environment completely. Phase Three began to explore the teacher-to-resource

relationship through design experiments in preservice and in-service professional

development for teachers. Elements of the environment such as curricula, assessments,

and teachers’ professional development were beginning to come into focus weakly.

Arguably, the environmental features we understood best at the end of Phase Three were
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the nature of available technical platforms that could support widespread dissemination

and use, and, to a slightly lesser extent, the curricular constraints at work across the

country, constraints that increased in salience during Phase Three due to the rapid rise in

accountability systems across many states.

<Insert Figure 2 about here>

We now continue the case study through three somewhat shorter phases, using the Cohen

and Ball (1999) framework to organize the details. 

Phase Four: Planning for Scaling Up (2000–2002)

In a fourth phase, starting in 2000, the SimCalc team began to work intensively on

the issue of scale. We began our planning effort with a substantially expanded team,

supplemented by expert advisors. The two new additions to the team were an

experimental psychologist and an assessment development expert. The experimental

psychologist brought discipline to the process of developing a research question and

experimental design. The assessment development expert helped us formulate an

assessment blueprint. Through discussion with our expanded team, reading the literature,

and meeting with our advisors, we became aware of the many dimensions of the scaling-

up challenge.

This phase consisted entirely of planning and preparation; no new empirical

research was performed. In the course of planning, the team sought to address:

• broadening the team and grounding in scale-up literature

• specifying the innovation
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• refining the experimental design

• choosing an implementation partner.

We discussed each point in turn. A key message of this phase is the huge number of

decisions required for a transition from design research to experimental implementation

research. It takes a substantial planning effort to work through these decisions.

Curriculum

The curriculum is a dominant factor in what teachers teach and what students

learn. At scale, we have the choice of either integrating with the variety of textbooks in

use or writing one of our own. Textbook authors and publishers, we found, were not

interested in working with us to integrate our materials deeply. They perceived their

existing constraints as barely manageable and were reluctant to take on new ones,

especially ones that involved technology and that might add yet another barrier to

adoption. Writing a new textbook would be very expensive and time-consuming.

Teachers’ Professional Development

Teachers require significant support to learn to use ambitious materials like

SimCalc. The literature suggested that a major trade-off exists between short-term,

relatively isolated support for teachers and long-term support that is highly integrated

with school structures and communities. The latter is clearly better but would introduce

major expense and place the measurement of results far into the future.

Systemic Reform

The National Science Foundation had made a major investment in systemic

reform as well as standards-based curriculum development. Many researchers held the

belief that it made sense to test an innovation only in the context of systemic reform.
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However, this clearly would limit the generality of the findings because only a small

fraction of schools engage in systemic reform and subject our relatively simple

experiment to the uncertain results of a larger, more complex experiment.

Standards

Also during this time, decision-making at the school district and school level was

influenced increasingly by national and state standards. SimCalc had not been developed

initially to address a specific standard but, rather, to address a conceptual strand that

spanned many years of development—the mathematics of change and variation. We

could adapt our innovation more narrowly to particular state standards but potentially

move the innovation away from its core strengths balancing mathematical fidelity,

attention to student learning processes, and  pragmatism about the classroom , or we

could connect only weakly to standards but potentially face major problems in recruiting

school districts and schools.

Assessment

The most reputable assessments are those used for the most important testing by

states, comparisons among states, and comparisons among countries. Yet, assessments

tend to be very conservative in the content they cover. We could find very few items on

standardized tests that cover SimCalc’s topic directly—the mathematics of change and

variation. Thus, we could take the risk of using either an established test with poor

alignment to our innovation or a less established test (that we would have to construct

ourselves) that was well aligned.

Grade Level
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SimCalc materials had been developed and tested primarily for use in

mathematics classes in grades 7 through 11, although they had been used with students as

early as the elementary grades and as late as university calculus. Optimally, the creators

envisioned the program as longitudinal, with students revisiting and deepening their

understanding of an important strand of mathematics across many grade levels. But a

multiyear longitudinal experiment seemed too risky because we would have to commit to

so many details without feedback at the beginning. Furthermore, even one round of

testing would exceed the likely available budget. Thus, we had to choose a particular

grade level.

An experiment consists of many features that are not central to the hypothesis but

need to be implemented satisfactorily nonetheless. A methods professor might call the

process of getting these details right the “art of experimentation.” In part because of these

factors, one wants to aim for simplicity, supplemented with replication and extension of

the crucial points. Because of the desire for simplicity, specifying the innovation was

harder than it might seem. After six years of research, the team knew a lot about the

adaptability of SimCalc to many different student populations, teacher styles, textbooks,

state standards, etc. We needed to winnow the innovation down to a core testable

intervention. The team asked itself: “What is the potentially implementable essence of

SimCalc, and what is worth subjecting to a rigorous test?”

The essence of SimCalc was a serious question because, by this time, we had

software running on the Mac OS, in Java, on graphing calculators, and on the Palm OS,

each with subsets of different feature. We had many versions of curricular and teachers’

professional development materials covering topics ranging from the idea of rate in
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middle school to the fundamental theorem of calculus in university calculus. We had a

very large collection of assessment items that we had tried over time. If we defined

SimCalc too simplistically, as a particular software version and curriculum materials

version, then our results might not generalize to the most important version of software,

materials, teachers’ professional development, and assessment items. In the end, we did

not start by specifying the innovation; rather, we addressed all the other points first. With

these constraints in place, specifying the details of the innovation became much easier.

(The case study will return to the issue of specifying the innovation in Phase Five.)

Our planning came to focus on: “What was worth subjecting to a rigorous test?”

Three possibilities came to mind:

1. A test parallel to the force concept inventory (Hestenes et al., 1992).

2. A full-year curriculum in the eighth grade.

3. A replacement unit strategy in multiple grades.

Our reading of the work of Cohen and Hill (2001) suggested the last alternative—a

replacement unit strategy. Professional development centered on replacement units had

been somewhat successful at a large scale in mathematics reform in California. We were

particularly attracted to the idea that replacement units offered good opportunities for

both teachers’ learning and students’ learning. Further, SimCalc had developed some

materials at each grade level but not enough materials to cover an entire grade level

course. A replacement unit strategy could allow us to test a carefully targeted subset of

our materials at each grade level, consistent with SimCalc’s multigrade strand

orientation.
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Several additional considerations brought us to the conclusion that a replacement unit

strategy was our best choice. First, although a longer intervention promised more

significant benefits than a shorter one, we doubted that we could persuade a wide variety

of teachers to try something unknown, which potentially departed significantly from

existing standards and which required substantial use of scarce computing resources.

Second, a long intervention meant that we would have to put tremendous initial emphasis

on materials development. Third, a long intervention would mean more difficult

implementation metrics; that is, it would be harder to monitor whether and how teachers

complied with the condition. Fourth, a longer implementation would mean that teachers

would need more ongoing support, exceeding our likely budget. Our feeling was that if

SimCalc was successful under experimental conditions, then we would be positioned

later to ask questions about how much support was required for successful, long-term

adoption.

In this context, it was finally possible to pose a specific research question. We had

shown already positive pretest and posttest results for students in many different settings.

Most of these settings were economically disadvantaged, but one was quite affluent. As

we considered how to pursue the question of students’ learning across settings, we began

to focus on teachers. In most of the prior work, we worked with “convenience samples”

of teachers—teachers who were, if not enthusiastic, certainly interested in our

approaches, located near a major research institution, and supported throughout the year

by researchers or their staff (who were, on occasion, more experienced SimCalc

teachers). As the Cohen, Raudenbush, and Ball (2003) triangle highlighted (Figure 2), a

focus on student-to-materials interactions was only one leg of the classroom learning
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process. We knew the materials were ambitious and at more risk of failure than materials

closer to existing teaching practice. We thus identified an important uncertainty about

“What could scale up” relating to teacher-level variables. A critique we often heard also

influenced our increasing emphasis on teachers, a critique we paraphrase as: “Sure it

works with your boutique teachers, but it won’t work with the teachers in my school.”

We concluded it would be an important step toward scale to show that SimCalc could

work with a wide variety of teachers.

The focus on teachers necessitated further refinement of our expectations. Although

our major hypothesis was to predict a main effect for SimCalc compared to no SimCalc

across a wide variety of teachers, we had to ask whether we expected all teachers truly to

benefit. Two factors conditioned our expectations: one was the belief that students with

the “strongest” teachers and sites would be able to make the best use of the intervention,

the other was the belief that students with the “weakest” teachers and sites would benefit

the most from the clarity of the interface and the depth of their experience. “Strong” here

means high socioeconim status, well-prepared students, a low percentage of students with

limited proficiency in English, teachers with experience and a positive attitude, a

functional school, and so forth. “Weak,” at the extreme, means the opposite of all these

criteria.

Three alternative models deriving from these factors were that: (a) the strong gain

more, (b) the weak gain more, and (c) the very strong and the very weak would gain more

than the middle. Our democratization prediction, and our hope, was that students of all

kinds of teachers would gain with SimCalc but that students of weak teachers would

narrow the performance gap.
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Following from the selection of a replacement unit strategy and a wide variety of

teachers, it became clear that we would need to build our own assessment. Nonetheless,

to increase validity, the team vowed to use items from validated tests to the greatest

extent possible. An assessment blueprint was developed that specified how we would

seek to measure outcomes. It also became clear that we would have to explore a relatively

limited professional development strategy for the teachers rather than the longer-term

strategy most often recommended; it would not make sense to scale up a three-week

replacement unit that required three years of teachers’ professional development. We

decided we would need an implementation partner with existing outreach to a wide

variety of teachers and a track record of success with shorter-term professional

development.

At this point, we discovered that the Dana Center at the University of Texas, Austin

was leading mathematics teachers’ professional development for the state of Texas.

Teachers and administrators appeared to trust the Dana Center and Dana Center

personnel had long histories of teaching mathematics and working with mathematics

teachers. In the 2000–2001 school year, 21,000 mathematics teachers attended

professional development workshops designed by the Dana Center. Further, the lead of

the Dana Center had a long-standing interest in the strand of mathematics leading to

advanced placement calculus and had performed much work to align Texan standards

across grades to support the goal of democratizing access to advanced placement

calculus. Thus, it would be easier to align SimCalc to Texan standards than those in some

other states. The data from this census are made public. We met with Dana Center

leadership, and they became interested in joining forces for a scale-up research project.
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The only downside was that they wanted us to focus first on the seventh grade because an

eighth-grade intervention was too close to the highly charged, eighth-grade state test. We

perceived the seventh grade as less promising than the eighth grade for showing

SimCalc’s impact, but we agreed to start with the seventh grade and expand

longitudinally to the eighth grade.

Thus, after nearly two years of planning, we came to a set of compromises and

decisions that enabled us to plan our first scaling-up research project. Our deliberations

had resulted in a lower risk plan with regard to curriculum (a replacement unit), grade

levels (only slightly longitudinal), alignment to standards, and a research question

(focusing on an important mediating variable, the teacher), but a high-risk plan

elsewhere. Providing only short-term, relatively bounded, professional development for

teachers, developing our own assessment, targeting the seventh grade, and not attempting

systemic change all seemed to lower the odds of finding a systematic effect in a

controlled experiment. With these decisions in place, the team set out to test them and our

organization through a pilot experiment.

Phase Five: Preparation and Pilot of an Experiment (2002–2004)

Preparing and piloting an experiment was a complex process requiring another

two years. In this process, we had to return to the problem of specifying the innovation

and solve it. Further, the details of the experimental design required definition; a

particularly thorny problem was defining the control group. Next, the team had to

identify and/or create measures for all the variables of interest. As will become clear, we

needed either to find or to create instruments to measure each aspect of the Cohen and
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Ball (1999) framework. Last, but hardly least, we had to recruit teachers to participate in

our pilot. We discuss each aspect of the process below.

Given the decisions of Phase Four, the team knew it needed a replacement unit for

the seventh grade with accompanying professional development for the teachers. The

selection of the specific topic was made by examining the Texas state standards

(http://www.tea.state.tx.us/rules/tac/chapter111/ch111b.html). Rate and proportionality

were highlighted in the standards:

Within a well-balanced mathematics curriculum, the primary focal points

at Grade 7 are using proportional relationships…. Students use algebraic

thinking to describe how a change in one quantity in a relationship results

in a change in the other; and they connect verbal, numeric, graphic, and

symbolic representations of relationships. p. B-5

 We should point out that the curricular choice, constrained as it was by the state

standards, methodological needs, and time and resource limits, left out a large

amount of previously developed and tested content and technological capacity.

We avoided velocity functions, velocity–position connections, and their

generalization across other, nonmotion quantity types, algebraic notations, and,

indeed, most of the mathematics of change.

A middle school mathematics curriculum designer with extensive experience in

teachers’ professional development, Jennifer Knudsen, joined the team. She reviewed the

existing SimCalc materials, whose coverage of the target topics was not in the form of a

self-contained unit, did not contain the needed supporting materials for the teachers, and

were lacking the requisite production quality. Hence, Knudsen wrote a new workbook
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and Kaput’s team adjusted the software to match. The materials were designed to be

explicit about both the teachers’ and the students’ tasks. The materials also were designed

to be easy to comprehend in a short amount of time, using text sparingly, for example.

We note that although we were still designing in this phase, there was no design research.

Rather, the team trusted in the accumulated wisdom from the past phases of research to

guide the specification of the innovation.

Equally important to specifying the innovation in an experiment is specifying the

control condition. Choosing an inappropriate control could render the experiment

meaningless. Thus, the distinction between a “What works?” question and a “What could

scale up?” question becomes critical. The former tends to lead to control conditions that

provide an existing benchmark for students’ gains against which the treatment could be

shown to lead to stronger gains. The latter, however, may not have an existing established

benchmark for students’ gains, as reflected in the word “could.”

The SimCalc project was interested in showing that students could learn more

complex and conceptually difficult mathematics than is measured typically. Moreover,

we had narrowed down this extra learning to a particular context: a replacement unit on

rate and proportionality. The question of “What could scale up?” had turned into the

demonstration that a suitable effect size could be obtained in the presence of significant,

randomly distributed, variation in context. The control condition would serve to

guarantee that the observed effect was due to the intervention, and not due to, for

example, merely taking the same test again three weeks later.

A consequence of this decision was that there would be many “What works?”

questions that remained unanswered by the design. For example, the design would not
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show that technology works better than no technology because we did not insist that

teachers in the control group use no technology. We also could not assert on the basis of

this experiment that SimCalc is the “best” approach to teaching seventh-grade rate and

proportionality or that we have the best approach to teachers’ professional development

for using technology in seventh-grade mathematics.

The best control for this interpretation of our study, then, might have appeared to

be providing no intervention for teachers in the control group and merely measuring any

gains by students across two administrations of the same test. However, in designing an

experiment, one has to consider the Hawthorne effect: the idea that knowing one is in an

experimental condition produces beneficial results. Thus, we had to create a control

condition in which the control teachers would feel similarly that they were engaged in

meaningful professional development. Then, we could argue, using standard

experimental logic, that any differences between the control and the experimental groups

were due to our intervention.

Happily, the Dana Center had developed a highly regarded workshop for middle

school teachers on teaching rate and proportionality. The force of the workshop was to

encourage the teachers to take a y = kx, or rate-based, approach to proportionality. This

approach was complementary to our own. To ensure that we were treating the groups

equitably, we decided to teach this workshop to both the experimental and the control

teachers. The nature of our control condition was influenced also by the idea that, as in

medicine, few people want to be in the control condition. Therefore, we decided to give

the experiment a “delayed treatment” structure in which we promised to give all the

teachers the SimCalc treatment condition in the second year. Thus, all participating
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teachers eventually received all the benefits of participating in the experiment, with the

delayed teachers waiting a year for the SimCalc materials.

With this design in hand, the team’s next step was to identify existing measures

wherever possible and to design new measures only where necessary. We sought

measures for each aspect of the Cohen and Ball (1999) framework (Figure 2). First

consider the vertices of the triangle. We decided to measure students’ gains (our major

outcome variable) using a paper-and-pencil test. We likewise decided to measure

teachers’ growth in content understanding, a secondary outcome variable and a possible

predictor of students’ learning. The quality of the materials was “measured” by vetting

them with experts from the SimCalc team, teaching experts in Texas, and an experienced

editor of mathematics textbooks.

Next, considering the three sides of the framework (Figure 2), we decided to

observe students’ interactions with the materials by collecting the complete workbooks at

the end of the unit. We observed teachers’ interactions with the materials by collecting a

daily log in which teachers were asked to record what they did with the materials each

day. We captured teachers’ interactions with students using an observation protocol based

on Schorr’s protocol (Schorr et al., 2003) and through videotape analysis (Schorr was an

advisor to the project). Each of these three connecting lines represents a potentially

significant, mediating variable in implementations (i.e., inappropriate teacher–student

interaction could explain a failure to produce gains for the student). Finally, we sought to

measure many elements of variation in the environment. Given our hypothesis, we first

wanted to measure how teachers varied—in their background, their attitudes, and their

school setting. We collected background data using an application form, the existing
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Teaching, Learning and Computing Survey (Becker & Anderson, 1998), school-setting

information from Texas Education Authority data sets, and our own more specific

attitude scale.

Each of these measures required a significant effort to select or develop. A

discussion of the process for developing some of the intermediate and outcome measures

appears elsewhere (Shechtman, Roschelle, Haertel, Knudsen, & Tatar, 2005).  Finally,

with a well-specified intervention, an experimental design, and the measures all in place,

the final step was to recruit participants and run a pilot of the experimental design. The

results of our pilot phase have been reported elsewhere (Roschelle et al., 2005); the

important point for the present context is that the findings were both positive enough and

raised enough interesting questions to warrant a scale-up study.

Before closing this phase of the presentation, we call attention to the issue of

building trust within a multi-institutional team. Executing research on scaling up requires

a large cohesive team. It would be too easy to see the story of Phase Five only in terms of

a rational research design process. It was also a story of identifying and working through

tensions and conflicts. Although it is somewhat of an oversimplification to present it this

way, each of the three partner institutions brought a different main interest to the study.

The University of Massachusetts had the strongest interest in the integrity of its

innovation. The Dana Center had the strongest interest in serving teachers in Texas. The

SRI International team (including Tatar at Virginia Tech) had the strongest interest in

clean research methodology. These interests were often in tension and sometimes in

conflict. For example, to obtain sufficient power required treating teachers as individuals

across varying school contexts, but the best practices of professional development would
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work with teachers in teams, and SimCalc had worked most often with teachers in

schools undergoing systemic reform. Project members also met with regional education

leaders in Texas and developed further mutual understandings about the nature of school

districts across Texas and the kinds of constraints and practices in place across the

various groups of school districts. A very important component of working through a

pilot experiment together is building the relationships needed to form a cohesive team.

Phase Six: First Scale-Up Experiment (2005–2008)

Phase Six will execute SimCalc’s first scale-up experiment, starting 12 years after

the first research began. The design for the scale-up experiment involves 120–140

seventh-grade teachers and 70–80 eighth-grade teachers. At this scale, any mistake is

extremely costly. The agility of the Phase One and Two design processes, in which

anything could be tried quickly and cheaply, has been replaced now by very careful,

deliberate, slow processes. In Phase Six, SimCalc added two advisory boards to check

each step of the process. The first advisory board is reviewing each significant feature of

the experimental design. The second advisory board is reviewing the mathematical

content.

There are relatively few changes from Phase Five to Phase Six except in

recruitment. Whereas the pilot drew teachers randomly from across the state, the full

experiment will recruit teachers through Educational Services Centers in particular

regions. By concentrating on a few regions, we maintain significant diversity but avoid

skimming only the best teachers from across the state.

With regard to experimental design, a statistician has joined the team.

Hierarchical linear modeling will be employed more systematically through the design,
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sampling, and analysis processes. In addition to the experimental contrasts, an education

researcher whose area of study is focused on teachers joined the team and will conduct

case studies embedded in the main experiment to examine questions that are not

immediately amenable to experimental treatment.

WHAT WE ARE NOT DOING IN THIS FIRST EXPERIMENT

We call this the “first scale-up experiment for SimCalc” because there is so much

left to do. This experiment will occur only in one state at a few grade levels. It will not

consider longitudinal impacts on students. It will not consider the implications of

extending dynamic representation technology across the curriculum, for example, to data

analysis and geometry. It will test only a small subset of SimCalc’s curricular scope. It

will not consider the relationship between this innovation and systemic reform. It will not

consider how gains or losses on proportionality topics interact with gains or losses in

other seventh grade topics. It will not test the usefulness of technology compared to no

technology but similar curricular materials. It will not test how much professional

development for teachers is required for the benefits to accrue. It will not test even

whether teachers who resist participation are still able to work with the innovation

because participation is voluntary.

We term this the first scale-up experiment for another reason as well. This one

experiment cannot determine whether the core innovation—building on students’

cognitive strengths using dynamic representation integrated with a restructured

curriculum—is “what works” or is a failure. It could be that the experiment will fail, but

for reasons of not scaling up correctly rather than the weaknesses of the underlying

innovation. For example, a replacement unit strategy may be an incompatible way to
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scale up the SimCalc approach. On the other hand, if we get results, as in all

experimentation, replication and extension will be required for confirmation. After all,

perhaps our teachers’ professional development or the materials themselves will not scale

up. Furthermore, although we have approached what we consider the most tractable,

practical, and meaningful questions in this experiment, it may turn out that publishers and

policy-makers want other kinds of questions answered before adopting this innovation.

Indeed, SimCalc cannot scale up significantly without publishers who are willing to

produce and/or integrate the SimCalc curriculum.

Finally, the technology and the larger educational environment (the political and

economic dimensions, especially) continue to evolve so that optimizing to current

conditions is not likely to serve the longer run without corresponding updates to account

for the continuing evolution. For example, wireless classroom networks linking students’

handheld computers and a teacher’s workstation have become a major technological

factor in ongoing SimCalc work, but they are not part of the current experiment because

neither the technologies nor the curricula are sufficiently mature to support the level of

precision sought in the current experiment.

Case Summary

Many trends can be observed in this case study. First, it is long, covering more

than 10 years and five different funded “projects.” During this long timeline, the overall

drive to scale can be seen in many dimensions of the case study. We note a gradual

expansion of the research focus from students’ interactions with novel presentations of

content to include teachers’ interactions with materials and teachers’ interactions with

students. Over time, more factors in the environment come into focus and under control
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or measurement: curricular integration, teachers’ professional development, assessment,

state standards, regional teachers’ service centers, etc. Further, the number of students

expands by orders of magnitude, from small numbers of students, to small numbers of

teachers, to schools to statewide regions. In parallel, efforts were made constantly to

reduce costs and increase access to the technological prerequisites. The team expanded

over the years to cover more disciplines, eventually including people with over 10 kinds

of disciplinary expertise and high-profile advisory boards.

In concert with these changes over time, the intellectual agenda and methods

evolved. Work in Phase One had no empirical methodology; the basics of the design

relied on historical, curricular, and literature analyses. Phase Two used primarily

microanalysis of a small number of students. Phase Three involved design experiments,

with pretest and posttest measures. Phase Four was a planning phase and not particularly

methodological. Phases Five and Six focused on an experimental design but include

embedded case study analyses. At each phase, there are still a huge number of design

questions to resolve, more than can be settled using only benchmark methods. Research

on scaling-up innovation is a complex enterprise.

A particularly important and difficult transition occurred during Phase Four, when

the team finally had to confront the question: “What is the essence of SimCalc and what

is worth subjecting to a rigorous test?” We suspect this transition was difficult because of

the lack of overlap between design researchers and experimental implementation

researchers. Thus, although copious effort in the first three phases of SimCalc had

addressed questions of scale, too little effort had been devoted to the eventual demands of
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scale-up research. In retrospect, we would have put more effort earlier into firming up

measures and instruments and documenting better potential recruitment difficulties.

We also wish to emphasize that carrying an innovation through this level of

growth and transition requires leadership and vision. The project’s mission never varied

from “democratizing access to the mathematics of change and variation” (however, the

specifics of how the vision was addressed did change: although “rate” was an early focus,

“proportionality” itself was not). Throughout, the team sought to reaffirm that it was

addressing important mathematics, both in terms of present assessments and in terms of

future needs. It also sought consistently evidence that the technology works in

traditionally underserved settings. Finally, the role of technology, the basic form of the

SimCalc representational system, and the commitment to integrate technology with

textual curricula have remained unchanged since 1995.

Generality and the Limits of the Case

We suspect that the long time and the multiproject nature of scaling up

educational innovation is typical. Indeed, it is common to think of five-to-seven-year

school adoption cycles, and some educational reforms take multiple decades to

implement (Schoenfeld, 2002). Similar innovations, like The Geometer’s Sketchpad, also

took a long time to reach scale, even with a more direct route from research to

commercialization (Scher, 2000). Perhaps the most successful educational technology

product, the graphing calculator, took about seven years to transition from the initial

product to 20% market penetration, which does not count the development of the research

base on which it rests (Ferrio, 2004). Long timelines, requiring spanning multiple, two-

to-four-year project cycles, are more likely to be the rule than the exception. We note that
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without the earlier, less structured exploration, the later concern with scaling would have

had nothing to bring to scale!

We expect that the two frameworks we used to describe the case are quite general.

Cohen and Ball’s (1999) framework is fairly simple and has a straightforward ring of

truth to it. Our own restructuring knowing framework is purposely specific to the style of

the technical innovation that we were pursuing, but we would include in this class the

many software products that emphasize the computer as a tool for making visual

manipulable representations available in the mathematics classroom.

In addition, many elements of the case fit a third framework. Rogers (2003) has

organized and summarized a multidisciplinary body of work on the diffusion of

innovations. One can view this case as a series of moves to increase the potential rate of

adoption of SimCalc. Rogers argues that five factors influence the rate of adoption.

SimCalc has always been strong in observability (1); after a short demonstration of the

software, most teachers express the feeling that their students could learn more easily

with the graphic and animated representations that SimCalc provides. But SimCalc has

been weak in compatibility (2). Indeed, SimCalc’s early aim was at a strand of the

curriculum, the mathematics of change and variation, which is not important currently to

the average mathematics educator. Starting in Phase Three and continuing through Phase

Five, the team worked hard to connect SimCalc more closely with the mathematics

topics, standards, and curricula considered important by most mathematics educators.

Further, SimCalc has been somewhat difficult for teachers in terms of complexity (3),

requiring the extensive use of technology that is often unfamiliar to teachers. Some of

this complexity is irreducible—the technology is essential—so efforts focused on making



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     38

Handbook of design research in mathematics, science and technology education

the curricular materials and training workshops as clear and simple as possible. A related

effort, especially in Phases Four and Five, was to increase the trialability (4) of SimCalc

by defining a trial-use unit of implementation. We found that a replacement unit with a

very clear scope and place in the standard curriculum made it easier to recruit teachers to

try the software for our studies. Finally, one can read the trajectory of the case study as a

continuous effort to develop research-based messages that communicate strongly the

relative advantage (5) of SimCalc.

In Part One, we communicated the relative advantage through case studies and the

restructuring knowing framework. The team was able to show ordinary students learning

more complex mathematics and to articulate the potential advantage of using new

representational capabilities to draw upon learners’ strengths and reorganize the

curricular content to be more learnable. In Part Two, the team wished to make causal

claims about SimCalc’s relative advantage and to support generalization; hence, the

methodological shift to controlled experiments and more carefully defined outcome

measures.  An additional resonance with the Rogers’ framework is the alliance of change

agents and opinion leaders that we formed for the work in Part Two. Our alliance

coupled (1) Kaput, a math educator who has worked as an external change agent seeking

to influence the use of innovations in local schools with (2) Hopkins at the Texas

Educational Service Centers, a math professional development expert, who has been an

opinion leader in the adoption of innovations in mathematics education in Texas.  Finally,

from Phase Two onwards, SimCalc has been designed to be highly adaptable by users to

specific settings, a capability that Rogers (2003) terms reinvention. Reinvention increases

adoption by allowing users to make an innovation fit their local needs. In Phase Four and
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Five, we “reinvented” SimCalc to fit the needs of the seventh-grade curriculum in Texas

(although still drawing upon the essential innovation). Without being conscious of this

framework, it appears that the SimCalc team made a series of moves that fit well-

documented patterns in the diffusion of innovation.

Despite the apparent applicability of these frameworks to related innovations, it

would be a mistake to overgeneralize from this case; the field needs to consider other

cases of scaling-up innovation beyond our own before reaching firm conclusions.

Although it is likely that many scale-up projects will require increasingly

multidisciplinary teams, projects that start with experimental psychologists might take

different paths than projects that start with a mathematician. Further, the funding climate

and research policy are always changing. Most likely, if this effort had started today

instead of 12 years ago, the team would have taken a shorter path to estimating effect

sizes, for instance. Finally, because we did not have the luxury of outside observers, this

case study was written by core members of the team. An objective observer might have

produced a different account.

Discussion of Research Questions and Warrants

The case of SimCalc makes it clear that multiple kinds of research questions are

asked in a scaling-up project over time and that multiple methods are employed to answer

them. Yet, this case potentially has a stronger message than merely that multiple methods

are acceptable as long as they match the questions asked. Indeed, the major impact of this

case may be to clarify what kinds of questions are asked in an innovation project. These

are not merely “What is happening?” or “Is a systematic effect present?” Nor are the
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questions asked merely “What could work?” or theory development questions. We

suggest that the many specific research questions condense to three categories, described

below. In covering each category, we discuss the form of the warrants that might be

appropriate in supporting answers.

Question One: “Is the Candidate Innovation Well Specified?”

Researchers studying the scale up of an ambitious innovation must ask: “Is the

candidate innovation well specified?” This question is important because, as Cohen and

Ball (1999) argue, ambitious innovations must be well specified if they are to be

implemented with any degree of fidelity. Further, a strong answer to this question

increases the testability and reduces the complexity factors in Rogers (2003) framework,

thus contributing to a higher potential rate of adoption. As a project progresses to scale,

different levels of warrants provide reasonable assurance. Initially, SimCalc benefited by

showing its materials to panels of experts. Their reaction was sufficient evidence that the

prototype curricular materials were not ready. The panel-of-experts approach to obtaining

a scientific warrant continues through our use of advisory boards to review our

experimental design and expert panels to examine the construct validity of our

assessment. Another level of warrant is obtained by design experiments: If a few

handpicked teachers cannot implement an innovation, there is no chance that many

teachers will implement it at scale. The replication of design experiments in multiple sites

with multiple investigators (as occurred in Phase Three) strengthens the case that the

innovation is reasonably well specified. The strongest warrant we pursued to date was in

the pilot study (Phase Five): A wide range of teachers was given materials and a

measured amount of professional development and then asked to implement a SimCalc
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replacement unit in the context of an experimental design. Their ability to do so, as

measured by daily teaching logs, interviews, their own improvement in mathematics

content knowledge, and the differential gains of their students (versus a control group) on

an assessment, yields compelling evidence that the innovation is well specified. Hence,

we suggest that a range of methods is warranted scientifically for addressing this

question.

Question Two: “Is the Candidate Innovation Adaptable to a Wide Variety of

Circumstances?”

Researchers studying an innovation must ask: “Is the candidate innovation

adaptable to a wide variety of circumstances?” Adaptability is important because, given

the variety in American schools, some degree of curricular adaptation almost always

occurs (Porter, 2002). Further, an innovation is more likely to reach scale if it fits a

variety of both circumstances and curricular scope rather than if it is a “point solution”

(fitting only a small topic in restricted settings). Rogers (2003) uses the similar concept of

reinvention to highlight the need for adaptability.

In the case study we have presented, empirical evidence for adaptability came

primarily from design experiments. The team tried using SimCalc software at many grade

levels, with many different student populations, and in many different school settings. In

most cases, pretest and posttest measures were used to ascertain that the design resulted

in students making the expected learning gains. Pretest and posttest design can provide a

fairly strong warrant in some cases, particularly when researchers seek to justify that the

design provided students with an “opportunity-to-learn” content that very few students at

their grade level have the opportunity to learn. For example, students in the eighth grade
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rarely learn to relate velocity graphs to position graphs (an aspect of the fundamental

theorem of calculus). Further, base rates for success at this task are established for

advanced placement calculus and the concept is known to be hard for university students;

after all, its initial development required the best minds of western civilization. Thus,

pretest and posttest results provide a quite convincing warrant when they show that

students in the eighth grade make substantial gains on this kind of task. A control group

would allow a stronger warrant, but it would be extraordinarily expensive to explore the

full range of adaptation of tools like SimCalc or The Geometer’s Sketchpad through

formal, randomized, control experimentation. We expect the norm to be that investigators

will justify adaptability through case studies and will choose one, fairly constrained use

of the innovation to establish cause-and-effect relationships rigorously.

Question Three: “How Do the Effects of the Innovation Vary Within a Variable

Environment?”

Researchers must ask: “How do the effects of the innovation vary within a

variable environment?” This type of question is important because scale implies lack of

control over the environment, which varies significantly from teacher to teacher, school

to school, school district to school district, and state to state. In Rogers’ (2003)

framework, research-based claims about effects can produce strong messages about the

relative advantage of an innovation. Further, because our specific question involved

variable teachers and settings, the research also examines the compatibility of the

innovation with variations in setting. In our case, a question of this type (i.e., “How do

students’ gains vary with a wide variety of teachers?”) will be addressed using a

randomized controlled design and analysis through hierarchical linear modeling. This
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research method produces a strong warrant by allowing the research to establish a cause-

and-effect relationship between the treatment and the outcomes and to model the

contributions of various, mediating, environmental variables (in our case, variations in

teachers and teaching contexts) on the outcomes. We do not see viable alternative

methods to answer this sort of research question.

Diagramming the Tensions

The tensions among these three questions, along with the need for a long-term

innovation program to have a vision, can be represented in a spider diagram (Figure 3). In

this sort of diagram, progress over time is visualized as increasing area. Increases in area

occur as the research grows strong along multiple vectors. We place a far-reaching vision

and a model of how effects vary with the environment at opposite poles because a more

ambitious vision makes measurement more difficult. Measurement is more difficult

because current tests are less likely to probe desired outcomes and because it is harder to

get a large population to agree to test an innovation that has a long-term focus. Similarly,

adaptability and specification are in tension; it is difficult for an innovation to be both

adaptable and tightly specified.

<Insert Figure 3 about here>

The spider diagram shows that SimCalc began with a strong vision but little by

way of specification, adaptability, or documented effects—for good reason: The

innovations needed to be designed in the first place. Five years into the project, the team

was emphasizing adaptability, with a smaller degree of effort directed at documenting
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effects and refining the specification. The last two phases of the case study suggest a

contraction in adaptability (the scope of the project narrowed to replacement units in two

grade levels) but dramatic expansion of efforts to address the degree to which the

innovation was well specified and to model how the effects varied with the environment.

In general, one might expect efforts that emphasize the vision and adaptability

dimensions to use warrants from historical and curricular analyses, literature reviews, and

design experiments, whereas efforts that emphasize a well-specified innovation and

modeling effects would use warrants from advisory boards and statistical analyses of

controlled experiments. Some scaling-up innovation efforts, like SimCalc, might start

high on innovative vision. Others might begin with great strength in specification and

demonstrating experimental effects but with little evidence of adaptability to varying

school contexts. On the path to scaling up an innovation, we conjecture that researchers

must expand the area along all four vectors so that a variety of means for obtaining a

scientific warrant for claims will be required.

CONCLUSIONS

In the present political climate, innovations in mathematics and science education

are both strongly needed (to address national goals) and suspect (because of a history of

repeated failures to scale up innovations and a conservative mind-set toward educational

innovation). Increasingly, the interested parties in our educational system look to research

to overcome this tension by identifying innovations that work at scale. Research can live

up to this task only with additional attention to methodology, and, in particular, attention

to the question: “What should count as a scientific warrant that evidence supports a

claim?” Currently, debate among educational researchers and research policy-makers has
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begun to shore up answers for two kinds of research: small-scale innovation and large-

scale evaluation.

By using the case of SimCalc, we have argued for the need to define and defend

warrants for a third kind of research: research concerned with getting a serious

foundational innovation to scale. The case suggests that research concerned with getting

to scale is different. Design research has the goal of finding out “What could work?” by

developing theories of how children or teachers learn, how school-based communities

can be supported productively, and so on. Initial evidence that an innovation could work

is very valuable to scaling up. The kind of theory development particularly needed in

scaling-up research is a theory of the active ingredients in an innovation, a theory that

provides warrants that link the claimed active ingredients to the observed effects.

Likewise, most evaluation research is concerned with programs, practices, or resources

that are well specified already. Given the huge number and the complexity of the design

decisions that face an innovation team, research must be more cost-effective and agile to

support the formative refinement of an innovation. Design research and evaluation

research need a well-articulated middle ground. We term this middle ground “scaling-up

research.”

We do not believe that scaling-up research requires its own new methods, but it

does ask different questions, which, in turn, make new demands on and purposefully

integrate existing methods. For example, the question of “What could scale up?”

combines elements of an existence proof (like design research) with elements of

modeling how randomized variability between settings mediates effect sizes (like large-
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scale experimental research). Further, the process of scaling up an innovation places

particularly strong demands on managing the tensions between (a) program vision and

what can be measured and (b) adaptability to many uses and detailed specification for one

use.

We hope that future dialogue in the research community firmly establishes

warrants for the many questions that must be answered in order to undertake a scientific

program of scale-up research, something that a single case study cannot possibly do. In

particular, it would be useful to have agreed-upon warrants for using evidence to claim

that:

• An innovation, when fully realized, could result in large-scale benefits to

the public.

• An innovation is sufficiently well specified to be tested at scale.

• An innovation is adaptable to and attractive for a sufficiently wide range

of uses to be worthy of scaling up.

• The experimental model for scaling up the innovation and measuring the

results is valid.

We suspect that these warrants will need to relate claims to evidence gathered

through a mix of design, expert panel, and experimental methods.



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     47

Handbook of design research in mathematics, science and technology education

ACKNOWLEDGMENT

This material is based upon work supported by the National Science Foundation,

most specifically under Grant No. 0228515. Any opinions, findings, conclusions, or

recommendations expressed in this material are those of the authors and do not reflect

necessarily the views of the National Science Foundation.



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     48

Handbook of design research in mathematics, science and technology education

REFERENCES

Becker, H. J. (1998). The influence of computer and internet-use on teachers' pedagogical
practices and perceptions.

Becker, H. J., & Anderson, R. E. (1998). Teacher's survey: Combined version 1-4: Center
for Research on Information Technology and Organizations, University of
California, Irvine.

Blumenfeld, P., Fishman, B., Krajcik, J., & Marx, R. W. (2000). Creating useable
innovations in systemic reform: Scaling up technology-embedded project-based
science in urban schools. Educational Psychologist, 35(3), 149-164.

Bransford, J., Brophy, S., & Williams, S. (2000). When computer technologies meet the
learning sciences: Issues and opportunities. Journal of Applied Developmental

Psychology, 21(1), 59-84.
Clarke, R. (1983). Reconsidering research on learning from media. Review of

Educational Research, 53(4), 445-459.
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2002). Design experiments

in educational research. Educational Researcher, 32(1), 9-13.
Cobern, C. E. (2002). Rethinking scale: Moving beyond numbers to deep and lasting

change. Educational Researcher, 32(6), 3-12.
Cohen, D. K., & Ball, D. L. (1999). Instruction, capacity, and improvement (No. CPRE

Research Report No. RR-043). Philadelphia, PA: University of Pennsylvania,
Consortium for Policy Research in Education.

Cohen, D. K., & Hill, H. (2001). Learning policy: When state education reform works.

New Haven, CT: Yale University Press.
Cohen, D. K., Raudenbush, S., & Ball, D. L. (2003). Resources, instruction, and research.

Educational Evaluation and Policy Analysis, 25(2), 1-24.
Cook, T. D. (2000). Reappraising the arguments against randomized experiments in

education: An analysis of the culture of evaluation in american schools of
education.   Retrieved August, 31, 2003, from
http://www.sri.com/policy/designkt/cokfinal.doc

Cuban, L. (2003). Oversold and underused: Computers in the classroom. Cambridge,
MA: Harvard University Press.

Design Based Research Collaborative. (2002). Design-based research: An emerging
paradigm for educational inquiry. Educational Researcher, 32(1), 5-8.

Edelson, D. C. (2002). What we learn when we engage in design. Journal of the Learning

Sciences, 11(1), 105-121.
Elmore, R. F. (1996). Getting to scale with good educational practice. Harvard

Educational Review, 66(1).
Ferrio, T. (2004). What year did the graphing calculator get to scale? (email

correspondance).
Fullan, M. (2000). The return of large scale reform.
Goldenberg, P. (1995). Multiple representations: A vehicle for understanding

understandings. In D. N. Perkins, J. L. Schwartz, M. M. West & M. S. Wiske



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     49

Handbook of design research in mathematics, science and technology education

(Eds.), Software goes to school (pp. 155-171). New York, NY: Oxford University
Press.

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. Physics

Teacher, 30, 141-158.
Jackiw, N. (1988-97). The geometer's sketchpad (Version various versions). Berkeley,

CA: Key Curriculum Press.
Kaput, J. (1987a). Representation and mathematics. In C. Janvier (Ed.), Problems of

representation in the learning of mathematics (pp. 19–26). Hillsdale, NJ:
Erlbaum.

Kaput, J. (1987b). Toward a theory of mathematical symbol use. In C. Janvier (Ed.),
Problems of representation in the learning of mathematics (pp. 159–196).
Hillsdale, NJ: Erlbaum.

Kaput, J. (1992). Technology and mathematics education. In D. Grouws (Ed.), A
handbook of research on mathematics teaching and learning (pp. 515-556). New
York: Macmillan.

Kaput, J. (1994). Democratizing access to calculus: New routes using old roots. In A.
Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 77-155).
Hillsdale, NJ: Erlbaum.

Kaput, J. (1997). Rethinking calculus: Learning and thinking. The American

Mathematical Monthly, 104(8), 731–737.
Kaput, J. (2001). Changing representational infrastructures changes most everything: The case of simcalc

algebra, and calculus., NAS Symposium on "Improving Learning with Informational Technology.

Washington, D.C.
Kaput, J. (in press). Technology as a transformative force in math education:

Transforming notations, curriculum structures, content and technologies. In E.
Galinde (Ed.), Technology and the nctm standards. Reston, VA: National Council
of Teachers of Mathematics.

Kaput, J., Noss, R., & Hoyles, C. (2001). Developing new notations for a learnable mathematics in the

computational era. In L. D. English (Ed.), The handbook of international research in

mathematics. London: Kluwer.
Kaput, J., Noss, R., & Hoyles, C. (2002). Developing new notations for a learnable

mathematics in the computational era. In L. D. English (Ed.), Handbook of

international research on mathematics education (pp. 51-75). Mahwah: Lawrence
Earlbaum Associates.

Kaput, J., & Roschelle, J. (1998). The mathematics of change and variation from a
millennial perspective:  New content, new context. In C. Hoyles, C. Morgan & G.
Woodhouse (Eds.), Rethinking the mathematics curriculum. London, UK: Falmer
Press.

Kozma, R. B., Russell, J., Jones, T., Marx, N., & Davis, J. (1996). The use of multiple,
linked representations to facilitate science understanding. In S. Vosniadou, E. De
Corte, R. Glaser & H. Mandl (Eds.), International perspectives on the design of

technology-supported learning environments (pp. 41-60). Mahwah, New Jersey:
Lawrence Erlbaum Associates.

National Center for Education Statistics. (2001). The nation's report card: Mathematics

2000. (No. NCES 2001-571). Washington DC: U.S. Department of Education.



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     50

Handbook of design research in mathematics, science and technology education

National Science Foundation. (2004). Interagency education research initiative (ieri):

Program solicitation (No. NSF 04-553). Washington DC: National Science
Foundation.

Nemirovsky, R., Kaput, J., & Roschelle, J. (1998). Enlarging mathematical activity from

modeling phenomena to generating phenomena. Paper presented at the Proceedings of the

22nd Psychology of Mathematics Education Conference, Stellenbosch, South Africa.

Nickerson, S. D., Nydam, C., & Bowers, J. S. (2001). Linking algebraic concepts and
contexts: Every picture tells a story. Mathematics Teaching in the Middle School,

6(2), 92-98.
No child left behind act, United States Congress(2001).
Porter, A. C. (2002). Measuring the content of instruction: Uses in research and practice.

Educational Researcher, 31(7), 3-14.
President’s Committee of Advisors on Science and Technology. (1997). Report to the

president on the use of technology to strengthen k-12 education in the united

states. Washington, DC: President’s Committee of Advisors on Science and
Technology   (PCAST).

Roschelle, J., & Kaput, J. (1996). Simcalc mathworlds for the mathematics of change.
Communications of the ACM, 39(8), 97-99.

Roschelle, J., Kaput, J., & Stroup, W. (2000a). Simcalc: Accelerating student engagement
with the mathematics of change. In M. J. Jacobsen & R. B. Kozma (Eds.),
Learning the sciences of the 21st century: Research, design, and implementing

advanced technology learning environments. (pp. 47-75). Hillsdale, NJ: Erlbaum.
Roschelle, J., Pea, R., Hoadley, C., Gordin, D., & Means, B. (2000b). Changing how and

what children learn in school with computer-based technologies. The Future of

Children, 10(2), 76-101.
Scher, D. (2000). Lifting the curtain: The evolution of the geometer's sketchpad. The

Mathematics Educator, 10(2), 42-48.
Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H. C., Wiley, D. E., Cogan, L.

S., et al. (2001). Why schools matter: A cross-national comparison of curriculum

and learning. San Francisco: Jossey-Bass.
Schoenfeld, A. H. (2002). Making mathematics work for all children: Issues of standards,

testing, and equity. Educational Researcher, 21(1), 13-25.
Schorr, R. Y., Firestone, W., & Monfils, L. A. (2003). State testing and mathematics

teaching in new jersey:  The effects of a test without other supports. Journal for

Research in Mathematics Education, 34(5), 373-405.
Shavelson, R. J., & Towne, L. (Eds.). (2002). Scientific research in education.

Washington DC: National Academies Press.
Shneiderman, B. (1982). The future of interactive systems and the emergence of direct

manipulation. Behaviour and Information Technology, 1(3), 237-256.
Smith, D. C., Irby, C., Kimball, R., & Verplank, B. (1982, April). Designing the star user

interface. Byte, 242-282.
Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A

constructivist analysis of knowledge in transition. Journal of the Learning

Sciences, 3(2), 115-163.



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     51

Handbook of design research in mathematics, science and technology education

Stroup, W. M. (in press). Understanding qualitative calculus: A structural synthesis of
learning research. International Journal of Computers for Mathematical

Learning.
Torgerson, C. (2001). The need for randomised controlled trials in educational research.

British Journal of Educational Studies, 49(3), 316-328.



In Press, In Kelly, E.A. & Lesh, R. (Eds.) Getting to Scale     52

Handbook of design research in mathematics, science and technology education

Table 1

 SimCalc’s Approach To Uniting Three Perspectives

Three Perspectives

SimCalc’s Approach
Learners’ Strengths Representational

Technology

Reorganized

Curriculum

Foregrounding the relation of

mathematical representations

to phenomenological motion

Perceiving, describing, and

reasoning about motion in

the concrete.

Linked animation and

mathematical notations

make tangible the

connection between

formalism and common

sense.

Emphasizes phenomena

as a tool for building

understanding.

Formalisms are introduced to

help consolidate and extend

knowledge established

previously

Natural progression from

case-based, specific

learning to more

integrative, general

understanding.

Unites and reifies

mathematical formalism and

more intuitive expressive

notations in one medium.

Provides substantial

informal learning

opportunities before

introducing formal

concepts.

Piecewise functions Reasoning about intervals

can leverage arithmetic and

simple geometric skills to

compute quantitative

aspects.

Can represent visually and

allow purposeful

manipulation of piecewise-

defined motions.

Uses piecewise functions

as an essential building

block for all calculus

concepts.

Emphasizing reasoning across

rate (velocity) and

accumulation (position)

descriptions

Builds on the ability to

think about the “same”

object in “different” views.

Dynamic links among

different representational

views of the mathematical

object.

Focuses on

rate–accumulation

relationships expressed

qualitatively and

arithmetically.

Primary focus on graph-based

and linguistic reasoning

Making sense of and

guiding action in graphic,

visual forms.

Supports visual presentation

and direct editing of graphic

forms in newly expressive

ways.

Shifts the emphasis from

symbol manipulation to

more democratically

accessible forms of

expression.
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visual forms. forms in newly expressive

ways.

more democratically

accessible forms of

expression.

Inquiry cycle of plan,

construct, experience, reflect

Ability to understand a

challenge, hypothesize

possible solutions, and

distinguish success from

failure.

Computational apparatus

allows for many, quick,

iterative, feedback cycles.

A more playful,

expressive, microworlds

approach to mathematics.
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Figure Captions

Figure 1. Three perspectives of the restructuring knowing framework.

Figure 2. Framework for classroom learning. Adapted from Cohen et al., 2003.

Figure 3. Spider diagram of SimCalc’s coverage of four concerns.
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Figure 1.
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Figure 2.
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Figure 3.


