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ABSTRACT
Current GPU tools and performance models provide some com-
mon architectural insights that guide the programmers to write op-
timal code. We challenge and complement these performance mod-
els and tools, by modeling and analyzing a lesser known, but very
severe performance pitfall, called Partition Camping, in NVIDIA
GPUs. Partition Camping is caused by memory accesses that are
skewed towards a subset of the available memory partitions, which
may degrade the performance of GPU kernels by up to seven-fold.
There is no existing tool that can detect the partition camping effect
in GPU kernels.

Unlike the traditional performance modeling approaches, we pre-
dict a performance range that bounds the partition camping ef-
fect in the GPU kernel. Our idea of predicting a performance
range, instead of the exact performance, is more realistic due to
the large performance variations induced by partition camping. We
design and develop the prediction model by first characterizing the
effects of partition camping with an indigenous suite of micro-
benchmarks. We then apply rigorous statistical regression tech-
niques over the micro-benchmark data to predict the performance
bounds of real GPU kernels, with and without the partition camp-
ing effect. We test the accuracy of our performance model by ana-
lyzing three real applications with known memory access patterns
and partition camping effects. Our results show that the geometric
mean of errors in our performance range prediction model is within
12% of the actual execution times.

We also develop and present a very easy-to-use spreadsheet based
tool called CampProf, which is a visual front-end to our perfor-
mance range prediction model and can be used to gain insights into
the degree of partition camping in GPU kernels. Lastly, we demon-
strate how CampProf can be used to visually monitor the perfor-
mance improvements in the kernels, as the partition camping effect
is being removed.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques
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1. INTRODUCTION
Graphics processing units (GPUs) are being increasingly adopted

by the high-performance computing (HPC) community due to their
remarkable performance-price ratio. However, a thorough under-
standing of the underlying architecture is still needed to optimize
the GPU-accelerated applications [18]. Several performance mod-
els have recently been developed to study the architecture of the
GPU and accurately predict the performance of the GPU-kernels [3,
7, 8, 23]. Our paper both challenges and complements the existing
performance models by characterizing, modeling and analyzing a
lesser known, but extremely severe performance pitfall, called par-
tition camping in NVIDIA GPUs.

Partition camping is caused by kernel wide memory accesses
that are skewed towards a subset of the available memory par-
titions, which may severely affect the performance of GPU ker-
nels [16, 17]. Our study shows that the performance can degrade
by up to seven-fold because of partition camping. Common op-
timization techniques for NVIDIA GPUs have been widely stud-
ied, and many tools and models are available to perform common
intra-block optimizations. It is difficult to discover and character-
ize the effect of partition camping, because the accessed memory
addresses and the actual time of memory transactions have to be
analyzed together. Therefore, traditional methods that detect sim-
ilar problems, such as static code analysis techniques to discover
shared memory bank conflicts or the approaches used in existing
GPU performance models, are prone to errors because they do not
analyze the timing information. To the best of our knowledge, we
are the first to characterize the partition camping effect in GPU ker-
nels.

In this paper, we deviate from the existing performance models
that predict the exact performance of a GPU kernel. Instead, we
predict a performance range for a given kernel, where its width
will indicate the extent to which partition camping can exist in the
kernel. The upper and lower bounds indicate the performance lev-
els with and without the partition camping problem respectively.
The relative position of the actual kernel performance with respect
to the predicted performance range will show the degree to which
the partition camping problem exists in the kernel. We believe that
predicting a performance bound, rather than the exact performance



numbers, is more realistic due to the huge performance variations
induced by partition camping.

Next, we discuss our approach to design and develop the perfor-
mance range prediction model. We first characterize the effects of
partition camping by creating a suite of micro-benchmarks, which
captures the performance of all the different memory transaction
types and sizes, with and without the partition camping behavior.
Next, we use the data from the micro-benchmark suite and predict
a performance range that bounds the effect of partition camping in
real GPU kernels. Our performance prediction model is designed
by using rigorous statistical regression procedures. Lastly, we de-
velop and present an extremely user-friendly spreadsheet based tool
called CampProf, which uses the data from our micro-benchmarks
and our performance prediction model and helps the user of the
tool to visually detect and analyze the partition camping effects in
the GPU kernels. CampProf is a visual front-end to our perfor-
mance range prediction model to gain insights into the effects of
partition camping in GPU kernels. It must be noted that our per-
formance prediction model and the CampProf tool is not meant to
replace any of the existing models and tool. They should rather be
used in conjunction with the other existing tools, like NVIDIA’s
proprietary CUDA Visual Profiler (CudaProf) [15] and the CUDA
Occupancy Calculator [11], to analyze the overall performance of
GPU kernels.

We then perform a detailed experimental analysis on three very
different GPU applications with known memory access patterns
and partition camping effects, ranging from the molecular mod-
eling domain to graph analysis libraries. We show that our perfor-
mance prediction model has a geometric mean error of less than
12% when validated against their actual kernel execution times.
Next, we demonstrate the utility of the CampProf tool in real appli-
cations, and demonstrate how the tool can be used to monitor the
performance improvement of the kernel after the partition camping
effect has been reduced.

The rest of this paper is organized as follows: Section 2 provides
background on the NVIDIA GPU architecture. Section 3 explains
our micro-benchmark design to characterize the partition camp-
ing problem. Section 4 describes the performance modeling tech-
niques using micro-benchmarks and statistical analysis tools, and
the CampProf tool. Section 5 explains the execution characteristics
of the chosen applications. Section 6 discusses the experimental
results. Section 7 presents the related work. Section 8 concludes
the paper and proposes some future work.

2. BACKGROUND ON THE NVIDIA GPUS
In this section, we will describe those aspects of the NVIDIA

GPU that are relevant to the discussions in this paper. In this paper,
we will restrict our discussions to GPUs with compute capability
1.2 or 1.3, so that the readers will not get distracted by the de-
tails of the other architecture families. Section 4.3 describes how
our performance model can be easily applied to the other NVIDIA
GPU architectures.

The NVIDIA GPU (or device) consists of a set of single-instruction,
multiple-data (SIMD) streaming multiprocessors (SMs), where each
SM consists of eight scalar processor (SP) cores, two special func-
tion units and a double precision processing unit with a multi-
threaded instruction unit. The actual number of SMs vary depend-
ing on the different GPU models. The SMs on the GPU can simul-
taneously access the device memory, which consists of read-write
global memory and read-only constant and texture memory mod-
ules. Each SM has on-chip memory, which can be accessed by all
the SPs within the SM and will be one of the following four types:
a set of registers; ‘shared memory’, which is a software-managed

data cache; a read-only constant memory cache; and a read-only
texture memory cache. The global memory space is not cached by
the device.

CUDA (Compute Unified Device Architecture) [16] or OpenCL
(Open Computing Language) [9] are the more commonly used par-
allel programming models and software environments available to
run applications on the NVIDIA GPUs. Massively parallel code
can be written via simple extensions to the C programming lan-
guage. They follow a code off-loading model, i.e. data-parallel,
compute-intensive portions of applications running on the host pro-
cessor are typically off-loaded onto the device. The kernel is the
portion of the program that is compiled to the instruction set of
the device and then off-loaded to the device before execution. The
discussions in this paper are not specific to any of the higher level
programming abstractions, and can be related to either the CUDA
or the OpenCL programming models.

Execution configuration of a kernel: The threads in the kernel
are hierarchically ordered as a logical grid of thread blocks, and
the CUDA thread scheduler will schedule the blocks for execution
on the SMs. When executing a block on the SM, CUDA splits
the block into groups of 32-threads called warps, where the entire
warp executes one common instruction at a time. CUDA schedules
blocks (or warps) on the SMs in batches, and not all together, due
to register and shared memory resource constraints. The blocks (or
warps) in the current scheduled batch are called the active blocks
(or warps) per SM. The CUDA thread scheduler treats all the active
blocks of an SM as a unified set of active warps ready to be sched-
uled for execution. In this way, CUDA hides the memory access
latency of one warp by scheduling another active warp for execu-
tion [16, 17]. It follows that the performance of a kernel with an
arbitrary number of blocks will be limited by the performance of
the set of active blocks (or active warps). So, in this paper, we have
chosen ‘active warps per SM’ as the metric to describe the execu-
tion configuration of any kernel, because it is much simpler to be
represented in only a single dimension.

There are some hardware restrictions imposed on the NVIDIA
GPUs with compute capability 1.2 and 1.3 that limits the possible
number of active warps that can be scheduled on each SM. The
warp size for the current GPUs is 32 threads. The maximum num-
ber of active threads per multiprocessor can be 1024, which means
that the maximum number of active warps per SM is 32. Also,
the maximum number of threads in a block is 512, and the maxi-
mum number of active blocks per multiprocessor is 8 [16]. Due to
a combination of these restrictions, the number of active warps per
SM can range anywhere from 1 to 16, followed by even-numbered
warps from 18 to 32.

Global memory transactions: The global memory access re-
quests by all threads of a half-warp are coalesced into as few mem-
ory transactions as possible. The transactions can be from 32-byte,
64-byte or 128-byte segments, based on the size of the word be-
ing accessed by the threads. The transaction size will then be re-
duced, if possible. For example, if all threads in a half-warp ac-
cess 4-byte words and the transaction size is 64 bytes, and if only
the lower or upper half is used, the transaction size is reduced to
32 bytes [16]. The transaction types can either be read or write,
and each of these can have three transaction sizes (32-, 64- or 128-
bytes), which means there are six possible memory transactions for
a kernel running on GPUs with compute capability 1.2 or 1.3.

Note that these global memory transactions can also be triggered
in a multitude of other ways, but their performance will not be dif-
ferent. For example, a 32-byte transaction can also be invoked if all
the threads in a half warp access the same memory location of any
word size. CUDA will compute the least sized transaction for effi-
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Figure 1: Partition Camping effect in the 200- and 10-series
NVIDIA GPUs. Column Pi denotes the ith partition. All mem-
ory requests under the same column (partition) are serialized.

ciency purposes. The performance of a global memory transaction
does not depend on the method of invocation. We tested this claim
by writing a simple micro-kernel, but have not included the details
in this paper for brevity.

3. CHARACTERIZING THE EFFECTS OF
PARTITION CAMPING

3.1 The Partition Camping Problem
Optimization techniques for NVIDIA GPUs have been widely

studied, and many proprietary tools, like CUDA Visual Profiler
(CudaProf) and the CUDA Occupancy Calculator spreadsheet tool,
guide programmers to perform common intra-block optimizations.
These include optimizing arithmetic instruction throughput, coa-
lescing the global memory accesses, and avoiding bank conflicts in
shared memory. In this paper, we study a lesser known performance
pitfall, which NVIDIA calls ‘partition camping’, where memory re-
quests across blocks get serialized by fewer memory controllers on
the graphics card (Figure 1). Note that each of the above mentioned
performance issues can be resolved independent of each other. For
example, coalescing can be applied without changing the arithmetic
intensity. Similarly, partition camping can be resolved without af-
fecting coalesced accesses or shared memory optimizations, and so
on. As shown in the figure 2, there is no existing tool that detects
and analyzes the partition camping problem in GPU kernels. Our
new tool (CampProf), which we discuss in detail in section 4, aims
to detect the partition camping problem in GPU kernels.

Just as shared memory is divided into multiple banks, global
memory is divided into either 6 partitions (on 8- and 9-series GPUs)
or 8 partitions (on 200- and 10-series GPUs) of 256-byte width.
The partition camping problem is similar to shared memory bank
conflicts, but experienced at a macro-level where concurrent global
memory accesses by all the active warps in the kernel occur at a
subset of partitions, causing requests to queue up at some partitions
while other partitions go unused [17]. We later show that partition
camping can degrade the performance of some kernels by up to
seven-fold, and so it is important to detect and analyze the effects
of this problem.

Tool	  

GPU	  Kernel	  Characteris3cs	  

Occupancy	  
Coalesced	  
Accesses	  	  
(gmem) 

Bank	  
Conflicts	  
(smem) 

Arithme3c	  
Intensity	  

Divergent	  
Branches	  

Par33on	  	  
Camping	  

CUDA	  Visual	  
Profiler	  

✓	   ✓	   ✓	   ✓	   ✓	   ✗	  
CUDA	  Occupancy	  
Calculator	  

✓	   ✗	   ✗	   ✗	   ✗	   ✗	  
CampProf	   ✗	   ✗	   ✗	   ✗	   ✗	   ✓	  

Figure 2: Comparison of CampProf with existing profiling
tools. gmem: Global memory; smem: Shared memory.

Discovery of the partition camping problem in GPU kernels is a
difficult problem. There is existing literature on static code analy-
sis for detecting bank conflicts in shared memory [4], but the same
logic cannot be extended to detecting the partition camping prob-
lem. Bank conflicts in shared memory occur among threads in a
warp, where all the threads share the same clock, and an analysis
of the accessed address alone is sufficient to detect conflicts. How-
ever, the partition camping problem occurs when multiple active
warps queue up behind the same partition and at the same time.
This means that a static analysis of just the partition number of
each memory transaction is not sufficient, and its timing informa-
tion should also be analyzed. Each SM has its own private clock,
which makes the discovery of this problem much more difficult
and error prone. Note that the impact of partition camping is severe
particularly in memory bound kernels. If the kernel is not memory
bound, the effect of memory transactions will not even be signifi-
cant when compared to the total execution time of the kernel, and
we need not worry about the partition camping problem for those
cases.

3.2 Designing the Micro-Benchmarks
We develop a suite of micro-benchmarks to study the effect of

various memory access patterns combined with the different mem-
ory transaction types and sizes. We then show how these micro-
benchmarks can characterize the partition camping effect for mem-
ory bound kernels. In section 4, we show how the same micro-
benchmarks are used to bound the partition camping effect in real
applications. Specifically, we predict a range of possible execution
times, which denotes the degree to which partition camping can
exist in the kernel.

While partition camping truly means that any subset of memory
partitions are being accessed concurrently, we choose the extreme
cases for our study, i.e. all the available partitions are accessed uni-
formly (Without Partition Camping), or only one memory partition
is accessed all the time (With Partition Camping). Although this
method does not exhaustively test the difference degrees of parti-
tion camping, our study acts as a realistic first-order approximation
to characterize its effect in GPU kernels. Thus, we developed two
sets of benchmarks and analyzed the memory effects with and with-
out partition camping. Each set of benchmarks tested the different
memory transaction types (reads and writes) and different memory
transaction sizes (32-, 64- and 128-bytes), which made it a total
of 12 benchmarks for analysis. As an example, we show in fig-
ure 3 that the performance of memory-bound kernels can degrade
by up to seven-fold if kernels suffer from partition camping. This
particular result was obtained by running a simple 64-byte mem-
ory read micro-kernel that was part of our micro-benchmark suite,
about which we explain next.

Figures 4 and 5 show the kernel of the micro-benchmarks for
memory reads, without and with partition camping respectively.
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Figure 3: The NegativeEffect of Partition Camping in GPU
Kernels. PC: Partition Camping

1 // TYPE can be a 2-, 4- or an 8-byte word
2 __global__ void readBenchmark(TYPE *d_arr) {
3 // assign unique partitions to blocks,
4 int numOfPartitions = 8;
5 int curPartition = blockIdx.x % numOfPartitions;
6 int partitionSize = 256; // 256 bytes
7 int elemsInPartition = partitionSize/sizeof(TYPE);
8 // jump to unique partition
9 int startIndex = elemsInPartition

10 * curPartition;
11 TYPE readVal = 0;
12
13 // Loop counter ’x’ ensures coalescing.
14 for(int x = 0; x < ITERATIONS; x += 16) {
15 /* offset guarantees to restrict the
16 index to the same partition */
17 int offset = ((threadIdx.x + x)
18 % elemsInPartition);
19 int index = startIndex + offset;
20 // Read from global memory location
21 readVal = d_arr[index];
22 }
23 /* Write once to memory to prevent the above
24 code from being optimized out */
25 d_arr[0] = readVal;
26 }

Figure 4: Code Snapshot of the Read Micro-benchmark for the
NVIDIA 200- and 10-series GPUs (Without Partition Camp-
ing). Note: ITERATIONS is a fixed and known number.

The benchmarks that simulate the partition camping effect (fig-
ure 5) carefully access memory from only a single partition. The
micro-benchmarks for memory writes are very similar to the mem-
ory reads, except that readVal is written to the memory location
inside the for-loop (line numbers 21 and 14 in the respective code
snapshots). We modify the TYPE data-type in the benchmarks to
one of 2-, 4- or 8-byte words in order to trigger 32-, 64- or 128-byte
memory transactions respectively to the global memory. Although
our benchmarks have a high ratio of compute instructions to mem-
ory instructions, we prove that they are indeed memory bound, i.e.
the memory instructions dominate the overall execution time. We
validate this fact by using the methods discussed in [1]. Our suite
of benchmarks is therefore a good representation of real memory-
bound kernels.

For real memory-bound GPU kernels, we can use their actual
number of memory transactions of each type and size, along with

1 // TYPE can be a 2-, 4- or an 8-byte word
2 __global__ void readBenchmark(TYPE *d_arr) {
3 int partitionSize = 256; // 256 bytes
4 int elemsInPartition = partitionSize/sizeof(TYPE);
5 TYPE readVal = 0;
6
7 // Loop counter ’x’ ensures coalescing.
8 for(int x = 0; x < ITERATIONS; x += 16) {
9 /* all blocks read from a single partition

10 to simulate Partition Camping */
11 int index = ((threadIdx.x + x)
12 % elemsInPartition);
13 // Read from global memory location
14 readVal = d_arr[index];
15 }
16 /* Write once to memory to prevent the above
17 code from being optimized out */
18 d_arr[0] = readVal;
19 }

Figure 5: Code Snapshot of the Read Micro-benchmark for the
NVIDIA 200- and 10-series GPUs (With Partition Camping).
Note: ITERATIONS is a fixed and known number.

our benchmark data, to realistically predict a performance range
for any execution configuration of those kernels, as explained in
the next section. We can easily obtain the actual number of memory
transactions in a kernel by using the CUDA Visual Profiler tool [15]
(CudaProf).

4. PERFORMANCE RANGE PREDICTION
In this section, we first design an accurate performance model

to predict the range of the effect of partition camping in a GPU
kernel. If performance is measured by the wall clock time, the
lower bound of our predicted performance will refer to the best
case, i.e. without partition camping for any memory transaction.
The upper bound will refer to the worst case, i.e. with partition
camping for all memory transaction types and sizes. We achieve the
accuracy in the model by applying rigorous statistical procedures
on the data obtained by running our benchmark suite, which we
designed in the previous section.

We then develop and present a very simple easy-to-use tool called
CampProf, which uses the data from our benchmarks and the per-
formance model, and helps the user of the tool to visually detect
and analyze the partition camping effects in the GPU kernel.

Lastly, we discuss how our idea of performance range prediction
can very easily be applied to develop similar performance models
and tools for the other GPU architectures.

4.1 Performance Model
We perform rigorous statistical analysis techniques to model the

impact of partition camping in any memory-bound GPU kernel.
We model the effect of memory reads separately from the mem-
ory writes, and also model the case with partition camping sepa-
rately from the case without partition camping. So, we will be de-
signing four model equations, one for each of the following cases:
(1) Reads, Without partition camping, (2) Writes, Without partition
camping, (3) Reads, With partition camping, and (4) Writes, With
partition camping. We follow this approach because we believe
that modeling at this fine level of detail gives us better accuracy.
Specifically, we perform multiple linear regression analysis to fully
understand the relationship between the execution time of the dif-
ferent types of our micro-benchmarks and their parameters. The
independent variables (predictors) that we chose are: (1) the ac-
tive warps per SM (w), and (2) the word-lengths that are read or



written per thread. The dependent variable (response) is the exe-
cution time (t). The word-length predictor takes only three values
(2-, 4- or 8-bytes)1 corresponding to the three memory transaction
sizes, and so we treat it as a group variable (b). This means, we
first split the data-type variable into two binary variables (b2 and
b4), where their co-efficients can be either 0 or 1. If the co-efficient
of b2 is set, it indicates that the word-length is 2-bytes. Likewise,
setting the co-efficient of b4 indicates a 4-byte word-length, and if
co-efficients of both b2 and b4 are not set, it indicates the 8-byte
word-length. We have now identified the performance model pa-
rameters, and the performance model can be represented as shown
in equation 1, where αi denotes the contribution of the different
predictor variables to our model, and β is the constant intercept.

t = α1w + α2b2 + α3b4 + β (1)

Next, we use SAS, a popular statistical analysis tool, to perform
multiple linear regression analysis on our model and the data from
our benchmarks. The output of SAS will provide the co-efficient
values of the performance model.

Significance Test: The output of SAS also shows us the results of
some statistical tests, which describe the significance of our model
parameters, and how well our chosen model parameters are con-
tributing to the overall model. In particular, R2[2] ranges from
0.953 to 0.976 andRMSE (Root Mean Square Error) ranges from
0.83 to 5.29. Moreover, we also used parameter selection tech-
niques in SAS to remove any non-significant variable, and choose
the best model. This step did not deem any of our variables as
insignificant. These results mean that the response variable (exe-
cution time) is strongly dependent on the predictor variables (ac-
tive warps per SM, data-types), and each of the predictors are sig-
nificantly contributing to the response, which proves the strength
of our performance model. Informally speaking, this means that
if we know the number of active warps per SM, and the size of
the accessed word (corresponding to the memory transaction size),
we can accurately and independently predict the execution times
for reads and writes, with and without partition camping, by us-
ing the corresponding version of equation 1. We then aggregate
the predicted execution times for reads and writes without partition
camping to generate the lower bound (predicted best case time) for
the GPU kernel. Similarly, the predicted execution times for reads
and writes with partition camping are added to generate the upper
bound (predicted worst case time) for the GPU kernel. We validate
the accuracy of our prediction model by analyzing real applications
in detail in Section 6.

4.2 The CampProf Tool

4.2.1 User-Interface Design and Features
CampProf is an extremely easy-to-use spreadsheet based tool

similar to the CUDA Occupancy Calculator [11], and its screen-
shot is shown in Figure 6. The spreadsheet consists of some input
fields on the left and an output chart on the right, which can be
analyzed to understand the partition camping effects in the GPU
kernel. The inputs to CampProf are the following values: gld
32b/64b/128b, gst 32b/64b/128b, grid and block sizes,
and active warps per SM. These values can easily be obtained from
the CudaProf and the CUDA Occupancy Calculator tools. Note
that the inputs from just a single kernel execution configuration are
enough for CampProf to predict the kernel’s performance range for
11- and 2-byte word lengths will both result in 32-byte global mem-
ory transactions.
2R2 is a descriptive statistic for measuring the strength of the de-
pendency of the response variable on the predictors.

Figure 6: Screenshot of the CampProf Tool.

any other execution configuration. CampProf passes the input val-
ues to our performance model, which predicts and generates the
upper and lower performance bounds for all the kernel execution
configurations3. CampProf plots these two sets of predicted execu-
tion times as two lines in the output chart of the tool. The best case
and the worst case execution times form a band between which the
actual execution time lies. In effect, the user provides the inputs for
a single kernel configuration, and CampProf displays the execution
band for all the execution configurations.

In addition, if the actual kernel time for the given execution con-
figuration is provided as input (GPU Time counter value from Cu-
daProf), CampProf predicts and plots the kernel execution time at
all the other execution configurations, and is denoted by the ‘Appli-
cation’ line in the output chart. We predict the application line by
simply extrapolating the kernel time from the given execution con-
figuration, in a constant proportion with the execution band. Our
performance model is therefore indirectly used to generate this line.

4.2.2 Visualizing the Effects of Partition Camping
To detect the partition camping problem in the GPU kernel, the

user can simply use CampProf, and inspect the position of the ‘Ap-
plication’ line with respect to the upper and lower bounds (exe-
cution band) in the output chart. If the application line is almost
touching the upper bound, it implies the worst case scenario, where
all the memory transactions of the kernel (reads and writes of all
sizes) suffer from partition camping. Similarly, the kernel is con-
sidered to be optimized with respect to partition camping if the ap-
plication line is very close to the lower bound, implying the best
case scenario. If the application line lies somewhere in the mid-
dle of the two lines, it means that performance can be potentially
improved, and there is a subset of memory transactions (reads or
writes) that is queuing up behind the same partition. The relative
position of the application line with respect to the execution band
will show the degree to which the partition camping problem ex-
ists in the kernel. For example, while processing two matrices, the
kernel might read one matrix in the row major format (without par-
tition camping) and the other matrix might be read or written into
3As mentioned in Section 2, the ‘number of active warps per SM’
is our chosen metric of kernel configuration.



in the column major format (with partition camping). This means
that only a part of the kernel suffers from camping, and the actual
execution time will lie somewhere between the two extremities of
CampProf’s execution band. Detailed analysis and results will be
explained in Section 6. The only remedy to the partition camping
problem is careful analysis of the CUDA code and re-mapping the
thread blocks to the data, as explained in ‘TransposeNew’ example
of the CUDA SDK [17].

Our approach of predicting a performance range is in contrast to
the other existing performance models, which predict just a single
kernel execution time. But, our method is more accurate because
our model captures the large performance variation due to partition
camping.

As previously shown in the figure 2, our performance model
and CampProf provide insights into the largely ignored partition
camping problem, and not the other common performance pitfalls
that the CUDA programming guide describes, like non-coalesced
global memory accesses, shared memory bank conflicts, low arith-
metic intensity, etc. The performance counter values from the Cud-
aProf [15] tool can be used to understand and optimize the common
performance bottle-necks of the kernel (Figure 2). However, these
values describe the kernel’s behavior either within a single SM or a
single TPC (depending on the profiler counter), and do not provide
any details of the overall system. On the other hand, CampProf
helps understand the memory access patterns among all the active
warps in the entire kernel. We therefore recommend CampProf to
be used along with CudaProf and the CUDA Occupancy Calcula-
tor, to detect and analyze all types of performance pitfalls in their
GPU kernels.

4.3 Applicability on other GPU Architectures
Our performance model and CampProf can be used to discover

the effect of partition camping in any GPU architecture with com-
pute capability 1.3 or lower. For GPU architectures with compute
capability less than 1.1 and lower, we will only have to change the
code of the micro-benchmarks to include the appropriate number
of partitions and the partition size. Then, our present model will
still hold and can be directly applied to the new data. The archi-
tectural changes in the newer Fermi [13] cards pose new problems
for memory-bound kernels. The memory access patterns are sig-
nificantly different for Fermi, because of the introduction of L1/L2
caches and having only 128-byte memory transactions that occur
only at the cache line boundaries. The partition camping prob-
lem will still exist in the newer cards, but its effect may be some-
what skewed due to cached memory transactions. Our performance
range prediction technique will still work, although in a different
scenario. For example, we could bound the performance effect of
caching in the GPU kernels, where the upper band indicated the
worst case performance of only cache misses, and the lower band
indicated the best case performance of only cache hits. This can
then help in understanding the effect of improving the locality of
memory accesses in the kernel. Our immediate goal is thus to ex-
tend CampProf to CacheProf for the Fermi architecture.

5. APPLICATION SUITE
In order to validate our performance prediction model, we choose

the following three applications with known memory access pat-
terns and partition camping effects: (1) GEM (Gaussian Electro-
static Model) [6], which is a molecular modeling application, (2)
Clique-Counter, which is a graph analysis algorithm to count the
number of cliques in large bi-directed graphs, and (3) Matrix Trans-
pose. The GPU implementations of GEM [5] and Clique-Counter
are part of our own prior and ongoing research, while the Matrix
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Figure 7: GEM: Memory Access Pattern

Transpose application is part of the NVIDIA CUDA SDK. We will
now briefly describe the execution profiles and memory access pat-
terns of these applications, and theoretically analyze the effect of
partition camping in them.

5.1 GEM
GEM is a molecular modeling application which allows one to

visualize the electrostatic potential along the surface of a macro-
molecule [6]. GEM belongs to the ‘N-Body’ class of applica-
tions. The goal of this application is to compute the electrostatic
potential at all the surface points due to the molecular components.
GEM uses an approximation algorithm to speed up the electrostatic
calculations by taking advantage of the natural partitioning of the
molecules into distant higher level components.

Each GPU thread is assigned to compute the electrostatic po-
tential at one surface point, which is later added together to calcu-
late the total potential for the molecule. The approximation algo-
rithm requires the distance information between each surface point
and the higher level components. To compute this distance, each
thread needs to access the component coordinates stored in the
GPU global memory, which means that GEM can be a memory
bound application. Each thread accesses these coordinates in the
following order: from the first component to the last, thereby im-
plying that all the active warps would be queued up behind the same
memory partition at the beginning of the algorithm. Only one warp
can access that global memory partition, which causes the other
warps to stall. Once the first warp finishes accessing the elements in
the first partition, it would move on the next partition, and the first
partition is now free to be accessed by the next warp in the queue.
Partition access will thus be pipelined, as shown in Figure 7. Once
this memory partition pipeline is filled up (i.e. after eight such it-
erations on a device with compute capability 1.2 or 1.3), memory
accesses will be uniformly distributed across all available memory
partitions. It can be assumed that the pipelined nature of memory
accesses will not result in further stalls because the workload for
all the warps is identical. This illustrates that GEM does not suffer
from partition camping.

5.2 Clique-Counter
In graph theory, a clique is a set of vertices in a graph, where

every two vertices in the set are connected by an edge of the graph.
Cliques are one of the basic concepts of graph theory and also one
of the fundamental measures for characterizing different classes of



graphs. We identify the size of a clique by the number of vertices
in it. Clique-Counter is a program, which as the name suggests,
counts the number of cliques of user-specified size in a graph. This
is an NP-complete problem with respect to the size of the clique
that must be counted.

The vertices of the input graph are distributed among GPU threads
in a cyclic fashion for load balancing purposes, where the entire
graph is stored in the GPU’s global memory in the form of adja-
cency lists. Each thread counts the number of cliques of the given
size that can be formed from its set of vertices, followed by a re-
duction operation that sums up the individual clique counts to get
the final result. Larger cliques are formed from smaller cliques
by incrementally adding common vertices to the clique. Clique-
Counter belongs to the ‘backtracking’ class of applications, where
set intersection operations are repeatedly performed between the
vertex set of the current clique and each of their adjacency lists.
This means that each thread has to regularly fetch adjacency lists
of several vertices from the GPU global memory, which means
that the Clique-Counter application can be considered to be mem-
ory bound. The memory accesses occur in no particular order and
hence, the memory access patterns are neither uniformly distributed
across all the memory partitions, nor are they accessing the same
partition. Therefore, the Clique-Counter application is neither com-
pletely free from partition camping nor is it fully partition camped.

5.3 Matrix Transpose
Matrix Transpose is one of the kernels included in the NVIDIA

CUDA SDK. The kernel performs an out-of-place transpose of a
matrix of floating point numbers, which denotes that the input and
output matrices are stored at different locations in the GPU global
memory. The input matrix is divided into square 16 × 16 tiles, so
that the loads are coalesced. Each tile is assigned to one thread-
block, which performs the following operations – (i) load the tile
from the input matrix (global memory), (ii) re-map the threads to
tile elements to avoid uncoalesced memory writes, and (iii) store
the tile in the output matrix (global memory). Within-block thread
synchronization is required between the above steps to make sure
that the global memory writes take place only after all the reads
have finished. Since this application predominantly does reads and
writes to global memory, it can also be classified as a memory-
bound application.

The NVIDIA CUDA SDK provides various versions of matrix
transpose, but we specifically chose two of them for our experi-
ments – Transpose Coalesced and Transpose Diagonal. The only
difference between the two applications versions is their global
memory access pattern. Figure 8a presents the memory access pat-
tern of Transpose Coalesced. Different solid column groups imply
different partitions in the global memory while the numbers denote
thread-blocks on the GPU. The figure shows that while reading the
input matrix, thread-blocks are evenly distributed among the par-
titions, however, while writing into the output matrix, all thread-
blocks write to the same memory partition. This alludes to the
fact that partition camping is not a problem for the read operation
but while writing, Transpose Coalesced does suffer from partition
camping to a moderate degree. In the Transpose Diagonal version
of the application, this problem of partition camping has been rec-
tified by rearranging the mapping of thread-blocks to the matrix
elements. The blocks are now diagonally arranged, implying that
subsequent blocks are assigned tiles in a diagonal order rather than
row-wise. As shown in Figure 8b, blocks always access different
memory partitions uniformly, thereby, making this version of the
application free from partition camping for both reads and writes.

Proof of Memory-Boundedness: Our performance prediction model
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Figure 8: Matrix Transpose: Memory Access Patterns [17]

can be applied only to memory-bound kernels. This is because if
a kernel is not memory bound, the effect of memory transactions
and memory access patterns will not form a significant part of the
total execution time of the kernel. For such cases, the partition
camping problem becomes irrelevant. To rigorously check if our
chosen applications are compute-bound or memory-bound, we an-
alyzed the change in their execution times by varying the GPU’s
core-clock and memory frequencies, and inferred that they all are
indeed memory-bound. More details about our experiment can be
found in [1]. It must be noted that there are other approaches to cat-
egorize the GPU kernels as being compute or memory-bound. We
can, say, comment out certain types of instructions in the source
code and re-run the kernel to see the effective change in the perfor-
mance, and then classify the kernel accordingly.

6. RESULTS AND DISCUSSION
In this section, we first explain our experimental setup and then

verify our performance prediction model by validating the predicted
times against the actual execution times of our chosen applications.
Next, we demonstrate the utility of CampProf, which is the front-
end to our performance model, for detecting the degree of partition
camping in the same applications.

6.1 Experimental Setup
The host machine consists of an E8200 Intel Quad core running

at 2.33 GHz with 4 GB DDR2 SDRAM. The operating system on
the host is a 64-bit version of Ubuntu 9.04 distribution running the
2.6.28-16 generic Linux kernel. The GPU was programed via the
CUDA 3.1 toolkit with the NVIDIA driver version 256.40. We
ran our tests on a NVIDIA GTX280 graphics card (GT200 series).
The GTX280 has 1024 MB of onboard GDDR3 RAM as global
memory. The card has the core-clock frequency of 1296 MHz and
memory frequency of 1107 MHz [12]. This card belongs to com-
pute capability 1.3. For the sake of accuracy of results, all the pro-
cesses which required graphical user interface (GUI) were disabled
to limit resource sharing of the GPU.

6.2 Validating the Performance Model
In section 4, we showed how our performance model is used to

predict the upper and lower bounds of the GPU kernel performance.
In this section, we validate the accuracy of our performance model
by comparing the predicted bounds (best and worst case) with the



execution times for those applications with known partition camp-
ing behavior. However, we cannot use a single application to val-
idate the accuracy of both the predicted bounds of our model, be-
cause an application can exhibit only one type of partition camping
behavior. So, we choose different applications from our suite to
validate the different predicted bounds of our model. We choose
to use geometric mean as the error metric, because it suppresses
the effect of outliers and so, is a better estimate for accuracy in the
model.

Validating the lower bound (best case): To verify the accuracy
of the predicted lower bound, we should compute the error between
the actual execution times for an application that is known to be
free of partition camping and the predicted best case time by our
model for the same application. GEM has been shown to be free of
partition camping in the previous section and hence, its execution
times are expected to be close to the predicted lower bound of our
prediction model.

In Figure 9a, the actual execution times and the predicted lower
bound times for GEM have been shown for all the possible con-
figurations. We can see that the predicted best case times (‘Best’
line from the CampProf output) are agreeing with the actual execu-
tion times. The geometric mean of error for the predicted time was
found out be 11.7%.

Validating the upper bound (worst case): To verify the accuracy
of the predicted upper bound, we should compute the error between
the actual execution times for an application that is known to have
maximum partition camping effects and the predicted worst case
time by our model for the same application. This scenario can only
occur if our test application always reads and writes to a single
partition, so that all the memory transactions of the kernel are seri-
alized. So, validating the predicted upper bound of our model is a
non-trivial task for two reasons – (1) It is rare to find applications,
other than our micro-benchmarks, which have the maximum par-
tition camping effects, and (2) there is no other available tool or
model that detects partition camping, against which we can verify
our predicted times. Therefore, it is not possible to directly verify
the accuracy of the upper bound of our performance model. We can
only use the predicted worst case time as a loose upper bound for
the kernel’s performance.

Validating the ‘Application’ line: In section 4.2, we showed that
the CampProf tool can be used to predict and plot an ‘Application’
line in the output chart. This line is predicted by simply extrapo-
lating the kernel time, from the input execution configuration, in
a constant ratio to the extremities of the predicted execution band.
By validating the ‘Application’ line, we will indirectly be validat-
ing the accuracy of both the predicted bounds of our performance
model. This means that we can validate the ‘Application’ line by
choosing test applications that are know to have a moderate degree
of partition camping, neither the best nor the worst case scenarios.
We estimate the accuracy of this extrapolation performed by our
model for the Clique-Counter application, because this application
is shown to have moderate partition camping effects in section 5.

In Figure 9b, we present the extrapolated ‘Application’ line (shown
as ‘Predicted’) and the actual times for all possible kernel configu-
rations for the Clique-Counter application, where the starting point
for extrapolation is at 12 active warps per SM. But, there are 16
starting points (16 possible execution configurations) from which
one can extrapolate to verify the prediction model. To be fair, we
chose all the 16 execution configurations as starting points for ex-
trapolation for getting the best estimate of our model accuracy. The
extrapolated times shown in the figure is for one such starting point
(at 12 active warps per SM). The geometric mean of errors due to
all such predicted times was found out to be 9.3%.
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Figure 9: Validating the Performance Prediction Model

All of the above results indicate that our performance model is
accurate in bounding the effect of partition camping in GPU ker-
nels.

6.3 Utility of the CampProf Tool
In this section, we demonstrate how the CampProf tool can be

used to visually analyze the partition camping effect in our chosen
applications. We then use matrix transpose as a case study to show
how CampProf is used to monitor the performance of the kernel,
where the execution time progresses towards the best case after the
partition camping effect has been reduced, i.e. the NVIDIA SDK
provides two versions of the transpose example – one with partition
camping and another which is supposed to be free from partition
camping. The CampProf output can be used to support NVIDIA’s
claim as well.

Figure 10 shows the CampProf output chart depicting the parti-
tion camping effect in all the three applications. The input to the
tool is the number of memory transactions and the kernel execution
time for one execution configuration (denoted by the ?). It shows
the worst and best case times for all the execution configurations,
as predicted by our model. The ‘Application’ line in the graphs
is extrapolated from the actual execution time that was provided
as input. The predicted ‘Application’ line is not presented for all
the execution configurations, i.e. only up to 16 or 24 active warps.
This upper limit is calculated by the CUDA Occupancy Calculator,
based on the amount of shared memory and registers used by that
application.

Figure 10a shows that the predicted application performance is
extremely close to the ‘Best’ line of CampProf, which agrees with
our discussions about GEM not suffering from partition camping.
Similarly, figure 10b indicates that Clique-Counter suffers from a
moderate degree of partition camping, because the predicted appli-
cation line is somewhere in the middle of the predicted execution
band. The partition camping effect is not shown to be too severe
though. Figure 10c shows the execution band for the Matrix Trans-
pose application, with two predicted ‘Application’ lines: (1) ‘With
Camping’ refers to the Transpose Coalesced version of the applica-
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Figure 10: CampProf Output: Predicted Performance Ranges

tion, where it is known to partially suffer from partition camping,
and (2) ‘Without Camping’ refers to the Transpose Diagonal ver-
sion of the application, where optimizations are performed to get
rid of partition camping. CampProf can be thus used to visually
demonstrate the performance improvement in a GPU kernel after
the partition camping effect has been reduced.

All the predicted ‘Application’ lines can be used to visually ana-
lyze the degree of partition camping in the respective kernels. They
also reasonably agree with our claims about the partition camping
behavior of the different applications in section 5.

7. RELATED WORK
There have been analytical models developed to help the pro-

grammer understand bottlenecks and achieve optimum performance
on the GPU. In [3], Baghsorkhi et al. have developed a compiler

front end which analyses the kernel source code and translates it
into a Program Dependence Graph (PDG) which is useful for per-
formance evaluation. The PDG allows them to identify computa-
tionally related operations which are the dominant factors affecting
the kernel execution time. With the use of symbolic evaluation,
they are able to estimate the effects of branching, coalescing and
bank conflicts in the shared memory.

In [7], Hong et al. propose an analytical model which dwells
upon the idea that the main bottleneck of any kernel is the latency
of memory instructions, and that multiple memory instructions are
executed to successfully hide this latency. Hence, calculating the
number of parallel memory operations (memory warp parallelism)
would enable them to accurately predict performance. Their model
relies upon the analysis of the intermediate PTX code generated
by the CUDA compiler. However, the PTX is just an intermediate
representation which is further optimized to run on the GPU [14].
PTX is not a good representation of the actual machine instructions,
and introduces some error in their prediction model.

Recently Ryoo et al. proposed two metrics; efficiency and uti-
lization to prune the optimization space of general purpose appli-
cations on the GPU [19]. Their model, however, does not work for
memory bound kernels. Boyer et al. present an automated analysis
technique to detect race conditions and bank conflicts in a CUDA
program. They do so by instrumenting the program to track the
memory locations accessed which is done by analyzing the PTX
code [4]. Schaa et al. focus on the prediction of execution time for
a multi-GPU system, knowing the time for execution on a single
GPU [20]. They do so by introducing models for each component
of the multi-GPU system; the GPU execution, PCI-Express and the
RAM and the Disk.

Micro-benchmarks have been extensively used to reveal the ar-
chitectural details of the GPUs. In [22], Volkov et al. benchmark
the GPUs to tune dense linear algebra. They created detailed bench-
marks to reveal the kernel bottlenecks like access patterns of the
shared memory and kernel launch overhead. Their benchmarks also
characterized the GPU memory sub-system, including the access
latencies. Wong et al. also use micro-benchmarks to understand
the micro-architecture of the GT200 GPU [23]. Both of them used
decuda, which is a disassembler for NVIDIA’s machine level in-
structions, to understand the mapping of various instructions on the
GPU [21].

In [8], Hong et al. propose an integrated power and performance
model for GPUs, where they use the intuition that once an applica-
tion reaches the optimum memory bandwidth, increasing the num-
ber of cores would not help the performance of the application and
hence, power can be saved by switching off the additional cores
of the GPU. Nagasaka et al. make use of statistical tools like re-
gression analysis and CudaProf counters for power modeling on
the GPU [10]. Our work also relies on regression techniques, but
we do performance modeling by choosing very different parame-
ters. Bader et al. have developed automated libraries for data re-
arrangement to explicitly reduce partition camping problem in the
kernels [2].

While developing micro-benchmarks and using statistical anal-
ysis tools is a common procedure to understand the architectural
details of a system, we have used them to create a more realistic
performance model than those discussed. We also deviate from the
existing literature and predict a performance range to understand
the extent of partition camping in a GPU kernel. We also provide a
simple front-end by developing a spreadsheet like tool, which dis-
plays the worst and best possible execution times for any memory
bound GPU kernel.



8. CONCLUSIONS AND FUTURE WORK
Key understanding of the GPU architecture is imperative to ob-

tain optimum performance. Current GPU tools and performance
models provide some GPU specific architectural insights that guide
the programmers to perform common performance optimizations,
like coalescing, improving shared memory usage, etc. Our work
differs from the existing performance models by characterizing,
modeling and analyzing a lesser known, but extremely severe per-
formance pitfall, called partition camping in NVIDIA GPUs. In
this paper, we have explored this partition camping problem and
have developed a performance model which not only detects the
extent to which a memory bound application is partition camped
but also predicts the execution times for all kernel configurations if
the time for one configuration is known. The performance model
was formed using multiple linear regression on the results of our
micro-benchmarks which simulate the partition camping effects on
the GPU. We have also developed a simple, spreadsheet based tool
called CampProf which inherently uses the indigenous model for
visual performance analysis.

Our model, at present works only for memory bound applica-
tions. In future, we would like to come up with such a performance
model for compute bound applications as well. The newer Fermi
architecture is known not to suffer from the partition camping prob-
lem, however, with its cache hierarchy, it makes GPU programming
more challenging. For the Fermi cards, the idea of visual perfor-
mance analysis can be used to portray the effect of cache misses
and to understand the gains of improved data locality. Hence, we
would like to develop ‘CacheProf’ for the next generation GPU
architecture.
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