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Abstract—The “Basic Local Alignment Search Tool” (BLAST)
is arguably the most widely used computational tool in bioinfor-
matics. However, the computational power required for routine
BLAST analysis has been outstripping Moore’s Law due to the
exponential growth in the size of the genomic sequence databases
that BLAST searches on.

To address the above issue, we propose the design and
optimization of the BLAST algorithm for searching protein
sequences (i.e., BLASTP) in a heterogeneous computing system.
The end result is a BLASTP implementation that delivers a
seven-fold speedup over the sequential BLASTP for the most
computationally intensive phase (i.e., hit detection and ungapped
extension) on a NVIDIA Fermi C2050 GPU. In addition, when
pipelining the processing on a dual-core CPU and the NVIDIA
Fermi GPU, our implementation can achieve a six-fold speedup
for the overall program execution.

Index Terms—BLAST, Graphics Processing Unit (GPU), Se-
quence Alignment, Parallel Bioinformatics

I. INTRODUCTION

The “Basic Local Alignment Search Tool” (BLAST) [2]

is arguably the most widely used tool in bioinformatics. It

rapidly identifies the similarities between a set of biolog-

ical sequences (i.e., nucleotide and protein sequences) and

sequence databases. Identified similarities can then be used

to infer functional and structural relationships between the

corresponding biological entities.

With the exponential growth of biological sequence

databases, the computational power required for routine

BLAST analysis has been outstripping Moore’s Law. For

example, in the early 2000s, researchers found that searching

a popular public sequence database slowed by 64% each

year [5]. Today, next-generation sequencing technologies and

emergent research areas in the life sciences, such as metage-

nomics, promise to accelerate the generation of sequence data

to unprecedented rates,1 thus further exacerbating the gap

between the acquisition of sequence data and the ability to

compute (i.e., search) on that data. To address this issue, many

studies have been conducted in accelerating BLAST on multi-

core CPUs and accelerators such as the field-programmable

gate array (FPGA) or Cell Broadband Engine.

1The NIH GenBank contains approximately 100-billion base pairs accumu-
lated over a 27-year lifetime. Today, next-generation sequencers can generate
that many base pairs in a few days.

The graphic processing unit (GPU) has evolved into an

accelerator with the capability of general-purpose comput-

ing. Compared to a traditional CPU, the performance of a

GPU has increased at a much faster rate. For instance, the

difference in the peak floating-point operations per second

(FLOPS) between an NVIDIA GPU and an Intel CPU was

about 500 GFLOPS in November 2006; this difference now

exceeds 1,200 GFLOPS, as of March 2010. As a consequence,

GPU-based systems enjoy increasing popularity in the high-

performance computing (HPC) community. In fact, three out

of today’s five fastest supercomputers are GPU-accelerated,

according to the most recent TOP500 List [1]. Although many

inherently data-parallel or task-parallel scientific applications

report significant speed-ups, it is unclear how well BLAST-like

applications, which represent a major type of bioinformatics

HPC workloads, will perform on GPUs.

In this study, we present our experience in parallelizing the

BLAST search of protein sequences (i.e., BLASTP) on GPUs.

Our goal was to identify the opportunities and understand the

limitations of accelerating BLAST on the GPU architecture.

We found that the BLAST algorithm is highly irregular and

does not naturally map well onto the GPU. Specifically,

BLAST uses a heuristic algorithm, whose execution path

and memory-access pattern depend heavily on the similarity

between every pair of compared sequences.

To address the above, we first identified performance limita-

tions in accelerating BLAST on GPUs — memory throughput,

divergent branching, and load imbalance. We then sought to

optimize our BLASTP code on the GPU in order to address

these limitations. Finally, we evaluated and characterized the

performance implications of our optimizations as well as the

aforementioned architectural limitations on two generations of

GPUs, i.e., GT 200 and GT 400 (Fermi).

The experimental results show that our GPU implementa-

tion of BLASTP, when running on a NVIDIA Tesla Fermi

C2050 GPU, can achieve a seven-fold speedup over a highly

optimized sequential BLASTP running on a CPU for the most

computationally intensive phase (i.e., hit detection and un-

gapped extension). Moreover, when pipelining the processing

on a dual-core CPU and a Fermi GPU, our implementation

delivers a six-fold speedup for the overall program execution.



The rest of this paper is organized as follows. Section II

provides a brief background about the CUDA programming

model and the BLASTP algorithm. Section III surveys the

related work. Sections IV and V discuss our parallelization of

the BLASTP and our methodologies in optimizing the program

performance, respectively. We then present our performance

evaluation and characterization in Section VI and conclude in

Section VII.

II. BACKGROUND

In this section, we give a brief description of the GPU

architecture, its associated CUDA programming model, and

the BLAST algorithm.

A. GPU Architecture and CUDA Programming Model

Originally, GPUs were designed solely for graphics applica-

tions, which are compute-intensive and data-parallel in nature.

With the elimination of key architectural limitations, GPUs

have evolved from their traditional roots as a graphics pipeline

into programmable devices that can support general-purpose

scientific computation, i.e., general purpose computation on

GPUs (GPGPUs). With the introduction of easy-to-use pro-

gramming models such as NVIDIA’s Compute Unified Device

Architecture (CUDA) [22] and OpenCL [10], more and more

applications continue to be ported to the GPU [8], [18], [20],

[25], [27].

A NVIDIA GPU consists of a set of streaming multiproces-

sors (SMs), where each SM contains a few scalar processors

(SPs) On each SM, there are four types of on-chip memory,

i.e., register, shared memory, constant cache, and texture

cache. This on-chip memory can only be accessed by threads

executing on the same SM. On a GPU card, there are also

two types of off-chip memory, i.e., global memory and local

memory. Global memory can be accessed by all threads on the

GPU; while local memory is used in the same way as registers

except that it is off-chip.

Within the GPU memory hierarchy, on-chip memory has

low access latency but a relatively small size. On the contrary,

off-chip memory has a much larger size but also high access

latency. One way to improve the efficiency of accessing off-

chip global memory is to use coalesced read/write operations.

On the latest NVIDIA Fermi GPU architecture, L1 and L2

caches are provided to improve the efficiency of global mem-

ory access, especially for irregular access patterns.

CUDA is an extension of the C programming language

provided by NVIDIA. It allows compute-intensive and data-

parallel parts of a program to be executed on a GPU to

take the advantage of its computational capability. Specifically,

parallel portions of the program are implemented as kernels

and compiled into device instruction sets. Kernels are called

on the host and executed on the device. Each kernel consists

of a set of blocks, and each block contains a set of threads.

In addition to the above, CUDA provides functions for read-

modify-write atomic operations. We also ensure that all the

device memory that is needed on the GPU is allocated In

CUDA, there are functions provided for read-modify-write

atomic operations. Also, since dynamic memory allocation

is not supported2, all device memory should be allocated

beforehand. Finally, memory address space on the device is

different from that on the host. Consequently, pointers within

host-side data structures such as linked list will become invalid

after transferred to the device memory.

B. Basic Local Alignment Search Tool

BLAST is actually a family of algorithms, with variants

used for searching alignments of different types (i.e., protein

and nucleotide) of sequences. Among them, BLASTP is used

to compare protein sequences against a database of protein

sequences. There are four stages in the BLASTP algorithm:

1) Hit detection. Hit detection identifies high-scoring

matches (i.e., hits) of a fixed length between a query

sequence and a subject sequence (i.e., a database se-

quence).

2) Ungapped extension. Ungapped extension determines

whether two or more hits obtained from the first stage

can form the basis of a local alignment that does not

include insertions or deletions of residues. The align-

ments with scores higher than a certain threshold will

be passed to the next stage.

3) Gapped alignment. This stage performs further exten-

sion on the previously obtained alignments with gaps

allowed. The result alignments will be filtered with

another threshold.

4) Gapped alignment with traceback. In this stage, the final

alignments to be displayed to users are re-scored, and the

alignments are generated using a traceback algorithm.

Figure 1 gives an example of the first three stages of alignment

computation. The fourth stage repeats the third one with

traceback information recorded. BLAST reports alignment

scores calculated based on a scoring matrix and gap penalty

factors. In addition, statistic information such as “expect”

value that measures the significance of each alignment is also

reported.

Sbjct: ...CL-PIXYAALGDLPLIYPFLVNDPABC...

Query: ...CFAJ-PDALLGPLPNIYPFIVNDPGEG...

Ungapped Extension

Gapped Alignment Hit Detection

Fig. 1. First Three Stages of BLAST Execution

Our study in this paper is based on FSA-BLAST 1.05 [7],

a highly optimized sequential BLAST implementation.

III. RELATED WORK

Since the BLAST tool is both compute- and data-intensive,

many approaches have been investigated to parallelize BLAST

in the past. On multi-core platforms, the BLAST implemen-

tation from National Center for Biotechnology Information

(NCBI) has been parallelized with pthreads. On cluster

2We noticed that this feature is added in CUDA 3.2. But when this paper
was submitted, CUDA 3.2 is unavailable.



platforms, there are parallel implementations such as Tur-

boBLAST [4], ScalaBLAST [24], and mpiBLAST [6], [13],

[14]. Among them, mpiBLAST is a widely used parallelization

of NCBI BLAST. Combining efficient task scheduling and

scalable I/O design, mpiBLAST can effectively leverage tens

of thousands of processors to speedup the BLAST search [12].

Parallel BLAST has also been implemented on accelerators

such as FPGAs [9], [11], [17], [21], [26], [30]. In a recent

study, Mahram et al. [17] introduced a co-processing approach

that leverages both the CPU and FPGA to accelerate BLAST.

Specifically, their implementation parallelizes the first two

stages of BLAST on the FPGA to pre-filter dissimilar subject

sequences. Then, the original NCBI BLAST is called on the

CPU to search the filtered database. Their implementation can

generate the same results as NCBI BLAST and achieve as

much as 25-fold performance improvement.

Our work is mostly related to BLAST parallelization on

GPUs. Liu et al. [15], [16] developed CUDA-BLASTP and

reported a 10-fold speedup over NCBI BLASTP on a desktop

machine with two Tesla C1060 GPUs. CUDA-BLASTP uses

a pre-filtering design similar to the FPGA study by Mahram

et al. [17], and it does not parallelize all the compute stages

of the BLASTP algorithm on the GPU. The filtering approach

may suffer high overhead when searching BLAST jobs with a

large number of subject sequences similar to the query. As we

will see in Section VI, our BLASTP implementation on CUDA

is two times faster than CUDA-BLASTP. Vouzis et al. [29] in-

troduced another implementation of BLASTP on the GPU. In

their implementation, databases are partitioned and processed

on both the GPU and CPU, so that the system resources can be

better utilized. Their approach also parallelizes only the first

two stages on GPUs. With one CPU-helper thread, Vouzis’s

GPU BLAST implementation achieves between a three- and

four-fold speedup for various query sequences.

IV. MAPPING BLASTP ON CUDA

In this section, we describe how we map the BLASTP

algorithm onto the GPU.

A. Profiling of Serial BLASTP

We first profile the execution of BLASTP by searching

two sequences (query1 and query2) against the NCBI NR
database, which contains 9,874,397 sequences with a total size

over 5 GB. The sizes of query1 and query2 are 1K and

2K, respectively. Table I shows the time consumed by the

four stages for searching the two query sequences. Note that

the execution time of the first two stages cannot be separated

because these two stages are executed together (details will

be described in Section IV-B). Clearly, the first three stages,

i.e., hit detection, ungapped extension, and gapped alignment,

consume more than 99% of the total execution time, regardless

the query sequence length. Thus, our implementations focus

on parallelizing the first three stages.

B. Hit Detection and Ungapped Extension Parallelization

As mentioned earlier, the first two stages of BLASTP, i.e.,

hit detection and ungapped extension are actually combined

together. The algorithm first picks up a word from the begin-

ning of the subject sequence and scans it against the query

sequence to find hits. Once a hit is found, the extension is

performed immediately on the hit, in both directions. After

the extension is done, the algorithm moves on to scan for

the next hit in the query sequence that matches the current

word of the subject sequence so far and so on. After the

current word of the subject sequence is compared against the

entire query sequence, the algorithm moves on to the next

word in the subject sequence. Since the scanning of a subject

word depends on the hit detection and extension results of

previous subject words (for more details see [3]), only limited

parallelism can be exploited in aligning a pair of sequences

in the current BLASTP implementation. Consequently, we

parallelize the BLASTP algorithm by having each thread align

a pair of sequences (i.e., a query sequence and a subject

sequence). In this way, multiple pairs of sequences are aligned

concurrently, as shown in Figure 2.

Before the kernel is launched to the GPU, query sequences,

subject sequences and a few other data structures are trans-

ferred from the host memory to the device memory. Each time,

there is one query sequence on the device, which is shared by

all threads in the kernel. Also, the database is divided into

different chunks, which are searched one after another on the

GPU card (one kernel launch per chunk). The chunk size is

limited by the global memory size as well as the on-chip

memory (as described in Section V-A2) size on a GPU card.

By searching one chunk at a time, our GPU implementation

can process a database of arbitrary size.

Within a kernel launch, different threads align different

subject sequences against the query sequence. When a thread

finds successful ungapped extensions, it stores them in the

global memory. Since all threads can find ungapped extensions

in parallel, care must be taken to avoid write conflicts between

different threads. One design option is to have all threads

share a global memory buffer, and each thread calls an atomic

operation to find a write location for each ungapped exten-

sion. Such a design can incur high synchronization overhead

because atomic operations are expensive on GPUs. Another

design option is to maintain a fixed-size buffer for each thread

to store ungapped extensions.3 This design can avoid the

synchronization overhead of atomic operations. However, such

a design is space-inefficient because the number of ungapped

extensions generated by each thread can differ significantly,

and that number cannot be known beforehand.

We propose a two-level hierarchical buffer for storing the

ungapped extension, as shown in Figure 3. In the level-1

buffer, each thread is allocated a fixed-size segment which

can store N ungapped extensions. The level-2 buffer, which

can store M (M >> N ) ungapped extensions, is shared by

all threads and guarded with atomic operations. The writing

procedure of ungapped extensions is given by Algorithm 1.

As can be seen, a thread first writes an ungapped extension

to its allocation in the level-1 buffer. When a thread uses up

3Recall dynamic memory allocation was not supported on NVIDIA GPUs
at the submission time of this paper.



TABLE I
PROFILING OF SERIAL BLASTP (UNIT: SECOND)

Query sequence
Hit detection +

Gapped alignment
Gapped alignment

Total time
ungapped extension w/ traceback

Query 1 144.28 (76.09%) 44.87 (23.67%) 0.46 (0.24%) 189.61 (100.00%)

Query 2 260.05 (76.56%) 78.92 (23.23%) 0.70 (0.21%) 339.67 (100.00%)

Note: Numbers in the bracket are percentages of execution time of a stage in the total execution time.

Word lookup table

Query sequence, shared by all threads

Query sequence

Subject

sequences

CPU

GPU

BlockMBlock1 Block2 Block3

Threads Threads Threads Threads

Successful ungapped extensions

Gapped extension &

Gapped extension w/ traceback

Subject sequences

Shared additional buffer for ungapped extensions

Fig. 2. Hit Detection and Ungapped Extension Parallelization

its allocation in the level-1 buffer, it writes the rest of the

ungapped extensions to the level-2 buffer. Such a hierarchical

buffering design can efficiently utilize the global memory

space as well as avoid unnecessary synchronization overhead.

BlockMBlock1 Block2

Threads Threads Threads

Ungapped

extension

buffer N
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1
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1
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1
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N
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N

2
1

N

2
1

N

2
1

M21 M-143

Level-1,

private buffer

for each thread

Level-2,

shared buffer

for all threads

Fig. 3. Ungapped Extension Storage in Global Memory

In the first two stages, the BLASTP algorithm also needs

to maintain several global counters, such as the number of

hits detected. One way to implement a global counter is to

have each thread update a shared variable with atomic add

operations. Again, to avoid the overhead of atomic operations,

we implement per-thread counters on GPU, and all the per-

thread counters will be added up together on the host side to

produce the correct value for a global counter.

C. Gapped Alignment Parallelization

Gapped alignment uses seeds created by the ungapped

extension stage as its inputs and creates alignments with even

Algorithm 1 Ungapped Extension Storage in Global Memory

1: shrdIndex← 0
2: privtIndex← 0
3: B ← privtBufSize

4: ..., an ungapped extension is found ...

5: if privtIndex < B then

6: bufP tr ← privtBuf + privtIndex

7: privtIndex← privtIndex+ 1
8: else
9: bufP tr ← shrdBuf + atomicAdd(shrdIndex, 1)

10: end if

11: bufP tr ← unExtP tr

12: ...

higher alignment scores. Typically only a small percentage of

database sequences will need to be processed with gapped

alignment. As such, we launch a separate kernel for this

stage to re-map tasks to individual threads. To minimize data

transferring overhead, the gapped alignment kernel reuses the

subject sequence data stored on the GPU during the first two

stages.

During the gapped alignment, the best alignment score

corresponding to each subject sequence is recorded, which

will be copied to the host memory to filter out dissimilar

subject sequences. In addition, the status of each extension

will be recorded and copied back to the host memory for

further processing in the final stage – gapped alignment with

traceback.

V. PERFORMANCE OPTIMIZATION

Because of its heuristic nature, the BLASTP algorithm is

highly irregular with respect to the memory access and execu-

tion path. As such, the basic algorithmic mapping described

in Section IV does not map well onto the GPU architecture.

In this section, we present several optimization techniques

to address some of the performance hurdles of accelerating

BLASTP on GPUs.

A. Memory Access

The BLAST search needs to access a number of different

data structures. To improve memory access efficacy, we ex-

plore different data placement strategies in the GPU memory

hierarchy.

1) Constant Memory to Store the Query Sequence and

Scoring Matrix: When calculating alignment scores, the

BLASTP algorithm needs to frequently compute a matching

score between two individual letters from the query and

the subject sequences, which can be done by looking up



the corresponding element in a scoring matrix. FSA-BLAST

optimizes the lookup performance by pre-computing a query

profile for each query sequence. Specifically, a query profile

is a two-dimensional matrix, where each column corresponds

to one letter in the query sequence and consists of matching

scores between the query letter to all other letters as shown

in Figure 4(a). With the query profile, the matching score

between two letters can be obtained by first finding the column

corresponding to the letter in the query sequence and then

reading the score from the column according to the letter in

the subject sequence. Using query profiles is more efficient

because it saves one memory access used to read the current

letter of a query sequence.

One common optimization technique in GPU programming

is to leverage the cached constant memory to speedup the

access of frequently used data. Compared to global memory,

constant cache has much lower access latency for cache hits,

but its size is small (64KB). In the FSA-BLAST implemen-

tation, each column (corresponding to a letter in the query

sequence) in the query profile consumes 64 bytes (32 elements

with 2 bytes each). As such, the constant memory is not

sufficient to store the query profile for a query sequence larger

than 1K letters.

To take advantage of the constant memory, our implemen-

tation instead puts the scoring matrix there because the matrix

has a fixed size. In fact, the scoring matrix used in BLASTP

consists of 32 × 32 = 1024 elements and has a total size of

only 2KB (2 bytes per element). However, the query sequence

needs to be available when using the scoring matrix. In our

implementation, a 60K-byte buffer is allocated in the constant

memory for its storage. Since one byte is needed for each

letter, the maximum query sequence that can be supported is

60K letters. By counting the sequence size in the most recent

NCBI NR database, we found that more than 99.95% of the

sequences are smaller than 4K letters and the largest sequence

contains 36,805 letters, suggesting that the 60K buffer is

sufficient for storing individual protein sequences in the most

recent NCBI NR database.

Figure 4 depicts the differences between using the query

profile and the scoring matrix. Let tg and tc be the access

latency of global memory and constant memory, respectively,

and ta be the cost of an arithmetic operation. As shown in

Figure 4(a), to obtain the matching score between ’X’ in the

subject sequence and ’Y’ in the query sequence, the program

should first read ‘X’ from the subject sequence then read the

score ‘−1’ from the query profile, which takes a total time of

2tg . In contrast, with the scoring matrix, the program needs to

read ‘Y’ and the score ‘−1’ from the constant memory, and

‘X’ from the global memory as shown in in Figure 4(b). In

addition, two arithmetic operations are needed to compute the

location of ‘−1’ in the scoring matrix. Thus, the total time is

tg+2tc+2ta in the scoring matrix approach. Since the latency

of constant cache is two orders of magnitude faster than global

memory and the latency to executemagnitude faster than global

memory, using the scoring matrix can be much more efficient

than using the query profile if the scoring matrix and the query

sequence in the constant memory are well cached. As we will

show in Section VI, the experimental results suggest that our

approach is effective in practice.

Query: E N L Y .... M P K I
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.
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X

Y

-1 -2 -1 -2 .... -1 -1 -1 -1
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(a) Reading Alignment Score via Query Profile
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(b) Reading Alignment Score via Scoring Matrix

Fig. 4. Constant Memory Usage for Individual Alignment Score

2) Texture Memory to Store Subject Sequences and the

Word Lookup Table: Texture memory is another type of

cached memory on the GPU but with a much larger size

than constant memory. For example, with the one-dimensional

texture memory, the number of elements that the texture

memory can bind to is 227 or 128M elements. In order to

take advantage of the texture cache, which has low access

latency for cache hits, we partition the database into different

chunks of 128MB each. By loading the database chunks on

the GPU one after another, our design can search database

of an arbitrary size, which is important for solving real-world

BLAST search problems in practice.

Storing database sequences in texture memory may also

help exploit data locality in alignment computation. For in-

stance, as shown in Figure 5, when a hit is found, ungapped

extension will be performed in both directions. With subject

sequences stored in texture memory, some portions of the

subject sequence may have been cached, thus improving the

memory access efficiency.

Sbjct(in texture memory) : XYAALGDLPLIYPFLVNDPABC...

Query(in constant memory): PDALLGPLPNIYPFIVNDPGEG...
Hit

cached cached

Fig. 5. Texture Memory Usage for Subject Sequences

Besides subject sequences, we also store the word lookup

table in the texture memory. A word lookup table stores

precomputed words that can result in hits to each word in

the query profile. Again, the size of the word lookup table

varies depending on the query size, and it cannot fit into the

constant memory for reasonably long query sequences.



B. Load Balancing across Different Threads

When scheduling alignment tasks to different threads in

a kernel, a straightforward implementation can be statically

assigning a set of sequences to each thread according to

the thread ID number. This approach is easy to implement.

However, the overall kernel execution time may suffer when

there is load imbalance between different threads.

Algorithm 2 Dynamic Subject Sequence Assignment Algo-

rithm

1: n← totalThreadNum

2: mutexIndex← n

3: seqIndex← threadID

4: while seqIndex < numSequences do

5: AlignSeq(SubSeq[seqIndex], querySeq)
6: ...

7: seqIndex← atomicAdd(mutexIndex, 1)
8: end while

To alleviate the load-imbalance issue, our implementation

adopts a greedy algorithm (as shown in Algorithm 2) that

dynamically assign sequences to different threads. Specifically,

the first sequence is assigned to each thread according to the

thread ID. Whenever a thread finishes its current assignment,

it retrieves the next subject sequence using an atomic oper-

ation. In addition, the database sequences will be presorted

in the descending order of the sequence lengths. Assuming

the BLAST search time is proportional to the length of a

subject sequence, the database sorting can alleviate the impact

of load imbalance occurred toward the end of the kernel

execution. Note that this approach is only applicable to threads

in different warps, because threads within a warp always

execute the same instructions.

C. Overlap CPU and GPU Computation

In BLAST, the first two stages are executed together, while

the execution of the third stage is independent. If we execute

all three stages on the GPU, the CPU will be left idle most

of the time. To improve resource utilization in the system, we

propose to pipeline the procedure by executing the first two

stages on the GPU and the third stage on the CPU.

With the pipelining design, the computation on the CPU and

GPU can be overlapped as shown in Figure 6. Specifically,

the database is divided into multiple chunks. The GPU starts

executing the first two stages (i.e., hit detection and ungapped

extension) for one chunk, after which the successful ungapped

extensions are copied back to the CPU. When the third stage

(i.e., gapped alignment) is executed on the CPU on the current

trunk, the GPU can start the first two stages for the next

chunk. In addition, we use pthread to parallelize the gapped

alignment in order to leverage the processing power of multi-

core CPUs.

VI. PERFORMANCE EVALUATION AND

CHARACTERIZATION

In this section, we evaluate the performance of our parallel

BLASTP implementations on the GPU. Our experiments fo-

Hit detection +

ungapped extension Gapped alignment

Gapped alignment with traceback

GPU

CPU

(a) Parallelize All Three Stages on the GPU

GPU

CPU

(b) Overlap CPU and GPU Computation

Fig. 6. Two Methods for Gapped Alignment

cus on five versions of BLASTP with different optimization

techniques applied. Version 1 is the basic parallel version

as described in Section IV. Each of the other four versions

is corresponding to an optimization technique discussed in

Section V. The five versions are listed in Table II.

TABLE II
VERSIONS OF GPU BLASTP

Versions Description

Version 1
It is a straightforward mapping as described
in Section IV.

Version 2
Constant memory is used as described in
Section V-A1.

Version 3
Based on Version 2; atomicAdd is called for
load balancing as described in Section V-B.

Version 4
Based on Version 2; texture memory is used as
described in Section V-A2.

Version 5
Based on Version 4; atomicAdd is called for
load balancing as described in Section V-B.

Our experiments are executed on both the NVIDIA Tesla

C1060 and the Tesla C2050 GPU cards. The C1060 GPU

consists of 30 SMs, each containing 8 scalar processors. On

each SM, there are 16K registers and 16KB shared memory.

There is 4GB of global memory on the C1060 with an

aggregate bandwidth of 102.4GB/s. The C2050 is a newer-

generation GPU from NVIDIA. Compared to C1060, C2050

has more scalar processors (i.e., 32) per SM and larger register

files (i.e., 32KB). The C2050 has a L1 cache for each SM

and a L2 cache shared by all SMs. Both L1 cache and

shared memory use the same on-chip memory, which can be

configured as 16 KB L1 cache and 48KB shared memory or

as 48KB shared memory and 16 KB L1 cache. The L2 cache

has a larger size of 768KB. There is 3GB global memory

with an aggregate memory bandwidth of 153.6GB/s on the

C2050. We will refer the C1060 and C2050 as Tesla and Fermi,

respectively, hereafter.

On the host side, the system has an Intel Core 2 Duo

CPU with 2.2GHz clock speed and 4GB DDR2 SDRAM

memory. The operating system is the Ubuntu 8.04 GNU/Linux

distribution. Our code is developed with the CUDA 3.1 toolkit.



We use a subset of the NCBI NR database4 with one

sequence selected out of every 5 sequences from the NR

database. Also, four sequences with 1K, 2K, 3K, and 4K

letters, respectively, are used as the query sequences.

For the BLASTP program, all default values are used for

the program execution as shown in Table III. In addition, the

score matrix BLOSUM62 is used. The serial CPU version is

compiled with gcc with the -O3 optimization option. We

report the average number of three runs for each experiment.

TABLE III
DEFAULT PARAMETER VALUES IN BLASTP

Parameter description Value

Word size 3

Dropoff value for ungapped extension 7

Dropoff value for gapped extension 15

Dropoff value for triggering gaps 22

Dropoff value for final gapped alignment 25

Open gap penalty -7

Extension gap penalty -1

A. Evaluation of Individual Optimization Techniques

In this section, we evaluate the performance impacts of

individual optimization techniques described in Section V with

respect to the execution time spent on various compute stages.

1) Hit Detection + Ungapped Extension: Figure 7 shows

the execution time of the first two stages for the five versions

as described in Table II as well as the baseline serial CPU

version. The 1K query sequence is used as the input. We

measure the kernel execution time and total execution time

of the first two stages, where the total execution time includes

data transfer time between host memory and device memory,

pre/post-processing time, and kernel execution time5. We also

calculate the speedups of various GPU versions against the

CPU version.

Figure 7(a) shows the results on the Tesla card. Clearly, per-

formance improvements are achieved when each optimization

technique is applied. Specifically, the kernel execution time is

8.148s in Version 1, while that of Version 2 is 7.098ms, which

means a performance improvement of 12.89% is achieved

when the query sequence and scoring matrix are stored in the

constant memory. With the load-balancing optimization added,

i.e., Version 3, the kernel execution time is further reduced to

6.422s, a 9.51% improvement compared to Version 2. Version

4 extends Version 2 by placing the subject sequences and the

word lookup table in the texture memory, resulting a 25.55%

performance improvement. Finally, the best performance is

achieved in Version 5, where load balancing is added as

compared to Version 4. For the total execution time, the

absolute differences between different versions are the same

as those for the kernel execution time. With each optimization

technique applied, the relative performance improvements are

4According to our experiments with various databases with different sizes,
the speedup achieved is quite stable regardless of the database size. Therefore,
we use a subset of the NR database in our experiment.

5Since there is no data transfer, pre-processing, and post-processing in the
serial CPU version, the kernel execution time and the total execution time is
the same for the serial CPU version.
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Fig. 7. Performance Improvements Brought by each Optimization Technique
and the Corresponding Speedup for the First Two Stages

12.18% (Versions 1 to 2), 24.04% (Versions 2 to 3), 9.29%

(Versions 2 to 4), and 7.56% (Versions 4 to 5), respectively.

On Fermi, similar trends are observed for Versions 1, 2

and 3 as compared to the Tesla results. However, storing

the subject sequences and the word lookup table in the

texture memory has adverse performance impacts on Fermi.

Specifically, Version 4 is 20.04% slower than Version 2.

This can be caused by the L1/L2 cache introduced in the

Fermi architecture, which will be explained in more details

in Section VI-D1. Nonetheless, with load balancing added,

Version 5 outperforms Version 4 by 6.80%, similar to what

we observed on Tesla.

Compared to the CPU serial version, the best GPU versions

achieve speedups of 4.25 and 7.28 on Tesla and Fermi,

respectively, in kernel execution time. For the total execution

time, the speedups are 3.92 and 5.69 folds on Tesla and Fermi,

respectively. As expected, the program performance on Fermi

is better than that on Tesla. One reason is that the first two

stages of BLAST are memory-bound, and Fermi has a larger

global memory bandwidth. Moreover, there are L1 and L2

caches on the Fermi card, which can improve the efficacy of

global memory access even more.

2) Gapped Alignment: This section shows the performance

improvements of the gapped alignment stage. Since each

thread is responsible for only one subject sequence, the

optimization approach by using atomic function to achieve

load balance cannot be used here. Thus there are three different

GPU implementations for the parallelization of the gapped

alignment, which are Versions 1, 2, and 4 as described in

Table II. Again, the 1K query is used as in the previous section.

As shown in Figure 8(a), on Tesla, performance improve-
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Fig. 8. Performance Improvements Brought by each Optimization Technique
and the Corresponding Speedup for the Gapped Alignment Stage

ments are observed with each optimization technique applied,

similar to what is observed for the first two stages. With the

constant memory used for the query sequence and the scoring

matrix, performance of the gapped alignment is improved by

6.87% and 6.60% for the kernel and total execution time,

respectively. Storing the subject sequences in the texture

memory help reduce the kernel and total execution time by

18.68% and 17.87%, respectively. Unfortunately, there is no

performance improvement for the gapped alignment on the

Tesla compared to CPU serial implementation. One reason

can be that the irregular memory access is poorly supported

on Tesla. Another reason can be the large number of divergent

branches in the gapped alignment code. We will leave further

investigations of this issue for the future work.

Figure 8(b) shows the performance results on Fermi. With

constant memory used to store the query sequence and the

scoring matrix, the kernel execution time decreases from

2.291s (Version 1) to 1.979s (Version 2), corresponding to

a 13.61% improvement. However, if the subject sequences are

stored in the texture memory, the kernel execution time is

increased by 7.63% to 2.130s (Version 4). As we discussed

above for the first two stages, the reason is that the global

memory access is more efficient on Fermi because of the

L1/L2 cache provided. The best GPU version achieves 3.34-

fold and 2.77-fold speedups for kernel and total execution

time, respectively, as compared to the serial version on CPU.

It is worth noting that on both Tesla and Fermi, the kernel

execution time occupies a majority (more than 80%) of the

total execution time in each stage (Hit detection and ungapped

extension are measured together.) as shown in Table IV.

TABLE IV
PERCENTAGE OF THE KERNEL EXECUTION TIME

Stage(s) Tesla Fermi

Hit detection +
92.08% 80.36%

ungapped extension

Gapped alignment 94.53% 84.15%

3) Overall Execution Time: In this experiment, we compare

the overall execution time for five different implementations.

• CPU serial implementation.

• Version G1: All three stages are executed on GPU.

• Version G2: The first two stages are executed on GPU,

and the third stage is serially executed on CPU. There is

no overlap between the CPU and GPU processing.

• Version G3: The first two stages are executed on GPU,

and the third stage is executed on the CPU in parallel

with two threads. No overlap exists between the CPU

and GPU processing.

• Version G4: The first two stages are executed on GPU,

and the third stage is executed on the CPU in parallel with

two threads. The CPU and GPU processing is overlapped.

Figure 9 shows the overall execution time of the above five

implementations. There are several observations we can make

from Figure 9: First, if all three stages are executed on the

GPU, the overall performance on Fermi is much better than

that on Tesla (by 1.93 times). Second, with GPUs used for only

the first two stages, on Fermi, if no overlap is used (Versions

G2 and G3), the overall performance (9.92s and 7.00s for

Versions G2 and G3, respectively) will be worse than that

of Version G1 (6.10s). On the other hand, if we overlap the

computation on the CPU and the GPU, the overall perfor-

mance (4.98s) will become better than Version G1 (6.10s) by

18.29%. Third, on Tesla, since there is almost no performance

improvement by parallelizing the gapped alignment on the

GPU, any parallelization or optimization performed for the

gapped alignment will bring performance improvements. For

instance, if the pthread is used for the parallelization, we

can reduce the execution time by 27.79% (from Version G2

to Version G3). Furthermore, if the CPU and GPU execution

is overlapped, this performance improvement can almost be

doubled, i.e., the execution time decreases from the 11.89s of

Version G1 to 5.95s of Version G4.

B. Scalability of the Query Size

In this section, we evaluate the scalability of overall program

performance with respect to the size of a query sequence.

Specifically, we use the four aforementioned query sequences

with sizes from 1K to 4K as the input. We show only the

results on Fermi because the program performance on Fermi

always outperforms that on Tesla.

Figure 10 plots the scalability results in both overall ex-

ecution time and the corresponding speedup. We compare

three different implementations: CPU-only, GPU-only, and

the pipelining implementation that overlaps processing on

the CPU and GPU as described in Section V-C (the gapped
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alignment is parallelized on the CPU using pthread). As

can be seen from the speedup curves, both the GPU-only

and pipelining implementations scale well as the query size

increases. The GPU-only implementation can achieve around

4.5-fold speedup for all input queries. Leveraging the pro-

cessing power of both the CPU and the GPU, the pipelining

version can deliver more-than-6-fold speedups for 3K and 4K

queries.
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C. Comparison with the Existing CUDA-BLAST Implementa-

tion

As described in Section III, there is an existing GPU

implementation of BLASTP by Liu et al. [15]6. A close

examination on the source codes suggests that both Liu’s and

our kernel implementations are based on the same sequential

code. As such, we compare our implementation with the Liu’s

in this section.

As mentioned before, in the implementation of Liu et al.,

the GPU is used to only filter subject sequences that yield

successful ungapped extensions. After the filtering is done on

the GPU, the entire BLASTP program will be executed on the

CPU again to search the filtered subject sequences. In other

words, only the first two stages are parallelized on the GPU

in Liu’s implementation.

6The source code can be downloaded from http://www.nvidia.com/object/
blastp on tesla.html.

With the above filtering design, there is redundant computa-

tion on the CPU for the first two stages of filtered sequences.

This redundant implementation will increase with the amount

of qualified subject sequences (i.e., sequences with successful

ungapped extensions). Also, the third and fourth stages are

not parallelized at all. In the extreme case, where successful

ungapped extensions are found for all subject sequences, the

Liu’s implementation will be much slower than the serial

BLAST on CPU. In contrast, our implementation avoid the

redundant computation by parallelizing three stages of the

algorithm.

We compare our and Liu’s implementations by searching

two different query sequences; the first (query 1) is from

the sequence database and the second (query 2) is not. In-

tuitively, the search of query 1 will generate more qualified

subject sequences after the first two stages. The performance

results are shown in Figure 11. Note that these results are

collected on the Tesla card because Liu’s implementation

cannot be executed on the Fermi card. As can be seen,

our implementation significantly outperforms the Liu’s for

both query sequences. Also, the performance speedup of our

implementation against Liu’s implementation is higher for

query 1 (2.01 folds) than for query 2 (1.83 folds). The

reason is that with more qualified subject sequences generated

in the first two stages, the redundant computation increases in

Liu’s implementation.
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D. Performance Characterization

Despite our optimizations, the performance speedup of

BLASTP on the GPU is relatively low compared to other

applications [23], [28] that map well on the GPU architecture.

In this section, we explore the factors that potentially limit the

BLASTP performance on GPU through detailed performance

characterization.
1) Caching Effects: Starting from Fermi, NVIDIA intro-

duces L1 and L2 memory cache. L1 cache has a configurable

size (16KB or 48KB) and is shared by all threads on an SM.

L2 cache has a size of 768KB, but it is shared by all SMs.

We are interested in the answers of the following questions in

characterizing the memory access performance:

• To what extent can the caching help improve the program

performance? To address this question, we will compare



the program performance of three different configura-

tions: 1) disabling L1 cache, 2) using 16KB for L1 cache,

and 3) using 48KB for L1 cache 7.

• How does the transparent caching compare to manual

memory-access optimizations? Specifically, before Fermi,

many memory optimizations are done by leveraging

constant and texture cache. We would like to see how

these explicit memory placement optimizations compared

to relying on the caching mechanism available on the

newer-generation of GPU architectures (e.g., Fermi).
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Fig. 12. Impacts of Caching on Kernel Execution Time

Figure 12(a) shows the kernel execution time of the first

two stages under various configurations. For versions 1, 2,

and 3, the L1 cache size has considerable impacts on the

performance. Specifically, when L1 cache size is changed from

48KB to 16KB, kernel execution time of Version 1 increases

from 3.57s to 4.09s, corresponding to a relative increase of

14.77%. In addition, when L1 cache is disabled, an additional

increase of 15.31% is observed. Similar trends are observed for

Versions 2 and 3, but the performance differences caused by

the caching effects are in a smaller range compared to Version

1. In contrast, the L1 cache sizes does not have obvious

impacts for Versions 4 and 5. One possible reason is that in

those two versions, the subject sequences are stored in texture

memory, thus reducing the amounts of memory access from

the global memory.

Unlike on the Tesla card, where storing subject sequences

in the texture memory brings nontrivial performance im-

provements, on the Fermi card, leaving subject sequences

in the global memory actually results in better performance.

Specifically, Version 2 outperforms Version 4 by 21.69% when

48KB L1 cache is used. Similar performance improvement is

7L2 cache cannot be controlled by programmers on Fermi.

observed for Version 3 over Version 5. One possible reason

is that the L2 cache of global memory smoothes out irregular

memory access to some extent. The texture cache, which is

designed for 2D spatial locality, is less effective than global

memory cache in dealing with the memory access patterns in

BLAST. This suggests that the caching mechanism introduced

in the new Fermi architecture can potentially ease the efforts

of optimizing memory access for BLAST-like applications.

Figure 12(b) shows the performance impacts of caching on

the stage of gapped alignment. Again, when subject sequences

are stored in global memory, the L1 cache size can consider-

ably affect the performance. Specifically, for Version 1, using

48 KB L1 cache results in a 30% improvement compared to

the case where L1 cache is disabled. In Version 4, where

subject sequences are stored in texture memory, using 48

KB L1 cache still outperforms the non-L1-cache case, but

with a much smaller margin (i.e., 6%). Interestingly, storing

subject sequences in the texture memory does help when

16KB or less L1 cache is used. This may be attributed to the

different memory-access patterns between the first two stages

and the third stage. In summary, provisioning larger cache

for global memory may be helpful in improving the BLAST

performance.

2) Divergent Branching: Because of the heuristic nature of

the BLAST algorithm, there are a lot of inherent divergent

branches in the code. Since these divergent branches cannot

be eliminated in the current GPU architecture, our study on

this perspective is to quantify the performance impact of

divergent branching on the BLAST performance. Specifically,

we synthesize a pseudo input data set, where all the subject

sequences in the database are the same8. When searching this

database, no divergent branches will occur. The performance

speedup that can be achieved by this input data set can shed

some lights on how much performance impacts are caused by

divergent branches. This can also allow us to assess to what

extent the program performance is bounded by the memory

access throughput.

Tables V compares the performance of searching the synthe-

sized database against the aforementioned NR subset, using the

1K query mentioned earlier as input. Here, the speedup against

the CPU serial implementation is shown for each scenario. We

use Version 5 on the Tesla card and Version 3 for the Fermi

card, because these versions deliver the best performance

among others. As can be seen, higher speedups can be obtained

(from 5.69-fold to 9.07-fold for Fermi and from 4.25-fold to

7.74-fold for Tesla) by searching the synthesized DB than

searching the NR subset. This suggests divergent branching

is a major factor that limits the BLAST performance on GPU.

Thus, to better support irregular applications like BLAST on

GPUs, more effective mechanisms are needed to reduce the

impacts of divergent branching and load imbalance. Moreover,

even with most of the divergent branches eliminated, the

performance speedup is still within 10, suggesting that the

program performance is hampered by the efficiency of memory

8The sequence is randomly selected from the NR database with a size equal
to the average sequence size in NR.



access as well.

TABLE V
DIVERGENT BRANCHING IMPACT ON OVERALL SPEEDUP

Fermi speedup Tesla speedup

Synthesized DB 9.07 7.74

Subset of NR DB 5.69 4.25

VII. CONCLUSION

Accelerating the BLAST algorithm is of great importance

to computational biology. In this work, as a complement of

the existing parallel BLAST implementations on multi-core

and/or distributed systems, we parallelize BLAST on GPUs

to accelerate its execution.

We found that there are many irregularities in both the com-

putation and memory accesses for the execution of BLAST

on GPUs, which should be overcome as much as possible

to achieve good performance. To address the irregularities

and improve performance, we propose techniques including

storing query sequences and the scoring matrix in the constant

memory, using texture memory to cache subject sequences and

the word lookup table, and dynamically assigning sequences

to threads to achieve good load balance. Moreover, we overlap

the first two stages on the GPU and the third stage on CPU,

which is parallelized with pthread, and better performance

are achieved than that by executing all three stages on GPUs.

Compared to the serial CPU implementation, our parallel

implementation achieves about 6 times speedup for overall

program performance. In addition, we characterize the perfor-

mance impacts of our parallelization approaches with respect

to the cache configuration and divergent branching.

In the future, we will investigate alternative parallelization

approaches by relaxing the sequential constraint in the cur-

rent BLASTP CPU implementation. We would also like to

parallelize other BLAST algorithms, e.g., BLASTN, on the

GPU. In addition, we plan to leverage the message passing

interface (MPI) [19] to implement a multi-level parallelization

of BLAST on heterogeneous clusters.
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