
Android Collusive Data Leaks with Flow-sensitive
DIALDroid Dataset

Amiangshu Bosu
Department of Computer Science

Southern Illinois University Carbondale
Carbondale, Illinois 62901

abosu@cs.siu.edu

Fang Liu, Danfeng (Daphne) Yao, Gang Wang
Department of Computer Science

Virginia Tech.
Blacksburg, VA 24060

{fbeyond, danfeng, gangwang}@vt.edu

Abstract—We present DIALDroid, a scalable and accurate tool
for analyzing inter-app Inter-Component Communication (ICC)
among Android apps, which outperforms current state-of-the-
art ICC analysis tools. Using DIALDroid, we performed the first
large-scale detection of collusive and vulnerable apps based on
inter-app ICC data flows among 110,150 real-world apps and
identified key security insights.

I. INTRODUCTION

Although majority of the research on Android security to-
date focused on identifying stand-alone malicious apps [3],
recent studies have demonstrated more complex android
security threats associated with two or more apps [1], [6].

Android framework provides a message passing interface
named, Inter-Component Communication (ICC) to facilitate
data exchange between the components of the same app or
different apps. However, malware writers can exploit ICC
interface to develop multiple collusive apps that may look
benign to single-app screening mechanisms. There are primarily
two types of threats associated with inter-app ICC.

• Privilege escalation (aka the confused deputy problem)
is a well-defined threat where the receiver app B gains
unauthorized permissions or sensitive data as a result of
its ICC communications with the sender app A.

• Collusive data leak as a threat where the receiver app
B exfiltrates the sensitive data obtained from its ICC
communications with the sender app A to an external
destination (e.g., via disk output or network output).

The identification of inter-app ICC threats require pairwise
app comparisons, which demands worst-case quadratic com-
plexity (O(N2), where N is the total number of apps). Despite
recent efforts on inter-app ICC analysis, no satisfactory solution
exists that can support a large-scale pairwise analysis. For
instance, ApkCombiner extracts suspicious inter-app ICCs
by combining multiple apps into a single app, and then
performs a conventional single-app data-flow analysis [6].
This approach is barely scalable, since an expensive data-
flow analysis is repeated for all possible combinations of app-
pairs. COVERT [1] and DidFail [5] eliminate the need for
redundant data-flow analysis by analyzing each app only once.
However, COVERT uses formal model checkers incurring high
overhead. DidFail’s experimental evaluation is small and uses
an erroneous ICC intent resolution mechanism.

In this work, we develop a scalable and accurate tool DIAL-
Droid [2]1 for inter-app ICC analysis. We use DIALDroid to
perform the first systematic large-scale security analysis on
inter-app data-flows among 110,150 apps, including 100,206
most popular apps from the Google Play, and 9,944 malware
apps from the Virus Share. DIALDroid completes such a large-
scale analysis within a reasonable time frame (6,340 total
hours of program analysis and 82 minutes of ICC linking and
detection). Our key design characteristics include an adaptive
and pragmatic data flow analysis, highly precise ICC resolution,
fast ICC matching, and ability to execute fast queries on an
optimized relational database.

II. DEFINITIONS

This section defines the key security terms used in this paper,
including ICC exit leak, ICC entry leak, and sensitive ICC
channel. Using these terms, then we define the two types of
threats mentioned Section I.

A sensitive ICC channel refers to an ICC link be-
tween two components, from an ICC exit point (i.e., an
outgoing ICC such as startActivity, bindService,
and startActivityForResult) to an ICC entry point
(i.e., an incoming ICC such as onActivityResult and
getIntent) that transfers intents2 containing sensitive infor-
mation.

An ICC exit leak indicates a data-flow path from a sensitive
API call (e.g., getLatitude and getDeviceId) to the ICC exit.
In the context of inter-app ICCs, ICC exit leaks describe the
sender apps. Intuitively, ICC exit leaks identify sender apps
that leak sensitive data via inter-app ICCs.

An ICC entry leak indicates a data-flow paths from an ICC
entry point (i.e., method calls to retrieve incoming intent objects
such as getIntent) to sensitive sinks that send the received
data externally (e.g, via networks). In the context of inter-app
ICCs, we use the ICC entry leak to describe the receiver app.
Intuitively, ICC entry leaks identify receiver apps that leak
received data externally.

Collusive data leak is a threat associated with a sensitive
ICC channel between a sender component A in a sender app

1 Database powered ICC AnaLysis for AnDroid
2 message objects containing data and characteristics of intended receiver(s)

TABLE I
COMPARISON OF DIALDROID AGAINST FOUR POPULAR ICC ANALYSIS

TOOLS

Inter-app ICC Intra-app ICC
Precision Recall F-measure Precision Recall F-measure

DIALDroid 100% 91.2% 0.95 93.1% 74.4% 0.83
IccTA 100% 12.5% 0.22 83.7% 81.4% 0.82
COVERT 3.3% 45.8% 0.06 83.3% 25.6% 0.39
DroidSafe* - - - 53.7% 100% 0.70
AmanDroid* - - - 77.4% 55.8% 0.65
*DroidSafe and Amandroid only supports intra-app ICC analysis.

and a receiver component B in another app, where A has an
ICC exit leak and B leaks the received data from A via an
ICC entry leak.

Privilege escalation is a threat associated with a sensitive
inter-app ICC channel between a sender component A in an
app and a receiver component B in another app, where A has
an ICC exit leak and B does not have the permission to access
the data from A.

III. DIALDROID OVERVIEW

The workflow of DIALDroid involves four key operations
as follows.

• ICC ENTRY / EXIT POINT EXTRACTION: Given an app, we
extract the permissions and the attributes of the intent filters
from the AndroidManifest.xml file. We perform
static analysis using our custom ICC extractor [2] to
determine the attributes of the intents passing through
ICC exit points.

• DATAFLOW ANALYSIS: We use static taint analysis to
determine ICC exit leaks and ICC entry leaks in an app.

• DATA AGGREGATION: We aggregate the data extracted in
previous two steps to store in a relational database.

• ICC LEAK CALCULATION: Using SQL stored procedures
and SQL queries, we compute ICCs with collusive data
leaks and privilege escalations based on fine-grained
security policies.

DIALDroid executes the first three steps once for each app
(complexity O(N), where N is the total number of apps being
analyzed). The complexity of ICC leak calculator is O(mN),
where m is the number of apps with ICC exit leaks and in the
worst case, m = N . However, for real-world apps m would
several times smaller than N .

IV. EVALUATION AND RESULTS

Table I shows the benchmark comparison results of DI-
ALDroid against four other popular Android ICC analysis
tools based on three benchmark suites (i.e., DroidBench 3.0,
DroidBench-IccTA, and ICC-Bench. On the inter-app testcases,
DIALDroid has the highest precision (100%), the highest recall
(91.2%), and the highest F-measure (0.95) among the three
tools supporting inter-app analysis. On the intra-app testcases,
DIALDroid has the highest precision and the highest F-measure
among the five tools. The detailed results of our evaluation is
reported in our upcoming publication [2].

We use DIALDroid to analyze the sensitive inter-app ICCs
among 100,206 apps from the Google Play Market, and

TABLE II
SUMMARY OF INTER-APP ICC THREATS IDENTIFIED BY DIALDROID

Categorization Results
Threat
Type

Collusive
Data Leak

Privilege
Escalation

Intent
Type

of Distinct
Source App

of Distinct
Receiver App

Total ICC
Channels

Total
App Pairs

I Yes Yes Explicit 0 0 0 0
II No Yes Explicit 0 0 0 0
III Yes No Explicit 0 0 0 0
IV Yes Yes Implicit 33 1,792 77,104 16,712
V No Yes Implicit 62 44,514 1,785,102 1,032,321
VI Yes No Implicit 21 1,040 34,745 6,783

characterize them into 6 threat categories (in Table II). Our
threat categorization is based on threat types (collusive data
leak or privilege escalation) and intent types (explicit, where
recipient is explicitly named or implicit, where only a general
action/datatype is declared).

We found that collusive data leaks and privilege escalations
mostly use implicit intents but did not observe any explicit-
intent based collusion. This findings suggest that collusive data
leak research should start to examine implicit intents, rather
than focusing on explicit intents (e.g., [4]).

Although the total numbers of sensitive ICCs and app pairs
are extremely high, the number of sender apps initiating these
ICCs is surprisingly small. E.g., 1,785,102 inter-app ICCs
exhibiting privilege escalation behaviors (without collusive
data leaks) originated from only 62 sender apps. We also had
similar observations in other threat categories. We found that
the majority of inter-app ICCs (> 99%) do not carry any
sensitive data. This property implies that the typical workload
of inter-app ICC analysis is much lower than the worst case
workload. Our upcoming publication [2] details these results
with case studies describing real-world collusive apps.

Our datasets and tools can potentially benefit the broader
Android community. We have open-sourced our entire tool-suite
on GitHub3 and have made our database available4 for other
researchers. Our database contains extremely rich data-flow
attributes of 100,206 apps from the Google Play and 9,944
apps from the Virus Share. We envision the database to be
useful enabling more Android data analytic discoveries from
the community.

REFERENCES

[1] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “COVERT: Compositional
analysis of Android inter-app permission leakage,” IEEE Transactions in
Software Engineering, 2015.

[2] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive Data Leak and
More: Large-scale Threat Analysis of Inter-app Communications,” in
Procceedings ACM Asia Conference on Computer and Communications
Security (ASIACCS’ 17), 2017.

[3] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang, “Profiling
user-trigger dependence for Android malware detection,” Computers &
Security, 2015.

[4] K. O. Elish, D. Yao, and B. G. Ryder, “On the need of precise inter-app
ICC classification for detecting Android malware collusions,” in Proc. of
the IEEE Mobile Security Technologies, in conjunction with the IEEE
Symposium on Security and Privacy, 2015.

[5] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proc. of the ACM SIGPLAN International
Workshop on the State of the Art in Java Program Analysis, 2014.

[6] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, and Y. Le Traon, “ApkCombiner:
Combining multiple Android apps to support inter-app analysis,” in ICT
Systems Security and Privacy Protection, 2015.

3 https://github.com/dialdroid-android/.
4 http://amiangshu.com/dialdroid-db/

