

Human Factors in the Security of Online and Mobile Systems

Gang Wang Assistant Professor Department of Computer Science Virginia Tech

A Bit of Background: Gang Wang

Assistant Professor of Computer Science

- Ph.D. from UC Santa Barbara (2016)
- B.E. from Tsinghua University (2010)
- Research interests
 - Security and Privacy
 - Data Mining
 - Human Computer Interactions
- Outstanding Dissertation Award (UCSB)
- Best Practical Paper Award (SIGMETRICS'13)
- Research at Microsoft Research and LinkedIn (2011, 2012, 2014)
- Press coverage: MIT Technology Review, Fusion, Boston Globe, etc.

Looking for bright PhD/MS students to work with me!

Security

Data Analytics

Behavior

Modeling

HCI

Humans: The Weakest Link

- Data breaches caused by human factors
 - Anthem: largest breach in 2015
 - 80 Million records leaked (SSN, name, birthday)

Victim

Employee revealed password to attacker

- A growing concern
 - More recently: MySpace leaked 400 Million passwords (May 2016)
 - 1564 breaches, 1.5 Billion records leaked (2014 2015)
 - 95% security incidents involved human factors [1]

Attacks Targeting Users Now Common

- Malicious content target human users daily
 - Massive email/social spam, scam
 - Targeted spear phishing, like this one:

and please let me know if you would

Hi Gang,

I am a recruiter here with Amazon Data Science in Ireland. I am hoping to talk to you about a Systems Engineering role which I am hiring for at the moment.

This position is based on our data science team here in Dublin, Ireland and offers a competitive compensation plan, as well as a fantastic opportunity for continuous career growth and professional development in a challenging work enviror good match :) Shortened URL to a phishing site http://amazen.xxxx.com

Please find at the link below some information considering applying. <u>http://tinyurl.com/qxadbqf</u>

Reply

Not Interested

Understanding Human Factors

- Key questions
 - What are human's roles in online attacks?
 - How to understand user behaviors in online systems?
 - How to leverage this understanding to improve security?
- Traditional user study has limitations
 - Interview/survey: trade breadth with depth
 - High costs, does not scale

Need a scalable approach to study human factors in security

Potential solution: leverage detailed data on user behavior!

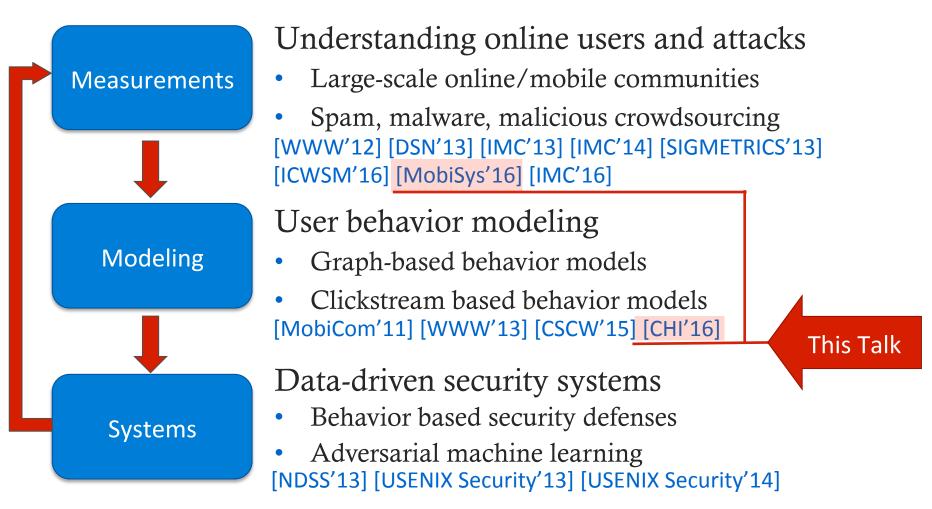
User generated content

Web clicks

Mobility

Biometrics 5

Data-driven Approach to Improving Online Security Through Users



Talk Outline

1. Emerging Threat of Sybil Devices

- Simulated mobile devices pretending to be real users
- Manipulate online services at a large-scale
- Example attacks: location tracking on Waze

[MobiSys'16]

2. Clickstream based User Behavior Model

- Build hierarchy of behavior clusters
- Automatically extract key distinguishing features
- Detect fake accounts, track dynamic behavior changes

7

[CHI'16]

Mobile Phone = Your Identity?

• Mobile phones for content, payment, authentication

• Mobile devices are virtual representations of ourselves.

But Is This a Safe Assumption?

• An app user = 1 real phone + 1 real person

Can We "Authenticate" Devices?

- Register via email account
- Require CAPTCHAs
- 2FA via phone number
- Validate IMEI number

- Create fake email account
- Out-source to third party
- Temporary SMS services
- Spoofed IMEI

Highly challenging to authenticate a mobile device!

Threat of Sybil Devices

- Sybil devices
 - Software scripts emulating as real devices
 - Allowing a single user to control many devices
- In the context of Waze (popular navigation app)
 - Creating a large number of Sybil devices with low costs
 - Attacks: injecting fake events, user location tracking
 - Generalizable to other mobile communities

Waze Key Features

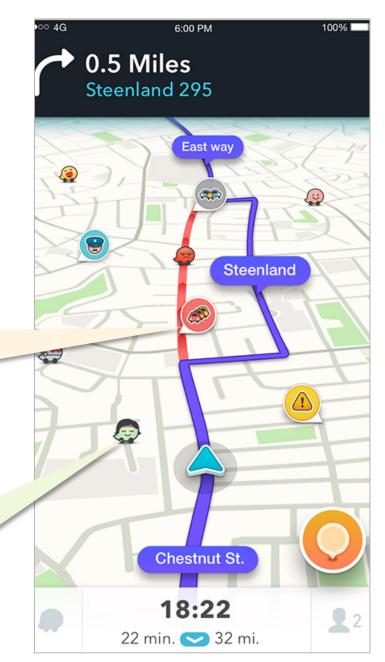
- 50M active users
- Real-time traffic update using millions of users' locations

User reported events

- Accidents, police trap, etc.
- Alert users of nearby events

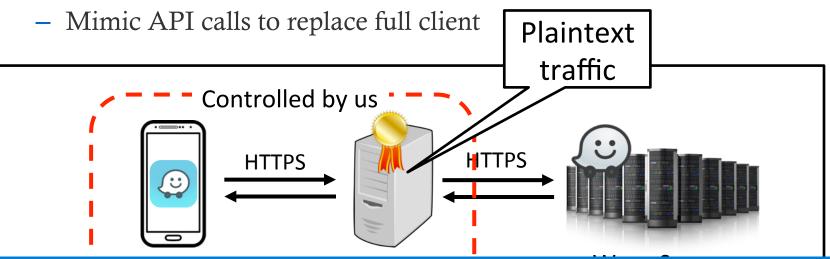
Social features

- See nearby users on the map
- Say "hi"/msg nearby users



Creating Sybil Devices

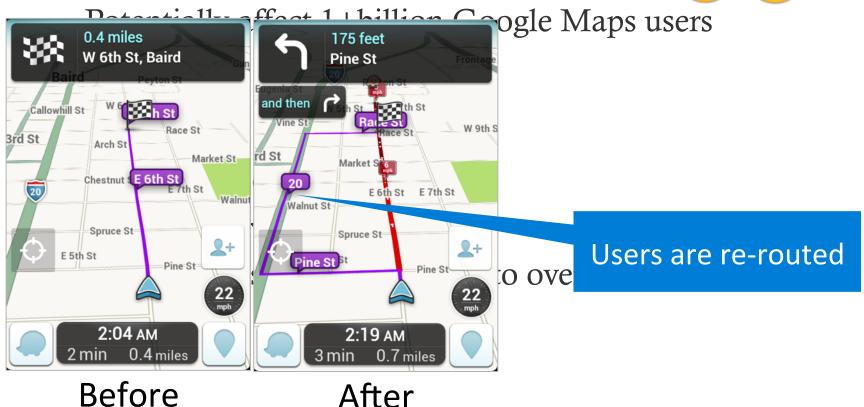
- Naïve approach: mobile emulators
 - Not scalable: ~10 emulators per PC
- Our way: emulate a mobile client using scripts
 - Server communicates with client via limited APIs



We can create 10,000 Sybil devices on a single PC

Attack #1: Polluting Waze Database

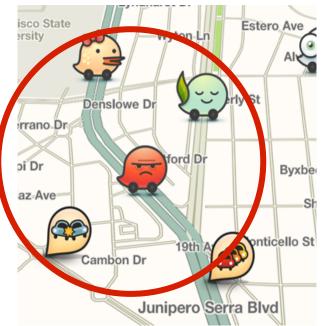
- Fake road-side events.
 - Any type of event at any location



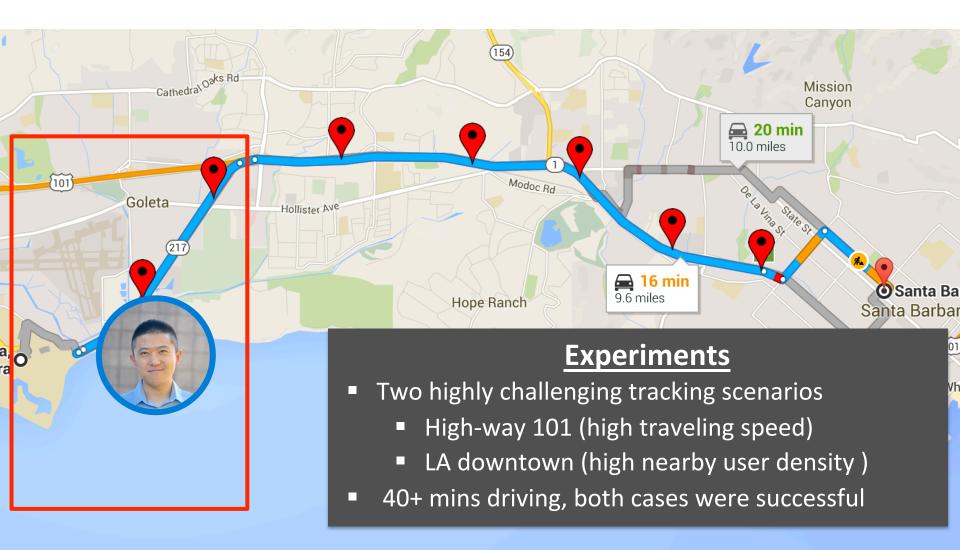
ļ

Attack #2: User Location Tracking

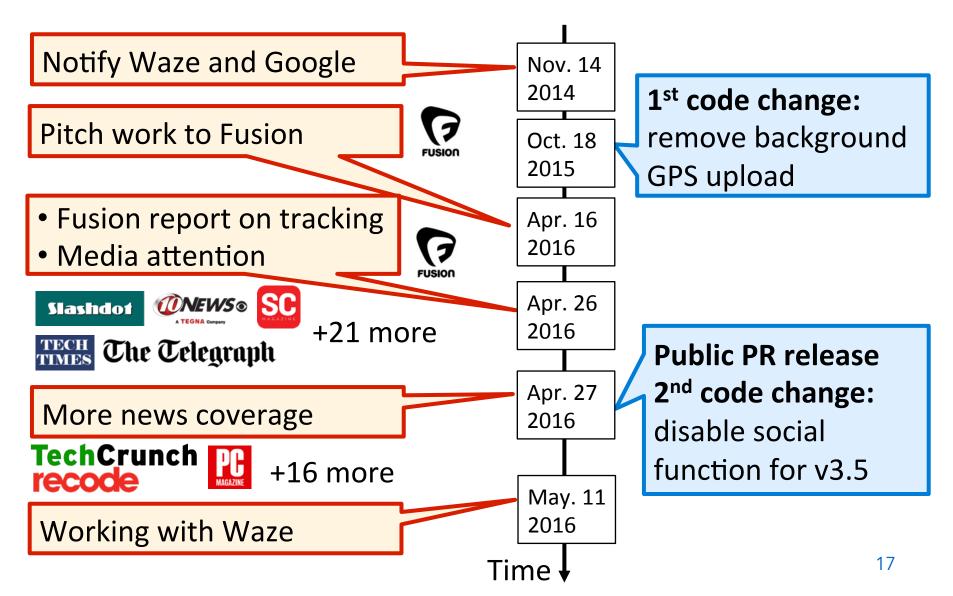
- Follow (stalk) any Waze user in real-time
 - Waze marks nearby users on the map
- Pinpoint to exact GPS location
 - Specific hotels, gas stations, etc.
- Remain invisible
 - Move in and out quickly
- Track users in the background
 - Waze uploads GPS in the background
- Track users across days
 - Use creation time as GUID



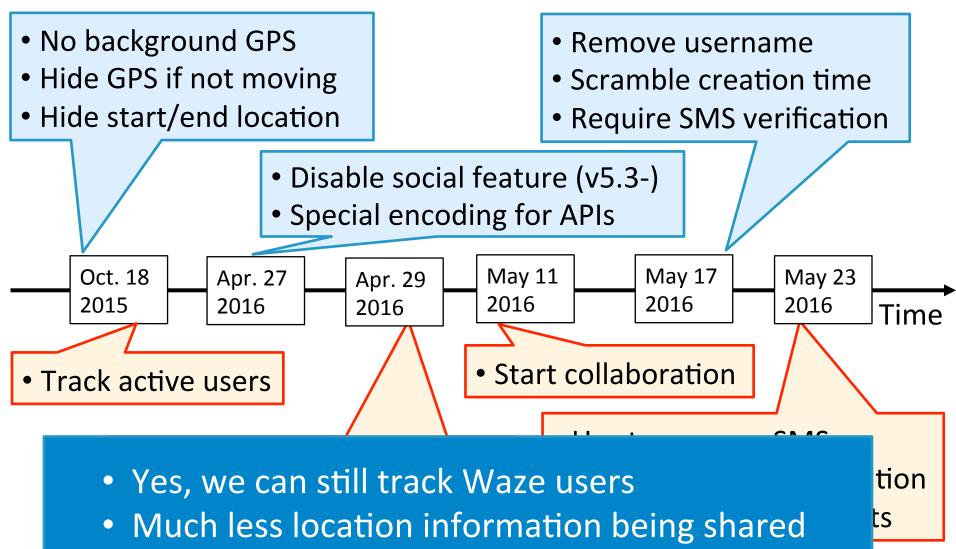
A Tracking Example



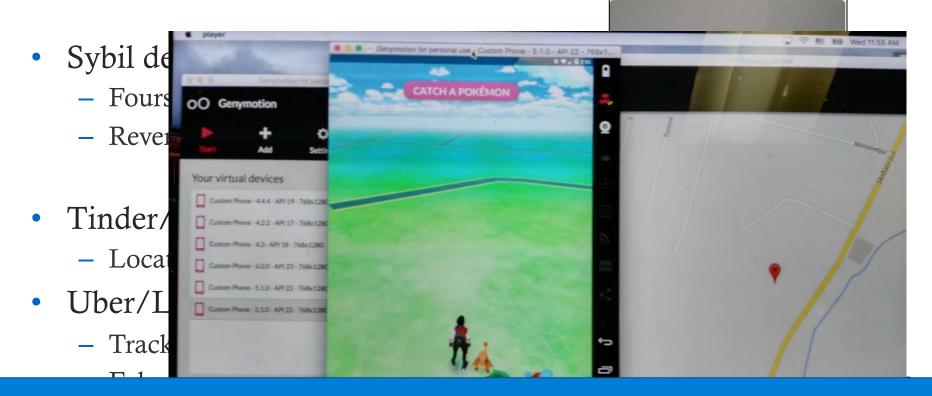
Conversation With Waze



Waze's Security Measures



Broad Implications on Other Apps



Key Takeaway

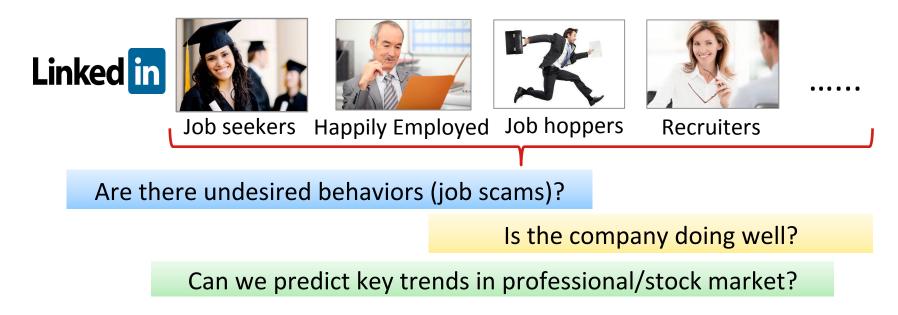
- Apps that support "human-to-human" interactions \rightarrow leak user data
- Sybil devices make this a bigger concern

Talk Outline

Detect fake accounts, track dynamic behavior changes

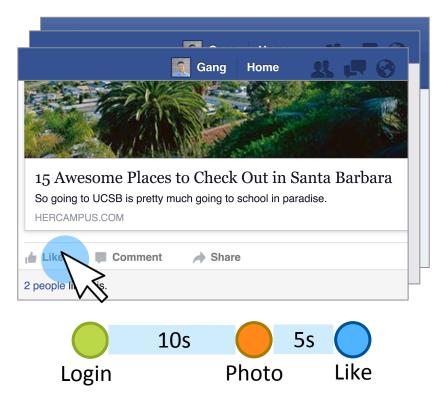
Understanding Online Users

- An increasing need to understand user behavior
 - What are the prevalent types of user behaviors?
 - How to identify and understand these behaviors?
 - Do user behaviors evolve/change over time?



Clickstream: You are How You Click

- Clickstream analysis for behavior modeling
 - Clickstream: a sequence of click events (and time gaps)
 - Suitable for identifying fine-grained user behaviors

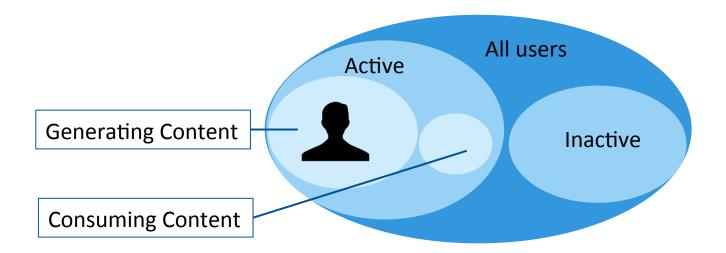


Our Goals

- 1. Identify natural clusters of user behavior based on clickstreams
- 2. Extract semantic meanings for captured behaviors
- 3. Scalable for large online services

User Behavior Model

- Key intuitions
 - Users naturally form clusters
 - More fine-grained user clusters are hidden within big clusters



Automatically capture hierarchical structure of behavior clusters

Clickstream Similarity Graph

Identify user clusters that share similar behaviors

- 1. Map user's clickstreams to a similarity graph
 - Clickstreams are nodes
 - Edge weighted by the similarity of clickstreams

Similarity: common subsequence (count)

 $\begin{array}{c|c} S_1 = AAB \\ S_2 = BBC \end{array} \xrightarrow{\begin{subarray}{c} ngram_1 = \{A(2), B(1), AA(1), AB(1), AAB(1)\} \\ ngram_2 = \{B(2), C(1), BB(1), BC(1), BBC(1)\} \end{array}$

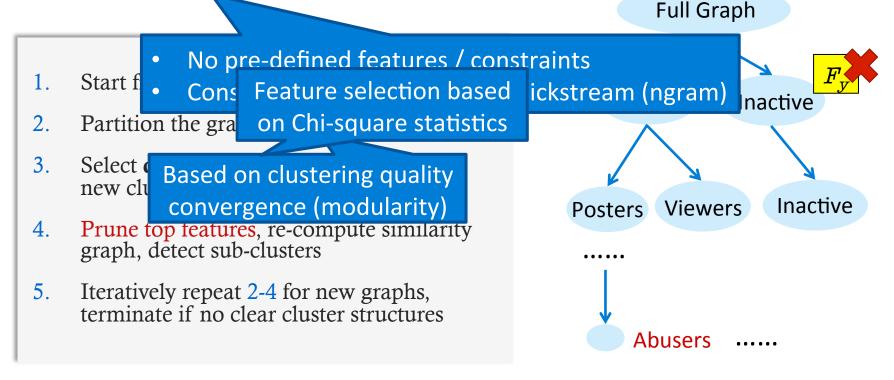
Cosine Distance

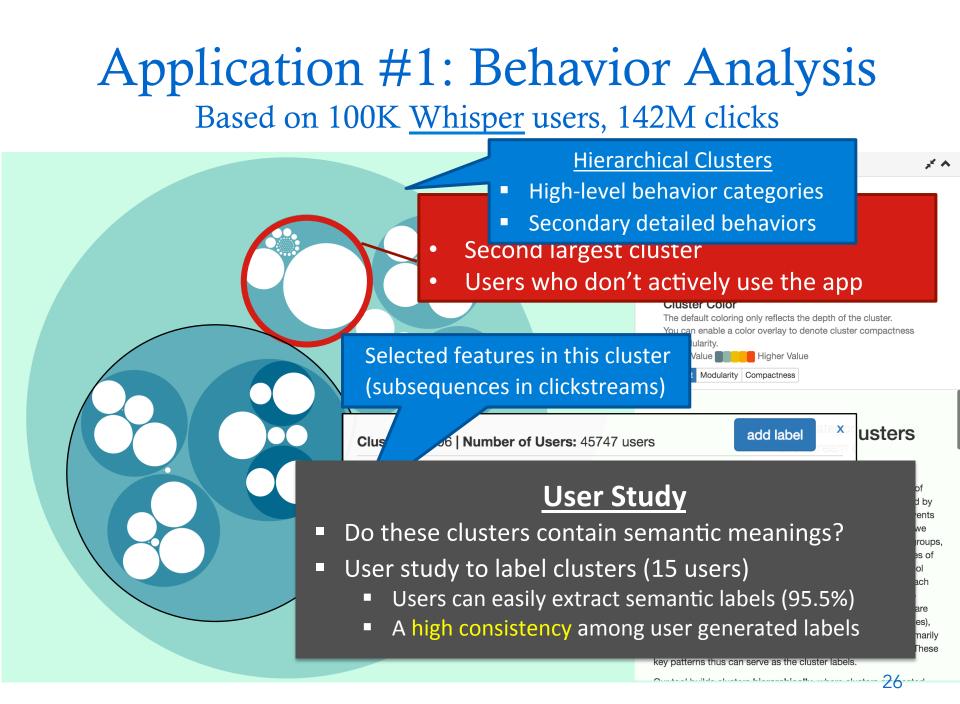
 V_1 =(2,1,0,1,1,0,0,1,0) V_2 =(0,2,1,0,0,1,1,0,1)

07

Hierarchical Clustering with "Iterative Feature Pruning"

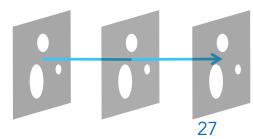
- Partition a clickstream similarity graph
 - Identify fine-grained clusters within big clusters
 - Select <u>features</u> to interpret each cluster





Tracking Behavior Changes

- Users within the inactive cluster
 - Dormant: zero active actions
 - Semi-dormant: only login occasionally
- **Hypothesis:** users in inactive cluster will migrate to "dormant" cluster over time
- Analyzing user migration
 - Split clickstream data into three snapshots, 2-week each
 - Compare user behavior clusters across snapshots



Predicting User Dormancy

- Users turning dormant within adjacent snapshots
 - Dormant users are likely to remain dormant (94%)
 - Semi-dormant users are more likely to turn dormant (17% vs. 1%)

Predict user dormancy by monitoring the inactive cluster

Implement necessary interventions to retain users

Ongoing: identify "paths" of behavior changes "What makes a user turn into a bully/troll?"

14

Application #2: Sybil Detection

- Detecting fake accounts in social networks [USENIX SEC'13]
 - Real users and fake users behave differently \rightarrow different clusters
- Ground-truth evaluation
 - Clickstream data from Renren (10K Sybil + 6K normal)
 - Highly accurate: 0.7% false positive rate, 4% false negative rate
- Shipped our prototype code to Mirenren Linked in

- LinkedIn: detected 200 new Sybils in a set of 36K "good" users
- Renren: detected new type of spam attack (image spammers)

"Image" Spammers in Renren

- Embed spam content in images
- Easy to evade text/URL based detectors

Talk Outline

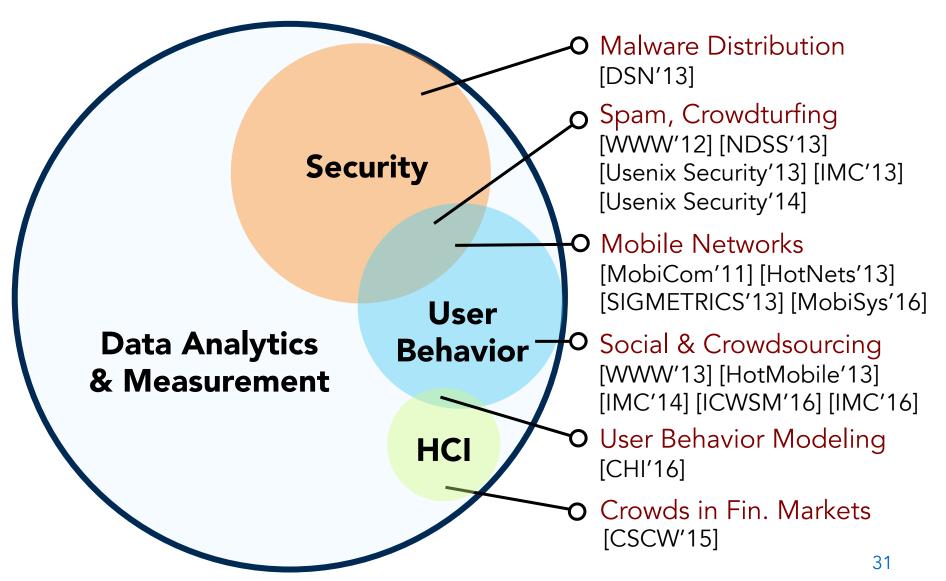
1. Emerging Threat of Sybil Devices

2. Clickstream based User Behavior Model

Conclusion

- Highlights of My Work
- Ongoing and Future Projects

Research Summary



Impact of Research

Academic Impact

- Broad publications in Security, Measurement, Mobile, HCI ____
- Frequent media coverage

Industry Impact

- Deployed: malware/Sybil detection, location anonymity scheme
- Actively protecting millions of users in production systems

Short Term: Sybil Devices Defense

• How to defend against Sybil devices?

- Apps: protecting APIs against reverse-engineering
 - Waze: special encoding on data fields of API calls
 - Yik Yak: use HMAC for message integrity
 - Periscope: SSL Pinning
- Lack of empirical understanding at a large scale
 - What apps are vulnerable to API reverse-engineering?
 - What security approaches are used to protect APIs?
 - How effective are these security approaches?

- Security approaches used
- Is APIs visible?
- Can APIs be simulated?

Short Term: \$ in Mobile Systems

venmo

🔥 Google Wallet 🛛 🧖

- Mobile digital wallet
 - Wide adoption
 - Many integrate with social features
 - How do users use the system? Are there malicious activities there?

Venmo Data: 90 million public transactions from 7 million users
Infer who you are based on how you make transactions (Gambling bookies, merchants, drug dealers)

- Mobile payment based social Q&A (FenDa)
 - Ask experts questions directly on your phone
 - Pay \$50 to ask a doctor a question
 - Get paid **\$1** from anyone who listens to the answer
 - Is money a good incentive to obtain/archive knowledge?

FenDa Data: 65K users/experts/celebrities and their answers

É Pay

PayPal

Future Directions: Long Term

- Explosive growth of Internet devices
 - Smartphones, wearable/medical devices, smart vehicles, smart city

Future trends

- Massive data from both cyber and physical world
- Opens up new attacking surface

<u>User-centric security</u>

- Identify real security threats by understanding user behaviors
- Statistical user behavior analysis that can scale

Thank You!

http://people.cs.vt.edu/~gangwang gangwang@vt.edu