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Introduction Second-Order Systems

Introduction

• Optimal control of linear time-varying (LTV) systems is an active area of research
• Rockets, robotics, structures, and others.

• Generally, these works deal with first-order LTV ordinary differential equations (ODEs).

• However, many engineering systems are described by second-order LTV ODEs:

M(t)q̈(t) + C(t)q̇(t) + K(t)q(t) = B(t)u(t), (1)

• space structures, spring-mass-damper systems, robotic manipulators, etc.

• This work focuses on optimal control of LTV second-order systems over finite horizon.
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Two-boundary Optimal Control Singular Perturbation

Two-boundary Optimal Control

• Consider the second-order LTV system:

M(t)q̈ + C(t)q̇ + K(t)q = B(t)u (2)

• With the first-order form:

ẋ =
[
ẋ1
ẋ2

]
=
[

0 I
−M−1K −M−1C

]
︸ ︷︷ ︸

A

[
x1
x2

]
+
[

0n×n
M−1B

]
︸ ︷︷ ︸

B̄

u (3)

• Control objective: design u(t) to drive x(t) from x(0) = x0 = [q0 q̇0]⊤ → x(T) =
xT = [qT q̇T ]⊤ within a prescribed T ,

• Simultaneously minimizing the cost function:

J = 1
2
∫ T

0 x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t) dt, (4)
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Two-boundary Optimal Control Singular Perturbation

Two-boundary Optimal Control

• Generally addressed using the time-varying Hamiltonian-Jacobi-Bellman equation:

H = x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t) + p⊤(t)(A(t)x(t) + B(t)u(t)), (5)

• p(t) is the co-state variable that satisfies

ṗ(t) = −∇x H = −Q(t)x(t) − A⊤(t)p(t) (6)

• Optimal control law u(t) (∇uH = 0):

u(t) = −R−1(t)B⊤(t)p(t) (7)

• Difficult to solve → numerically solved with Pontyagrin Maximum Principle (PMP)
• PMP is computationally demanding!

• Interestingly, two-value boundary problems exhibit a two-time scale phenomenon.
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Two-boundary Optimal Control Singular Perturbation

Two-boundary Optimal Control
• Time scale decomposition can be used to obtain singularly perturbed system form1.

• Possible to approximate the original LTV system with two LTI systems1:
• Initial regulator problem (IRP) → solved in forward time
• Terminal regulator problem (TRP) → solved in backward time

t = 0 t = T

Initial Conditions:

K(t) = K0

C(t) = C0

M(t) = M0

K(t) = KT

C(t) = CT

M(t) = MT

Terminal Conditions:

Figure 1: Two-value boundary problem

1Petar Kokotović, Hassan K Khalil, and John O’reilly. Singular perturbation methods in control: analysis
and design. SIAM, 1999.
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Two-boundary Optimal Control Singular Perturbation

Two-boundary Optimal Control

• Let τ = t
T , ε = 1

T , α = τ

ε
, β = 1 − τ

ε
(8)

Initial Regulator Problem
d

dα
xa(α) = A(0)xa(α) + B(0)ua(α), xa(0) = x0, (9)

with the feedback controller ua in the form

ua(α) ≜ −Kaxa(α) = −R(0)B⊤(0)Pa(0)xa(α), (10)

where Pa(0) is the positive semidefinite solution of

A⊤(0)Pa(0) + Pa(0)A(0) − Pa(0)B(0)R(0)B⊤(0)Pa(0) + Q(0) = 0, (11)

which minimizes the cost function

J(xa, ua) =
∫ ∞

0
x⊤

a Q(0)xa + u⊤
a R(0)ua dα (12)
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Two-boundary Optimal Control Singular Perturbation

Two-boundary Optimal Control

Terminal Regulator Problem
d

dβ
xb(β) = −A(1)xb(β) − B(1)ub(β), xb(0) = xT , (13)

can be obtained with the feedback controller

ub(β) ≜ −Kbxb(β) = R(1)B⊤(1)Pb(1)xb(β), (14)

where Pb(1)(= −N(1)) is the positive semidefinite solution of

− A⊤(1)Pb(1) − Pb(1)A(1) − Pb(1)B(1)R(1)B⊤(1)Pb(1) + Q(1) = 0, (15)
A⊤(1)N(1) + N(1)A(1) − N(1)B(1)R(1)B⊤(1)N(1) + Q(1) = 0 (16)

which minimizes the cost function

J(xb, ub) =
∫ ∞

0
x⊤

b Q(1)xb + u⊤
b R(1)ub dβ (17)
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Two-boundary Optimal Control Singular Perturbation

Two-boundary Optimal Control

• Then, the approximate near-optimal solution is given by2:

x(τ) = xa(α) + xb(β) + O(ε) (18)

• The solution requires solving two CAREs ((11) and (16)).

• Standard methods inaccurate and computationally inefficient as the system size increases.

• Conversion to first-order systems =⇒ doubles system size =⇒ exacerbates the problem!

• These are not closed-form =⇒ solved numerically; not parameterized in terms of
M, C, K.

• Hence, they do not provide an approximate closed-form solution to the optimal control
problem of second-order LTV systems.

2Petar Kokotović, Hassan K Khalil, and John O’reilly. Singular perturbation methods in control: analysis
and design. SIAM, 1999.
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CARE Solution Positive Semidefinite Solution

Positive Semidefinite and Stabilizing Solution to IRP

Theorem

Let γ, a1, and a2 be any scalars such that

γ ∈ (0, ∞), a1 >
γ

1 + γ

(
λmax (M(0)K−3(0))

) 1
2 > 0

a2 ≥ λmax

(γ

2 C
−1
2 (0)(M(0)K−1(0) + K−1(0)M(0))C

−1
2 (0) + γ2

2(γ2 + 2γ)C 1
2 (0)K−2(0)C 1

2 (0)
)

Then, a unique positive semidefinite solution to (11) is given below, where a ≥ max{a1, a2}.

P(0) =
[
(1 + γ)aK0 γK−1

0 M0
γM0K−1

0 aM0

]
(19)

Q(0) =
[

(γ2 + 2γ)I γK−1
0 C0

γC0K−1
0 2aC0 + a2K2

0 − γ(M0K−1
0 + K−1

0 M0)

]
(20)

R(0) = B⊤
0 K−2

0 B0 (21)
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CARE Solution Negative Semidefinite Solution

Negative Semidefinite and Destabilizing Solution

Theorem

Consider the system in (1), and let γ, a1, and a2 be any scalars such that

γ ∈ (0, ∞), a1 > 2λmax
(
K−1CK−1) ,

a2≥λmax

([
γK−1(K−1M+MK−1)K−1+ γ

γ + 1K−2C2K−2
] 1

2
)

Then, a unique negative semidefinite solution to (16) is given below, where ā ≥ max{a1, a2}.

N(1) =
[
−(1 + γ)āK1 γK−1

1 M1
γM1K−1

1 −āM1

]
(22)

Q(1) =
[

(γ2 + 2γ)I γK−1
1 C1

γC1K−1
1 ā2K2

1 − 2āC1 − γ(M1K−1
1 + K−1

1 M1)

]
(23)

R(1) = B⊤
1 K−2

1 B1 (24)
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Second-Order Systems Closed-form Solution

Closed-form LTV solution

• Closed-loop matrix for IRP → closed-form stabilizing CARE solution:

ACLi = A(0) − B(0)R−1(0)B⊤(0)Pa(0)

=
[

0 I
−(1 + γ)M−1

0 K0 −M−1
0 (C0 + aK2

0)

]
(25)

• LTI system =⇒ xa(α) directly obtained using the state-transition matrix.
• Similarly, the closed-loop matrix of the TRP → closed-form destabilizing CARE solution:

ACLt = −
(
A(1) − B(1)R−1(1)B⊤(1)N(1)

)
=
[

0 −I
(1 + γ)M−1

1 K1 M−1
1 (C1 − āK2

1)

]
(26)

• Then, approximate closed-form solution x(τ):

x(τ) = exp
(

ACLi

τ

ε

)
x0 + exp

(
ACLt

1 − τ

ε

)
xf (27)
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Second-Order Systems Spring-Mass-Damper Systems

Example: Spring-Mass-Damper Systems

• Drive system from qi(0) → qi(T ) optimally.

• M, C, K, B LTV.

• Comparison between three methods:
• PMP
• Singular perturbation: Schur’s method for CARE
• Singular perturbation: Closed-form solution for

CARE

• Comparison based on accuracy and computation
time.

Figure 2: Spring-Mass-Damper System
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Second-Order Systems Spring-Mass-Damper Systems

Convergence
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Figure 3: Trajectory for the states x1(t) and x2(t) for different values of T = 10, 25, and 75 seconds.

• SP: Closed-Form solution converges towards the iterative solution (PMP) of the original
LTV system as T increases (ε→0).
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Second-Order Systems Spring-Mass-Damper Systems

Convergence

Table 1: The root mean square error between the solutions of PMP and SP: Closed-form methods
(SP:CF), as well as that between the PMP and the SP: Schur method (SP:S). The error is tabulated
across the variation in system sizes as well as time (T ).

System T = 10 sec T = 25 sec T = 75 sec
size SP:CF SP:S SP:CF SP:S SP:CF SP:S
1 0.3064 0.3079 0.1237 0.1243 0.0445 0.0448
5 0.6205 0.6230 0.2757 0.2771 0.0983 0.0989
10 1.1367 1.1425 0.5110 0.5136 0.1254 0.1248
50 1.2348 1.2348 0.5500 0.5500 0.1970 0.1970
100 1.3634 1.3632 0.6684 0.6679 0.2175 0.2168
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Second-Order Systems Spring-Mass-Damper Systems

Computation Time

• PMP solves the original LTV system
numerically/iteratively → longest
computation time.

• In contrast, the SP methods, SP:
Closed-Form and SP: Schur, solve LTI
systems → faster computation.

• SP: Closed-form faster than SP: Schur,
as the latter solves CARE by
determining Hamiltonian
eigenvectors [2] → costly and inefficient
with larger system sizes.

• Conversely, the SP: Closed-Form relies
solely on elementary matrix operations!

10
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10
2

10
3

10
-2

10
0

10
2

10
3

Figure 4: Logarithmic plot comparing the time
taken to compute the solution by three methods:
PMP, SP: Closed-Form, and SP: Schur for system
sizes n = 1, 5, 10, 25, 50, 100, 250, and 500.
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Conclusions

Conclusions

• Obtained an accurate and efficient approximate closed-form solution for the two-boundary
optimal control problem of LTV second-order systems.

• Our approach involved decomposing the LTV problem into two LTI sub-problems.
• These sub-problems were solved using the proposed closed-form CARE solutions.
• Standard methods to solve these CAREs → inaccurate and computationally expensive

solutions for large-size systems.
• In contrast, our closed-form solutions ensure accuracy and significantly reduce the

computation cost for LTI second-order systems
• Consequently, the approximated LTV closed-loop system when compared with the

standard numerical LTV solvers.
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Conclusions

Thank You!!

Questions ??

Near-Optimal Control of Second-Order LTV Systems 21 / 21


	Introduction
	Second-Order Systems

	Two-boundary Optimal Control
	Singular Perturbation
	Initial Regulator LTI System
	Terminal Regulator LTI System

	CARE Solution
	Positive Semidefinite Solution
	Negative Semidefinite Solution

	Second-Order Systems
	Closed-form Solution
	Spring-Mass-Damper Systems

	Conclusions

