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Introduction

Introduction

Optimal control of linear time-varying (LTV) systems is an active area of research

o Rockets, robotics, structures, and others.

Generally, these works deal with first-order LTV ordinary differential equations (ODEs).

e However, many engineering systems are described by second-order LTV ODEs:

M(8)a(t) + C(t)a(t) + K(t)q(t) = B(t)u(t), (1)

e space structures, spring-mass-damper systems, robotic manipulators, etc.

This work focuses on optimal control of LTV second-order systems over finite horizon.
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Two-boundary Optimal Control

e Consider the second-order LTV system:
M(t)g +C(t)g + K(t)g = B(t)u (2)
o With the first-order form:
. X1 _ 0 / X1 0nxn
o= Ll Lo e [3] [l @
A B

Control objective: design u(t) to drive x(t) from x(0) = xo = [q0 Go] — x(T) =
x7 = [g7 g7]" within a prescribed T,

Simultaneously minimizing the cost function:
J=3 g x"()Q)x(t) + uT ()R(t)u(t) dt, (4)



Two-boundary Optimal Control

e Generally addressed using the time-varying Hamiltonian-Jacobi-Bellman equation:

H=x"()Q(t)x(t) + u" ()R(t)u(t) + p' (¢)(A(t)x(t) + B(t)u(t)), (5)
e p(t) is the co-state variable that satisfies
p(t) = —V.H = —Q(t)x(t) — AT(t)p(t) (6)
e Optimal control law u(t) (V,H = 0):
u(t) = —R7}(t)B" (t)p(t) ()

e Difficult to solve — numerically solved with Pontyagrin Maximum Principle (PMP)
e PMP is computationally demanding!

Interestingly, two-value boundary problems exhibit a two-time scale phenomenon.



Two-boundary Optimal Control

e Time scale decomposition can be used to obtain singularly perturbed system form?.

e Possible to approximate the original LTV system with two LTI systems!:
o Initial regulator problem (IRP) — solved in forward time
e Terminal regulator problem (TRP) — solved in backward time

Initial Conditions: Terminal Conditions:
M(t) = Mo M(t) = M~
C(t) =0Co C(t)y=Cr
K(t) = Ko K(t)=Kr
t=20 t=T

Figure 1. Two-value boundary problem

!Petar Kokotovi¢, Hassan K Khalil, and John O'reilly. Singular perturbation methods in control: analysis
and design. SIAM, 1999.



Two-boundary Optimal Control

o Let r=t o2l a2l plT (8)
Initial Regulator Problem
2 a(a) = AO)xs(a) + BO)ua(a), x(0) = )
with the feedback controller u, in the form
us(a) £ —Kaxs(a) = —R(0)B " (0)P5(0)xa(c), (10)
where P,(0) is the positive semidefinite solution of
AT (0)P5(0) + P4(0)A(0) — P4(0)B(0)R(0)BT (0)P4(0) + Q(0) =0, (11)
which minimizes the cost function
Sosaru) = [ Q0%+ u ROO)us do (12)




Two-boundary Optimal Control

Terminal Regulator Problem
d

%Xb(ﬂ) = —A(L)x(B) — B(1)up(B), x(0) = xT, (13)
can be obtained with the feedback controller
up(B) £ —Kpxp(8) = R(1)BT (1)Py(1)x5(8), (14)

where Pp(1)(= —N(1)) is the positive semidefinite solution of

— AT(1)Pp(1) — Pp(1)A(1) — P,(1)B(1)R(1)BT (1)P(1) + Q(1) = 0, (15)
AT(1)N(1) + N(1)A(1) — N(1)B(1)R(1)BT (1)N(1) + Q(1) =0 (16)

which minimizes the cost function

(6, ) = / T Q) + u] R(1)uy df (17)
0




Two-boundary Optimal Control

e Then, the approximate near-optimal solution is given by?:

x(1) = xa(@) + x6(8) + O(e) (18)
e The solution requires solving two CAREs ((11) and (16)).
e Standard methods inaccurate and computationally inefficient as the system size increases.
e Conversion to first-order systems — doubles system size = exacerbates the problem!

e These are not closed-form = solved numerically; not parameterized in terms of

M, C, K.

e Hence, they do not provide an approximate closed-form solution to the optimal control
problem of second-order LTV systems.

2Petar Kokotovi¢, Hassan K Khalil, and John O'reilly. Singular perturbation methods in control: analysis
and design. SIAM, 1999.
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Positive Semidefinite and Stabilizing Solution to IRP

Theorem

Let ~, a1, and ap be any scalars such that

€(0,00), &> T (Amax(M(0)K3(0)))? > 0
22 > Amax (€7 (0)(M(0)KT1(0) + KO M(0))C 7 (0) + s K00 0)

Then, a unique positive semidefinite solution to (11) is given below, where a > max{a;, a>}.

(1 +y)aKo 7/651/\/10

A= [ ’y/\/lolC_1 aM, (19)
(v +29)! 7Kg Co

Q)= YCoKgt  2aCy 4 a?KE — v( MoKyt + Ky ' Mo) (20)

R(0) = By Ky °Bo (21)

v




CARE Solution

Negative Semidefinite and Destabilizing Solution

Theorem
Consider the system in (1), and let v, a1, and a; be any scalars such that

v € (0, 00), a1 > 2\max (KTICKTY)

2> Amax ({ylc—l(/c—lMJrM/c—l)ic—leﬁ/c*c?/c—z] >

Then, a unique negative semidefinite solution to (16) is given below, where 2 > max{a1, ax}.

_[F@+mak KM
N(1) = [ MK —aMy (22)
_ (P +2y) K
Q1) = YOk 33 - 230 — (MK + KT My) (23)
R(1) = B K{%B; (24)

v
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Closed-form LTV solution

e Closed-loop matrix for IRP — closed-form stabilizing CARE solution:

Act, = A(0) — B(O)R(0)BT (0)P,(0)

0 /
- [—(1 + MG Ko =Mt (Co + aIC%)] (25)

o LTI system = x,(«) directly obtained using the state-transition matrix.
e Similarly, the closed-loop matrix of the TRP — closed-form destabilizing CARE solution:

Act, = — (A(1) = B(L)R™H(1)BT (1)N(1))

0 —1
= [(1 FMIK MG - a/c%)} (26)

e Then, approximate closed-form solution x(7):

T 1—7
X(T) = exp (ACLI.E) Xo + exp (ACLt . ) Xf (27)



Second-Order Systems

Example: Spring-Mass-Damper Systems

e Drive system from g;(0) — q;(T) optimally. N N
F MMy q
e M, C, K, BLTV. W= o
H E 71T|/ My_1 anfl
e Comparison between three methods:

o PMP

e Singular perturbation: Schur's method for CARE

e Singular perturbation: Closed-form solution for
CARE

Comparison based on accuracy and computation
time.

Figure 2: Spring-Mass-Damper System



Second-Order Systems

Convergence
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Figure 3: Trajectory for the states xi(t) and x(t) for different values of T = 10, 25, and 75 seconds.

e SP: Closed-Form solution converges towards the iterative solution (PMP) of the original
LTV system as T increases (¢—0).



Convergence

Table 1: The root mean square error between the solutions of PMP and SP: Closed-form methods
(SP:CF), as well as that between the PMP and the SP: Schur method (SP:S). The error is tabulated
across the variation in system sizes as well as time (T).

System T = 10 sec T = 25 sec T =75 sec
size SP:CF | SP:S | SP.CF | SP:S | SP:CF | SP:S
1 0.3064 | 0.3079 | 0.1237 | 0.1243 | 0.0445 | 0.0448
5 0.6205 | 0.6230 | 0.2757 | 0.2771 | 0.0983 | 0.0989
10 1.1367 | 1.1425 | 0.5110 | 0.5136 | 0.1254 | 0.1248
50 1.2348 | 1.2348 | 0.5500 | 0.5500 | 0.1970 | 0.1970
100 1.3634 | 1.3632 | 0.6684 | 0.6679 | 0.2175 | 0.2168




Second-Order Systems

Computation Time

e PMP solves the original LTV system
numerically /iteratively — longest
computation time.

e In contrast, the SP methods, SP:
Closed-Form and SP: Schur, solve LTI
systems — faster computation.

e SP: Closed-form faster than SP: Schur,
as the latter solves CARE by
determining Hamiltonian
eigenvectors [2] — costly and inefficient
with larger system sizes.

e Conversely, the SP: Closed-Form relies
solely on elementary matrix operations!

1 03 |—e—PMP
—a— SP:Closed-Form
1 02 H—m— SP:Schur

Time (s)

10"e

1072

10° 10' 107 10°
Size of the second-order system (n)

Figure 4: Logarithmic plot comparing the time
taken to compute the solution by three methods:
PMP, SP: Closed-Form, and SP: Schur for system
sizes n =1, 5, 10, 25, 50, 100, 250, and 500.
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Conclusions

Conclusions

e Obtained an accurate and efficient approximate closed-form solution for the two-boundary
optimal control problem of LTV second-order systems.

e Our approach involved decomposing the LTV problem into two LTI sub-problems.
e These sub-problems were solved using the proposed closed-form CARE solutions.

e Standard methods to solve these CAREs — inaccurate and computationally expensive
solutions for large-size systems.

e In contrast, our closed-form solutions ensure accuracy and significantly reduce the
computation cost for LTI second-order systems

e Consequently, the approximated LTV closed-loop system when compared with the
standard numerical LTV solvers.



Conclusions

Thank Youl!!

Questions 77
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