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ABSTRACT

Eldardiry, Hoda M. Ph.D., Purdue University, May 2012. Ensemble Classification
Techniques for Relational Domains. Major Professor: Jennifer Neville.

Ensemble learning techniques combine predictions of multiple models to improve

classification, while relational learning methods focus on utilizing link information to

improve classification for network data. Our goal is to combine these two machine

learning directions by applying ensemble classification to improve relational learning.

There are many domains in which data exhibits complex and heterogeneous re-

lational structures. However, applying traditional ensemble methods in relational

domains has a number of limitations that have neither been studied nor addressed

before. This dissertation (1) explores these limitations, (2) gives explanations for

why they exist, (3) provides solutions for them by proposing a relational ensemble

framework, (4) applies the proposed relational ensemble framework to combine link

information for collective classification in multi-network domains, (5) develops a more

general framework that works for single-network settings, and (6) presents a theoret-

ical analysis framework to support the empirical findings.

Traditional ensemble methods assume independent and identically distributed

(i.i.d.) data and exact inference models. Both assumptions are violated in relational

domains, where data has heterogeneous link structures, and models use collective

inference techniques. Ensemble methods that assume i.i.d. data use independent

sampling approaches during ensemble learning. This underestimates the increased

variance exhibited by network data, so the ensemble is unable to reduce the full

amount of variance in learning. We propose a novel method for learning ensembles

from relational data, which can capture and reduce more learning variance. The exact

inference assumption overlooks inference variance, introduced by collective classifica-
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tion techniques. We propose a novel ensemble classification method for relational

data, specifically when the ensemble uses collective inference base models. This is the

first ensemble method that accounts for and reduces inference variance.
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1. INTRODUCTION

Ensemble classification methods have been widely studied as a means of reducing

classification error by combining multiple base models for prediction. However, much

of the previous work has focused on i.i.d. domains (where objects are independent

and models use exact inference techniques). While there has been some recent inves-

tigation of ensembles for relational domains [1,2], these previous works have a number

of limitations in that: (1) they focus on the reduction of only one type of error (due

to learning), (2) they focus only on networks composed of multiple relations, and (3)

there is no theoretical analysis to show the mechanism by which ensembles reduce

model error in relational domains. Figure 1.1 shows an ensemble classifier.

model 1 predictions 1 

train data

model 2

test data

model 3

train samples

predictions 2 

predictions 3

p(Y|X)

test data

Fig. 1.1. Graphic illustration of ensemble classification.

In this work, we go beyond previous work and develop ensemble methods that

consider various aspects of relational data and relational models. Our proposed ap-

proaches focus on the reduction of errors due to both learning and inference, and

are applicable in both single- and multiple- relation settings. Moreover, we propose
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the first theoretical framework that analyzes various error components of relational

ensembles. Our empirical results show significant classification accuracy gains by our

proposed methods, and our theoretical analysis explains and confirms the empirical

results.

1.1 Ensemble design

Traditional ensembles have considered three design dimensions, with a limited

number of alternative choices for each dimension. In this work, we formulate novel

ensemble techniques for relational domains through unique combinations of design

choices. Figure 1.2 shows the di↵erent design choices we discuss below.

1.1.1 Input data treatment

In a typical classification scenario, only a single training dataset is given. However,

for ensemble learning, multiple training datasets are needed to learn multiple models.

The treatment should produce datasets of the same size as the input data to learn

di↵erent models from them (Figure 1.2(a)).

One way to treat input data is using resampling (i.e., sampling with replacement),

to generate multiple pseudosamples to learn the base models from. For example, bag-

ging approaches (e.g., [3]) use IID resampling (i.e., sampling instances independently

with replacement), then aggregate the multiple models predictions. Other methods

learn each base models from the full set of instances, but use a di↵erent subset of

features in each model [4–7]. Moreover, boosting approaches (e.g., [8–10]) construct

the models in a coupled fashion reweighting instances so that their weighted vote

gives a good fit to the data.

In this work, we propose two alternative methods for input data treatment, which

consider characteristics of relational data, to learn more useful ensembles. In Chap-

ter 3, we propose a method for resampling from relational data that allows the ensem-

ble to reduce more error due to learning than the IID resampling method considered
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by bagging. In Chapter 4 we propose learning the base models in a new way, in

which each model is learned from a di↵erent link graph. This allows our ensemble

to utilize the di↵erent relational structures present in the network, while separating

them during learning to reduce noise that can result from too many links in the same

graph. Specifically, the multiple link types in the network are used to subset the data

(instead of the conventional feature subset approach which would sample from the

node features).

1.1.2 Choice of base model

An ensemble is typically composed of multiple base models (shown in Figure 1.2(b)).

Traditional ensembles assume i.i.d. base classifiers, which model information about

each instance in isolation, and use exact inference techniques. We note that once

we move beyond the i.i.d. assumption (for models), to the richer relational settings,

much higher classification performance can be achieved.

In Chapter 3 we propose to learn a relational classifier for the base models of

the ensemble. Since relational classifiers use the dependencies between attributes of

interrelated objects to improve classification, this necessitates a relational approach

to resampling, which can preserve the link structure in the data, so the models can

utilize the link structure.

In Chapter 4 we propose to learn collective classification base models, which mod-

els the dependencies between class labels of interrelated objects. In collective infer-

ence, predictions made at one inference iteration can be used to improve predictions

to be made at the next iteration [11–14]. This o↵ers an opportunity for a novel

ensemble design dimension which we present in section 1.1.4.

1.1.3 Output aggregation

The output aggregation step is shown in Figure 1.2(d). Traditional ensembles

aggregate the set of predictions made by the base models for each instance inde-
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pendently. This happens after the base models are run independently for inference.

Aggregation strategies include simple averaging, weighted averaging and majority vot-

ing. In this dissertation, we focus on simple averaging for output aggregation, since

we explore another level of aggregation that precedes the final output aggregation.

We discuss this next.

1.1.4 Model interleaving

In Chapter 4, we propose a new ensemble design dimension that we call model

interleaving. This method utilizes a unique opportunity o↵ered by relational do-

mains, which stems from the use of collective classification. Instead of running the

base models independently for inference, and aggregating the final models’ output,

we take advantage of the collective inference process and allow a prediction made

by one model to influence the prediction made for the same instance by another

model. Our proposed approach of across-model inference aggregation facilitates an

additional reduction of inference error on top of the traditional learning error reduc-

tion achieved by the final step of output aggregation. Figure 1.2(c) shows that this

model interleaving step takes place before the final output aggregation step.

1.2 Ensemble framework and analysis

In Chapter 5 we combine our ensemble design choices to reduce errors due to

both the learning and inference processes in relational data. Specifically, we use our

relational resampling approach presented in Chapter 3, which aims to capture the

increased variance in relational data, enabling the ensembles to reduce more of the

variance due to learning. This is combined with the interleaved inference presented

in Chapter 4, which enables the ensembles to reduce more of the variance due to

inference. This combination also facilitates the application of model interleaving to

networks with single relations, not just networks with multiple relations.
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model 1 predictions 1 

input data

model 2

test data

model 3

training samples

predictions 2 

predictions 3

test data

a) input data treatment b) choice of base models d) output aggregationc) model interleaving

Fig. 1.2. Graphic illustration of the various design dimensions for ensemble
classification.

Classification error is typically decomposed into variance and bias components [15–

18]. In i.i.d. domains, ensemble learning methods have been shown to reduce clas-

sification error by reducing variance (e.g., bagging [3]) or reducing bias (e.g., boost-

ing [10]). In this work, we focus on the reduction of variance.

Previous ensembles that reduce variance have focused on reducing one type of

variance, which we refer to as the learning variance. This is the variance due to

learning the models from di↵erent training datasets. On the other hand, collective

inference models applied to relational data have been shown to have additional sources

of error due to variance in the inference process [19]. We refer to the variance in

predictions made by the same model given di↵erent subsets of true labels for objects

in the test set, as the inference variance.

In Chapter 6, we propose a theoretical framework to analyze the error reduction

of relational ensembles. We use a relational bias/variance decomposition similar to

that of [19] for our analysis, but extend it for the ensemble setting—to consider

not just a single collective inference model, but an ensemble of collective inference
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models. Specifically, we reason about two ensemble models: (1) a simple relational

ensemble model that runs the component classifiers independently for inference and

aggregates the final predictions, and (2) our across-model approach, which runs the

component models simultaneously for collective inference and aggregates intermediate

predictions across the models during inference. The goal of our theoretical analysis

is to decompose the errors associated with each ensemble and show how the di↵erent

ensemble approaches are able to reduce the error of a single model. Specifically, we

show that the interleaved across-model ensemble produces the greatest reduction in

error due to its ability to reduce learning and inference error without an increase in

bias. To our knowledge this is the first analytical investigation of error for relational

ensembles.
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2. BACKGROUND

2.1 Ensemble learning

Ensemble classification methods have been shown to produce more accurate pre-

dictions than the base component models [20, 20–23]. Due to their e↵ectiveness,

ensemble approaches have been applied in a wide range of domains to improve classi-

fication. Ensemble learning algorithms work by running a “base learning algorithm”

multiple times, and combining the predictions from the resulting models. There are

two main approaches to designing ensemble learning algorithms.

2.1.1 Independent ensemble construction

The first approach is to construct each model independently in such a way that the

resulting set of models are accurate and diverse–that is, each individual model has a

reasonably low error rate for making new predictions and yet the models disagree with

each other in many of their predictions. If such an ensemble is constructed, it is easy

to see that it will be more accurate than any of its component classifiers, because the

disagreements will “cancel out” [24]. This approach improves classification accuracy

by reducing error due to variance.

Bagging

One way to force a learning algorithm to construct multiple models is to run

the algorithm several times and provide it with somewhat di↵erent training data in

each run [3,20,25,26]. For example, Breiman [3] introduced the Bagging (“Bootstrap

Aggregating”) method which works as follows. Given a set of m training data points,

Bagging chooses in each iteration a set of data points of size m by sampling uniformly
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with replacement from the original data points. This creates a resampled data set in

which some data points appear multiple times and other data points do not appear

at all. If the learning algorithm is unstable–that is, if small changes in the training

data lead to large changes in the resulting model–then Bagging will produce a diverse

ensemble of models.

The traditional methods assume i.i.d. data, so they use i.i.d. resampling tech-

niques. However, these methods do not work well for relational data. Chapter 3

presents a method for bagging from relational data that uses a novel relational re-

sampling approach to ensure accuracy and diversity of the ensembles.

Feature subsets

Another way to force diversity is to provide a di↵erent subset of the input features

in each call to the learning algorithm [4–7]. For example, in a project to identify

volcanoes on Venus, Cherkauer [4] trained an ensemble of 32 neural networks. The

32 networks were based on 8 di↵erent subsets of the 119 available input features and

4 di↵erent network sizes. The input feature subsets were selected to group together

features that were based on di↵erent image processing operations. The resulting

ensemble classifier was significantly more accurate than any of the individual neural

networks.

Chapter 4 presents a method for ensemble inference that uses a similar learning

approach in which each link types are used as features, and each model is learned

using a di↵erent link type from the network.

Other methods

There are other methods that independently construct ensembles, but are not

relevant to this work. Dietterich and Bakiri [27] describe a technique called error-

correcting output coding in which they manipulate the output labels of the training
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data to force diversity. Another way of generating accurate and diverse ensembles is

to inject randomness into the learning algorithm. (E.g., see [28–31].)

2.1.2 Coordinated ensemble construction

The second approach to designing ensembles is to construct the models in a cou-

pled fashion so that their weighted vote gives a good fit to the data [8, 9]. This

approach improves classification accuracy by reducing error due to bias. These meth-

ods view an ensemble as an additive model that predicts the class of a new data point

by taking a weighted sum of a set of component models. In statistics, such ensembles

are known as generalized additive models. Freund and Schapire [8, 10] introduced

the Adaboost algorithm for constructing an additive model. However, since variance

reducing ensembles are more general and have been more widely studied [32–34], this

dissertation focuses on these types of ensembles.

We discuss related work at the end of each chapter.
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3. RELATIONAL ENSEMBLE CONSTRUCTION

3.1 Motivation

Bagging (i.e., bootstrap aggregating) is an ensemble method that improves clas-

sification accuracy by reducing the error due to variance in learning [3]. Bagging

works by generating multiple versions of a model and using them to get aggregated

predictions. For a typical classification task, one training dataset and one test dataset

are given. In bagging, bootstrapping (sampling with replacement, a.k.a. resampling)

is used to generate multiple training datasets from the given one. Multiple models

are learned from the generated datasets. Then, each model is applied to predict la-

bel values for the test set instances. Each instance’s final prediction is produced by

aggregating the various models’ predictions for that instance.

Although bagging was initially developed for classification of independent and

identically distributed (i.i.d.) data, it can be directly applied for relational data

by using a relational classifier as the base model. This straightforward approach of

applying bagging for a relational classification task can improve accuracy, but su↵ers

from a number of limitations. First, relational data characteristics (that improve

prediction when considered) will only be exploited by the base relational classifier, and

not by the bagging mechanism itself. However, explicitly accounting for the structured

nature of relational data, can significantly improve bagging. Second, typical bagging

methods that assume i.i.d. data fail to preserve the relational structure of non-

i.i.d. data. This can (1) prevent the relational base classifiers from exploiting these

structures, and (2) fail to accurately capture properties of the dataset which can lead

to inaccurate models and classifications.

Bagging typically uses sampling independently (i.e., at random) with replacement

to generate multiple bootstrap samples to learn the models from. The key idea behind
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this work is that constructing the ensembles using i.i.d. sampling can underestimate

the variance in learning, when applied to relational data since it will not account for

the reduced e↵ective sample size due to dependencies among interrelated objects [35].

Reduction in e↵ective sample size leads to an increased population distribution vari-

ance [36], but i.i.d. bootstrap samples (and consequently the models learned on them)

will underestimate this variance. When the ensemble construction (i.e. resampling)

procedure fails to accurately capture the population variance, bagging fails to reduce

the full amount of learning variance. Additionally, independent sampling from a re-

lational dataset does not preserve the relational structure, since a given node will not

necessarily have all of its neighbors in the sample. This limits fully exploiting auto-

correlation and linkage, and the increased accuracy that can otherwise be achieved.

This work proposes a relational ensemble construction method that explicitly ac-

counts for the structured nature of relational data and significantly improves classi-

fication accuracy of bagging in relational domains. Our proposed method can enable

learning more accurate ensembles from relational data, by expanding the reduction

of error due to variance in learning, while preserving the relational characteristics in

the data.

The proposed bagging approach uses a relational subgraph resampling algorithm

in lieu of the traditional i.i.d. resampling mechanism. We will present empirical

results which show that bagging using the proposed relational resampling method

significantly outperforms bagging using i.i.d. resampling, on both synthetic and real-

world datasets. In addition, bagging using relational resampling can better exploit

increased autocorrelation in the data, due to its ability to preserve the relational

structure during sampling.

3.2 Problem formulation

The general bagging approach is outlined in Algorithm 3.1. Given a fully-labeled

training set composed of a graph Gtr = (Vtr, Etr) with nodes Vtr and edges Etr, and
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an unlabeled test set composed of a graph Gte = (Vte, Ete) with nodes Vte and edges

Ete; an ensemble of size k models is constructed as follows.

A pseudosample Gps = (Vps, Eps) is generated by resampling from Gtr (line 2)

and a model F is learned from Gps (line 3). F is composed of a joint probability

distribution over the labels of Vps, conditioned on the observed attributes and graph

structure in Gps. Each learned model F is applied to Gte, and a set of marginal

probability distributions P (i.e., predictions) over the labels of nodes Vte are produced

(line 4). The final step of bagging involves averaging the k models’ predictions P v for

each node v to produce the final aggregate node prediction (line 6).

Note that any relational learner can be used in line 3, and that the conventional

resampling method in which nodes are sampled independently with replacement is

used in line 2. Next we present our proposed resampling method that can be used

instead of the typical i.i.d. resampling when the data exhibits a relational structure.

Algorithm 3.1 Bagging(Gtr = (Vtr, Etr), Gte = (Vte, Ete), k)
1: for j := 1 to k do

2: Gpsj
= Resample(Gtr) {construct pseudosample}

3: Fj = LearnModel(Gpsj
) {learn model}

4: Pj = Fj(Gte) {apply model}

5: for all node vi 2 Vte do

6: P v = (
P

P v

i
)/n {aggregate models’ predictions}

7: return P

3.3 Relational subgraph resampling

Relational subgraph resampling (RSR) is a novel approach for resampling rela-

tional data. This approach can be used for more accurate ensemble construction when

bagging is used for relational classification tasks. By using RSR instead of the typical

independent sampling for generating bootstrap datasets for learning the ensemble.
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(a) Sample dataset (b) Resampled subgraphs (c) Pseudosample

Fig. 3.1. Graphic illustration of Relational Subgraph Resampling (RSR).

Given a relational sample dataset (e.g., see figure 3.1(a)), the first phase of the

algorithm selects subgraphs based on snowball sampling [37]. It repeatedly selects a

subgraph of size b via breadth-first search from a randomly selected seed node (fig-

ure 3.1(b)). The second phase then links up the selected subgraphs (figure 3.1(c)).

The aim is to preserve the local relational dependencies among instances in the sub-

graph, while generating a pseudosample with su�cient global variance by linking up

the set of selected subgraphs. The key idea behind this approach is that when auto-

correlation is high, the e↵ective sample size is determined by the number of underlying

groups in the data. As such, this approach attempts to sample these groups instead

of single instances, thus preserving the e↵ective sample size of the data.

One challenge is how to link up the subgraphs into a single relational data graph.

Due to the varied link structure of relational data, there will be a large number of

nodes on the periphery of the selected subgraphs. If the peripheral nodes are missing

a significant portion of their neighbors, this could bias the properties of the sample.

The potential for bias due to peripheral nodes is much greater in relational data with

varied link structure than temporal or spatial data with regular link structure. Con-

sider a lattice subgraph where each interior node has four neighbors. The peripheral

nodes each have three neighbors, except for the four corners which have two. Each



14

peripheral node is missing at most 50% of its neighbors. However, in relational data

with concentrated linkage, if the peripheral nodes in the sample are hub nodes with

high degree from the original data, they may be missing almost all their neighbors

(i.e., ⇡100%). To deal with this issue, we will outline a procedure to link up the

peripheral nodes in the selected subgraphs, which attempts to maintain the global

graph properties and attribute dependencies of the original data. More specifically,

the relational autocorrelation is maintained by maximizing attribute similarity be-

tween nodes as they are linked, while the link structure is maintained by considering

the neighborhood similarity when selecting nodes to link.

The procedure for RSR is outlined in Algorithm 3.3. Given a sample relational

data graph G = (V,E), it returns a pseudosample data graph GPS = (VPS, EPS). The

first phase samples a set of NS = d |V |
b
e subgraphs of size b from G, using breadth-first

search from NS randomly selected seed nodes. Note that the sampling is with replace-

ment from the graph, so a node may appear in multiple subgraphs, one subgraph, or

none (lines 2-5). The pseudosample node set (VPS) consists of all the nodes selected

in the subgraphs (suitably relabeled so multiple copies of the same original node are

distinguishable). The pseudosample edge set (EPS) initially consists of all the edges

within the selected subgraphs.

This is augmented by a two-pass process that links up the peripheral nodes across

subgraphs, choosing the links that are most similar to the links that were broken by

the subgraph selection process. For example, if a peripheral node vp is linked to node

vm in the original dataset but vm was not selected as a member of vp’s subgraph, and

a node similar to vm is available (and is missing a neighbor) in another subgraph, it

is linked to vp.

In lines 6-8, missing neighbors in each subgraph are identified. An initial pass

attempts to link up peripheral nodes from the various subgraphs that were originally

linked in the data sample. Then an additional pass links up peripheral nodes from

di↵erent subgraphs that have not been linked during the first pass, and the selections

are based on similarity.
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Algorithm 3.2 Relational Subgraph Resampling: RSR((G = (V,E), b))

1: VPS  ;; EPS  ;

2: for s := 1 to d |V |
b
e do

3: choose a seed node vs randomly from V

4: construct V S by selecting b� 1 nodes around vs using breadth-first search

5: ES = {eij 2 E s.t. vi, vj 2 V S}; VPS  VPS + V S; EPS  EPS + ES

6: for all V S do

7: for all vi 2 V S do

8: NS

i
= {vj s.t. eij 2 E ^ vj /2 V S}

9: while true do

10: update = false

11: for all node vi 2 VPS do

12: if |NS

i
| > 0 then

13: randomly select vj from NS

i
; let Cj =

�
vk : vk ⌘ vj^vk 2 V S

0 6=S^vi 2 NS

k
}

14: Select vm 2 Cj s.t. vm=argminPath(vm, vi), maximize |Nm| to break ties

15: if vm 6= null then

16: NS

i
= NS

i
� {vj}; NS

0
m

= NS
0

m
� {vi}; EPS = EPS + {eim}

17: update = true

18: break if update = false

19: while true do

20: update = false

21: for all node vi 2 VPS do

22: if |NS

i
| > 0 then

23: randomly select vj from NS

i
; let Cj =

�
vk : |Nk| > 0 ^ vk 2 V S

0 6=S}

24: Select vm 2 Cj s.t vm = argmaxSim(vm, vj), break ties by

argminPath(vm, vi), argmax|Nm|

25: if vm 6= null then

26: NS

i
= NS

i
� {vj}; NS

0
m

= NS
0

m
� {vi}

27: EPS = EPS + {eim}

28: update = true

29: break if update = false

30: return GPS = (VPS, EPS)
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In the first pass (lines 9-18), vp links to a copy of vm if available (and is missing

a neighbor) in another subgraph in the pseudosample. If there are multiple copies,

the copy with the shortest path length to vp and with the greatest number of missing

neighbors is chosen. Then links are created for any nodes with neighbors still missing

after the first pass. For example, if there were no copies of vm selected for the

pseudosample, then a corresponding link for vp is not created in the first pass.

The second pass (lines 19-29) looks for the node in the pseudosample that is most

similar to vm. Node similarity is calculated based on both the attributes of the nodes

and on their link structure (i.e., the number of neighbors they have in common in the

original data). Again, if there are multiple nodes with the same (maximum) similarity

to vm, the node with the the shortest path length to vp and with the greatest number

of missing neighbors is chosen.

The following similarity function is used to compare nodes based on both at-

tributes and links:

Sim(vi, vj) = ↵ ⇤ aSim(vi, vj) + (1� ↵) ⇤ lSim(vi, vj)

where the attribute similarity is defined as aSim(vi, vj) = # shared attribute values

between vi and vj, and the link similarity is defined as lSim(vi, vj) = # common

neighbors between vi and vj. In the experiments reported in this section, ↵ is set to

0.15 to upweight the importance of matching on link structure.

3.4 Experimental evaluation

The proposed resampling methodology is evaluated in two di↵erent relational

settings. First, to improve the accuracy of bagging. And second, to estimate a

sampling distribution of feature scores and calculate an accurate estimate of the

variance of the feature score distribution.
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3.4.1 Baseline approach

In both scenarios RSR is compared to a baseline i.i.d. resampling method outlined

in Algorithm 3.4.1, where n nodes are sampled randomly with replacement from a

given sample V of size n to construct one pseudosample.

Algorithm 3.3 Independent Resampling: IR(V = v1, .., vn)

1: VPS  ;

2: for j := 1 to n do

3: Randomly select vs from V

4: VPS  {VPS + vs}

5: return VPS

3.4.2 Methodology

Synthetic relational datasets that exhibit relational autocorrelation and concen-

trated linkage are generated for evaluation in both experiments (described in Sec-

tion A.1). The area under the ROC curve (AUC) of each type of model is measured.

Relational probability trees (RPTs) [38] is the classification model used to predict

the values of the class label. Any other relational model can be used.

Bagging Experiments Bagging using RSR for bootstrapping is compared to bag-

ging using IR and to using just a single model. Each resampling algorithm is used by

Algorithm 3.1 (line 2), to construct k = 5 pseudosamples and learn an ensemble of 5

models.

The first set of bagging experiments uses synthetic datasets with increasing lev-

els of autocorrelation {0.25,0.50,0.75} to test the hypothesis that as autocorrelation

increases the improvement of RSR over IR should increase as well (due to a lower

e↵ective sample size). The RPTs are learned using MODE, COUNT, and PROPOR-

TION as the aggregation functions in feature construction. Four training and testing
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sets of sizes 120 and 255 are generated respectively, for a total of 16 training-test pairs,

and the error reduction of each bagging approach compared to the single model is

measured.

The second set of bagging experiments evaluates the models using the Webkb

dataset (described in Section A.2.3), where the classification task is to predict page

category. As in previous work on this dataset, the category “other” is not predicted.

The performance of bagging using RSR (using subgraph size of b = 50 and ↵ = 0.15),

bagging using IR and a single model are compared. RPTs are learned using MODE

features. For each of the three models, 12 training-testing pairs based on the four

disjoint websites in WebKB are used. The AUC for each class label value is measured

separately. Model robustness is evaluated by adding random attributes to the data.

The results for 0, 3 and 6 random attributes are presented. This is to test the

hypothesis that RSR is more accurate at determining which features are irrelevant in

relational data.

Variance Estimation Experiments The goal of this experiment is test our hy-

pothesis that for a relational dataset RSR bootstrap samples can capture the popula-

tion variance of a statistic more accurately than IR bootstrap samples. As mentioned

earlier this is because IR accounts for the reduced e↵ective sample size due to the

structured nature of the dataset, and therefore does not underestimate the population

variance unlike the IR approach.

In this experiment, resampling is used to calculate an approximation of the un-

known sampling distribution of relational features scores and estimate the variance

of their distribution. To estimate the sampling distribution of a statistic, each of

RSR and IR are applied 20 times to create 20 pseudosamples of the data. The statis-

tic is then calculated on each pseudosample and the empirical distribution of values

is returned as an approximation of the statistic’s sampling distribution. Synthetic

datasets described in A.1 are used with 270 objects and groups of size 15.
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To calculate variance, 20 pseudosamples are created, a feature score for each

sample is calculated, then the variance (V arest) of the distribution of the 20 feature

scores is calculated. Two relational features are considered: one that is correlated with

the class (i.e., MODE(linked.X0)) and one that is random (i.e., MODE(linked.X1)).

The feature score calculation assesses the correlation of the feature values with the

class labels C using Pearson’s corrected contingency coe�cient [39].

To evaluate the accuracy of the feature score variance estimates, they are com-

pared to the empirical variance of the feature scores in the synthetic datasets. The

population variance V arpop of the features is estimated by generating 100 di↵erent

datasets and calculating the variance from the empirical distribution of features scores

in these datasets. The relative error is used as a measure of accuracy: (V arpop�V arest)
V arpop

.

The feature score variances are calculated using RSR and IR and the relative

error for both approaches is measured. The average relative error over 10 trials is

reported. For RSR, performance is evaluated on subgraphs of varying sizes of b:

{1,5,15,25,35,45}. Since RSR aims to exploit the underlying groups structure, it is

expected to outperform IR most significantly when the subgraph size is the same as

the average group size (15) of the generated data.

3.4.3 Results

The results show that using the proposed relational ensemble construction method

for bagging results in significant performance improvements over both the single model

and bagging with i.i.d. resampling. Furthermore, compared to the IR, RSR results

in more accurate variance estimates on both correlated and random attributes.

Figure 3.2 shows the results for the WebKB data, plotting the AUC values for

each class label value: Student, Faculty, Course and Research Project. Bagging with

IR produces higher accuracy than the single model. However, bagging with RSR

is not only significantly better than the single model, it also achieves equivalent or

better performance compared to IR for all datasets. As more random attributes are
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(a) Student (b) Faculty

(c) Course (d) Research Project

Fig. 3.2. Bagging experimental results on WebKB data for various class
labels.

included in the learning process, the single model and the i.i.d bagging model both

experience a degradation in performance while bagging using RSR is more robust.

Figure 3.3(a) presents the results for synthetic data bagging experiments for di↵er-

ent levels of autocorrelation. Reduction of AUC error achieved by each of the bagging

models over the single model is graphed. Notice that as autocorrelation increases,

the di↵erence between RSR and IR increases. These synthetic data experiments are

conducted with relatively simple relational datasets. Performance di↵erence between

the two approaches is expected to increase on complex, real-world relational datasets.
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(a) Reduction in error for bag-

ging.

(b) Feature variance estima-

tion error for correlated at-

tribute.

(c) Feature variance estima-

tion error for random at-

tribute.

Fig. 3.3. Bagging and variance estimation experimental results on syn-
thetic data.

Figure 3.3(b) and 3.3(c) graphs the average relative error in variance for both

IR and RSR using di↵erent subgraph sizes. Figure 3.3(b) graphs the results for the

correlated feature and Figure 3.3(c) graphs the results for the random feature. Both

plots show that RSR results in lower error than IR. Furthermore, RSR estimates of

variance increase in accuracy as the subgraph size approaches the underlying group

size (15). Notice also that RSR shows a more significant reduction in estimation error

for the feature formed from the random attribute (Figure 3.3(c)).

Accurately estimating the variance of random (or irrelevant) features is likely to

impact model learning more significantly than accurate estimation for real features,

since reduction in e↵ective sample size increases the risk of Type I errors [36]. Im-

proved resampling techniques can be used to develop more accurate feature selection

models, reducing the risk that random features are selected for inclusion in relational

models when the data exhibits linkage and autocorrelation.
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3.5 Related work

Resampling is a statistical technique that approximates sampling from the true

underlying population by sampling with replacement from a single dataset D to cre-

ate a set of pseudosamples D0. Each pseudosample contains as many instances as

the original data set. Some instances in the original data set will occur multiple

times in a given pseudosample, and others will not occur at all. The basic idea of

resampling is that, in the absence of any other information about the population, the

observed sample contains the best available information about the underlying popu-

lation. Thus, resampling from the sample is the best way to approximate draws from

the population.

Initially, resampling was introduced for i.i.d. data [40]. However, when the data

instances are interdependent, pseudosamples generated by i.i.d. resampling are likely

to exhibit less variance than the underlying population distribution. Dependencies

among instances reduce the e↵ective sample size of the data and thus increase the

variance of statistics estimated from those data [36]. Resampling techniques that

ignore the dependencies and sample independently from the instances will be repli-

cating the actual sample size, not the e↵ective sample size, and thus they are likely

to underestimate the variance of statistics calculated from the data.

Previous work in spatial statistics has investigated graph-based reuse sampling

techniques for lattice graphs, which use small, overlapping subgraphs as pseudosam-

ples [41, 42]. A statistic is repeatedly calculated on smaller subgraphs to estimate

the variance of its sampling distribution. This estimate is then rescaled to reflect

the number of instances in the original data sample. For example, consider a reg-

ular lattice graph with degree four, contiguous subgraphs of length four (i.e., 4 ⇥ 4

squares) can be used as the pseudosamples and then scale the estimate of variance to

approximate the original sample size.

In spatial and temporal datasets, where the link structure is generally homoge-

neous (either a line graph or a lattice of fixed degree), the choice of scaling factor is
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relatively straightforward. In relational data it is di�cult to determine the e↵ective

sample size of a relational data set analytically due to heterogeneous link structure.

For example, consider a bipartite graph with 1000 objects X connected to 100

objects Y . There is a binary class label on the objects X and a binary attribute

on the objects Y . When calculating feature scores concerning X, the actual sample

size is NX = 1000. However, if the class labels are perfectly autocorrelated through

the objects Y (i.e., all X connected to the same object Yi share the same class label

value), then the e↵ective sample size is NY = 100. Again one can think of this as

having an urn filled with bunches of grapes—when you reach in to grab a single X

you end up pulling out a single Y and all of its neighbors X.

In practice, when the level of autocorrelation is somewhere between 0 and 1, the

e↵ective sample size NESS will be between the number of coordinating objects and the

number of instances (i.e., NY  NESS  NX). The goal of this work is thus to develop

a relational resampling technique that accurately preserves the e↵ective sample size

of the data, thus producing more accurate estimates of the sampling distributions of

statistics for heterogeneous, dependent data.

In order to maintain the dependencies among related data instances, the rela-

tional subgraph resampling technique proposed is used. Subgraph sampling is used

to identify and sample sets of interconnected instances with each selection. Then,

the selected subgraphs are linked back together in an attempt to preserve various

relational properties throughout the sample.

Other than bagging, resampling is also used for estimating the sampling distri-

bution of a statistic ✓ empirically. In practice, it is used to assess a wide variety of

statistics including: the generalization accuracy of models, feature scores, predicted

class labels, and model parameter estimates.

Moreover, machine learning techniques that use resampling are generally con-

cerned with estimating the mean and/or variance of sampling distributions. For

example, model selection techniques may use resampling to estimate the mean gener-

alization error of di↵erent models in order to identify the model with lowest average
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error [43]. Alternatively, feature selection techniques may use resampling to estimate

the standard errors of feature scores or model coe�cients in an e↵ort to identify which

features are most relevant to the task [44].

Another application of resampling is active learning. The goal of active learn-

ing is to learn an accurate model with as few labeled instances as possible. Many

criteria have been proposed to determine the most valuable instance for labeling.

In particular, some methods have proposed selecting the instances whose prediction

have highest variance, which is determined by resampling (see e.g., [45]). Our pro-

posed RSR technique has been used for uncertainty estimation for active learning in

relational domains [46].

3.6 Conclusion

Accurate resampling methods are important for many machine learning algo-

rithms, including ensemble methods, active learning, and feature selection. Although

it is straightforward to sample with replacement from i.i.d. data, it is more di�cult

to sample with replacement from an interconnected relational data graph in a manner

that preserves the link structure and relational attribute dependencies.

This chapter presents a novel method for resampling from relational data, which

accounts for the link structure and attribute dependencies of the data. Resampling

in this manner maintains the local autocorrelation dependencies while allowing the

global structure to vary as if the sampling is done from the population.

Since RSR explicitly accounts for the local structure in the data, it avoids overesti-

mating the e↵ective sample size and thus can be used for accurate variance estimation.

To our knowledge, this is the first estimation algorithm that can e↵ectively estimate

sampling distributions in data with autocorrelation and heterogeneous link structure.

The presented methodology is evaluated on a real-world relational classification

task, showing that it improves the accuracy of bagging when compared to IID re-

sampling. In addition, the approach is evaluated on synthetic data, showing that



25

compared to an IID approach, RSR results in significantly lower error when used to

estimate the variance of feature scores.

The significance of the presented method has been evaluated for bagging. More-

over a variance estimation experiment confirms the conjectures made about why the

proposed method improves bagging. Which is the ability of RSR to accurately capture

the population variance of graph data.
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4. RELATIONAL ENSEMBLE INFERENCE

4.1 Motivation

Ensemble classification methods learn an ensemble of models, apply them each for

classification, then combine the models’ predictions to produce more accurate clas-

sification decisions than the individual base models constituting the ensemble [20].

These methods were initially developed for classification of independent and iden-

tically distributed (i.i.d.) data, but they can be directly applied to relational data

just by using a relational classifier as the base model. This straightforward approach

can increase prediction accuracy in relational domains, but only to a limited extent.

This is because relational data characteristics (which are often exploited to improve

classification) will be considered only by the base classifier and not the ensemble

method itself, thus opportunities to further exploit these characteristics in the en-

semble would be ignored. Furthermore, since the typical ensemble methods were

initially developed for i.i.d. datasets, their aim is to reduce errors associated with

i.i.d. classification models, thus errors specific to relational classifiers would not be

reduced by a straightforward application of previous methods.

Some recent work has addressed the first limitation by incorporating relational

data characteristics directly into the ensemble method. For example, Preisach and

Schmidt-Thieme [47] use voting and stacking methods to combine relational data with

multiple relations. Moreover, Chapter 3 outlines a relational ensemble construction

method to improve bagging in relational domains. However, these methods were

developed with the conventional goal of ensembles in mind, which is to reduce errors

associated with i.i.d. models; i.e., errors due to learning. There has been no work

that has focused on the second limitation—to extend ensemble techniques to focus
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on reducing additional types of errors that can result from relational classification

techniques; i.e., errors due to inference.

The key observation which motivated this work is that collective classification

models in statistical relational learning su↵er from two sources of variance error [19].

Collective classification methods [11, 14, 48, 49] learn a model of the dependencies in

relational graph (e.g., social network) and then apply the learned model to collectively

(i.e., jointly) infer the unknown class labels in the graph. The first source of error for

these models is the typical variance due to learning—as variation in the data used for

estimation causes variation in the learned models. The second source of error is due

to variance in inference—since predictions are propagated throughout the network

during inference, variation due to approximate inference and variation in the test

data can both increase prediction variance.

The focus here is on reducing error due to variance by proposing a relational

ensemble framework that uses a novel form of across-model collective inference for

collective classification. The method proposed in this chapter propagates inference

information across simultaneous collective inference processes running on the base

models of the ensemble to reduce inference variance. Then the final model predictions

are combined to reduce learning variance. This is the first ensemble technique that

aims to reduce error due to inference variance.

The proposed method is evaluated using real-world and synthetic datasets, and

is shown to outperform the baseline alternative solutions, including a straightfor-

ward relational ensemble approach. The results show that while prediction accuracy

is improved using a straightforward ensemble approach, the method proposed here

achieves significant additional gains by reducing error due to inference variance.

4.2 Problem formulation

The general relational learning and collective classification problem can be de-

scribed as follows. Given a fully-labeled training set composed of a graph Gtr =
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Algorithm 4.1 Relational Learning: RL(G=(V,E), X, Y )
1: Use G, X, Y to learn a node classifier F for vi 2 V

2: F := P (Yi|Xi,XRYR) where R = {vj : eij 2 E}

3: return F

Algorithm 4.2 Collective Classification: CC(G=(V,E), X,Ỹ , F=P (Yi|G,X, Y ))

1: Ŷ = Ỹ ;YT = ;

2: for all vi 2 V s.t. yi /2 Ỹ do

3: Randomly initialize ŷi ; Ŷ = Ŷ [ ŷi

4: repeat

5: for all vi 2 V s.t. yi /2 Ỹ do

6: ŷnew
i

= P (Yi|Xi,XRŶR) where R = {vj : eij 2 E}

7: Ŷ = Ŷ � {ŷi}+ {ŷnew
i

} ; YT = YT [ ŷnew
i

8: until terminating condition

9: Compute P = {Pi : yi /2 Ỹ } using YT

10: return P

(Vtr, Etr) with nodes Vtr and edges Etr; observed features Xtr; and observed class la-

bels Ytr, the relational learning procedure (RL) outlined in Algorithm 4.1, outputs a

model F composed of a joint probability distribution over the labels of Vtr, conditioned

on the observed attributes and graph structure in Gtr. Given a partially-labelled test

set composed of a graph Gte = (Vte, Ete) with nodes Vte and edges Ete; observed fea-

tures Xte; and partially-observed class labels Ỹte ⇢ Yte, and the model F learned using

RL, the collective classification procedure (CC) outlined in Algorithm 4.2, outputs a

set of marginal probability distributions P (i.e., predictions) over the labels of nodes

Vte. Note that Gtr used for RL is di↵erent from Gte used for CC. The collective classi-

fication pseudocode primarily describes inference based on Gibbs sampling. However,

many other approximate inference methods (see e.g., [48]) are quite similar.
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Collective Classification with Multiple Networks Consider the problem of

relational learning and collective classification in domains where a single set of ob-

jects (i.e., V ) is connected through multiple link graphs (i.e., G1 = (V,E1), G2 =

(V,E2), ...). For example, in an online social network, a friendship graph consists of

links connecting users listed as friends, a message graph connects users that commu-

nicate via messages, and a photo graph can also be constructed where a photo-tag

link connects users that tag one another in photos. For these types of networks and

many other relational domains with di↵erent types of relations, each graph provides

complementary information about the same set of objects and can thus be viewed as

a di↵erent “source” of link information.

Consider the task of predicting a single class label Y (e.g., political views) over

the set of nodes V , given multiple types of relationships among V—the goal is to

combine the link sources to improve the quality of inferences produced from collective

classification. There are two primary ways to combine the various link sources to

improve prediction—either by combining the sources before learning and then learning

a joint model across all graphs, or by combining the sources after learning, which can

be done by learning an ensemble of models, one from each source. As discussed

previously, in order to reduce the prediction error due to variance (particularly due

to the collective inference process), this work focuses on the latter. The proposed

ensemble method is described next.
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Algorithm 4.3 Collective Ensemble Classification (CEC)

CEC(F1, F2, . . . , Fk, G=(V,E), X,Ỹ , Fk=P (Yi|G,X, Y ))

1: for all i in 1 to k do

2: Ŷ i = Ỹ ;Yi
T = ;

3: for all vj 2 V s.t. yj /2 Ỹ do

4: Randomly initialize ŷi
j
; Ŷ i = Ŷ i [ ŷi

j

5: repeat

6: for all i = 1 to k do

7: for all vj 2 V s.t. yj /2 Ỹ do

8: ŷinew
j

= F i : P i(Yj|Xi.j,Xi.R, Ŷi
R) where R = {vk : ejk 2 Ei}

9: ŷiagg
j

= 1
k

P
k

j=1 ŷ
inew
j

10: Ŷ i = Ŷ i � {ŷi
j
}+ {ŷiagg

j
} ; Yi

T = Yi
T [ ŷiagg

j

11: until terminating condition

12: for all i = 1 to k do

13: Compute Pi = {P i

j
: yj /2 Ỹ } using Yi

T

14: P = ;

15: for all vj 2 V do

16: pj =
1
k

P
k

i=1 p
i

j
; P = P [ {pj}

17: return P

4.3 Collective ensemble classification

Ensemble Learning: Each base model is learned independently from one link

graph using the RL method outlined in Algorithm 4.1. The resulting models comprise

a set of joint probability distributions over the labels of the nodes of the training

network. This is analogous to learning a set of ensemble models by using di↵erent

feature subsets [7], but in this case link types are treated as features.

For the Facebook example, this will correspond to learning one model from each

of the friendship, message exchange, and photo-tagging graphs. This method of
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Model 1 Model 2 Model 3 

Fig. 4.1. Graphic illustration of model interleaving, showing how predic-
tions for the same instance are aggregated across the models.

ensemble learning uses the complete set of nodes in the training network for learning

each model, as opposed to bootstrap sampling [50] that learns models from subsets

of a single graph.

Ensemble Inference: For inference, a novel across-models collective classification

method is proposed. Where inferences are propagated across the models of the en-

sembles during collective inference (see figure 4.2). The method is called Collective

Ensemble Classification (CEC) and is outlined in Algorithm 4.3.

Given a test network G with partially labeled nodes V , and k base models

F1, F2, . . . , Fk learned, as described above, from di↵erent link sources, the models

are applied simultaneously to collectively predict the values of unknown labels (lines

5-11).

First, the labels are randomly initialized (lines 1-4). Next, at each collective

inference iteration, the model Fi is used to infer a label for each node v conditioned
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on the current labels of the neighbors of v (line 8). This corresponds to a typical

collective inference iteration. Then instead of using the prediction from Fi directly

for the next round, it is averaged with the inferences for v made by each other model

Fj s.t. j 6= i (line 9). This interleaves the inferences made across the set of ensemble

models and pushes the variance reduction gains into the collective inference process

itself. At the end, the predictions are calculated for each model based on the stored

prediction values from each collective inference iteration (lines 12-13). Finally, model

outputs are averaged to produce the final predictions (lines 15-16).

Note that the manner in which CEC uses inferences from other models (for the

same node) provides more information to the inference process that is not available

if the collective inference processes are run independently on each base model. Since

each collective inference process can experience error due to variance from approx-

imate inference or from the underlying network structure, the ensemble averaging

during inference can reduce these errors before they propagate throughout the net-

work. This results in significant reduction of inference variance, which is achieved

solely by the proposed method.

Complexity: Let the number of component models in the ensemble be k, and let

the complexity of learning using the general RL algorithm be Cl. Then CEC learning

complexity is k ⇤ Cl. Also, let the complexity of inference using the general CC

algorithm be Ci. Algorithm 4.3 loops over CC k times (for k models), and aggregates

over k predictions within that loop. Therefore CEC complexity is k2 ⇤ Ci. Since k

is usually a small constant, the e�ciency of CEC is comparable to a single relational

model.

4.4 Experimental evaluation

This section presents the results of running experiments using synthetic and real-

world datasets to evaluate the proposed approach. The results show that CEC sig-

nificantly outperforms a set of alternative methods under a variety of conditions.
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Furthermore, the results demonstrate that the accuracy gains coincide with a reduc-

tion in inference variance.

Datasets The first dataset is from a public University Facebook dataset. Three link

sources describing di↵erent relationships between the same set of users are used. The

friendship graph has undirected friendship links. The wall graph has directed links

extracted from users’ interactions through a public message board on their profile

wall page. The photo graph has directed links extracted from users tagging others in

their profile photo page. Each user has a boolean class label which indicates whether

their political view is ‘Conservative’. In addition, nine node features and two link

features are considered. The object features record user profile information. Wall

links have one link feature that counts the number of wall posts exchanged between

any two users, while photo links have one link feature that counts the number of

photos shared between any two users (see A.2.2 for more information about this

dataset.)

The second dataset is from the IMDb (Internet Movie Database) dataset, which

contains movie release information. Five link sources are used. The actors graph links

movies that share an actor. Similarly, the studios, producers, directors and editors

graphs link movies that share the corresponding aspect. Each movie has a boolean

class label which indicates whether the movie is a ‘Block buster’ (see A.2.1 for more

information about this dataset.)

The third dataset consists of synthetically generated relational data graphs, where

relational data characteristics (i.e., linkage and autocorrelation) can be varied. 10

di↵erent link sources (for the same set of objects) are generated with di↵erent link

density structures and link types. Each node has one binary class label (see A.1 for

more information about this dataset.)
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4.4.1 Baseline approaches

Three baselines methods are considered in order to compare the proposed approach

to related work, while controlling for model representation. Each method uses the

RL and CC algorithms for learning and inference, respectively.

Relational Ensemble (RE): The RE baseline uses the same ensemble learning

procedure of CEC, but applies each model independently for inference to produce

a set of probability estimates for nodes predictions. Then it averages the resulting

set of predictions for each node independently to get the final predictions P . This is

used to evaluate the improvement achieved by our proposed across-model inference

approach (since RE uses the same learning and final prediction averaging as CEC),

and is intended to show that the increase in accuracy of CEC cannot be achieved

by a straightforward ensemble classification that combines di↵erent relations (e.g., as

described by [47]).

The limitation of RE is that inference is applied independently on each base

model, so the availability of multiple predictions from the ensemble models is only

utilized to average the final ensemble predictions—after inference is done and after

inference variance has propagated through the graph. Our key insight is that collective

classification o↵ers a unique opportunity to jointly utilize information from all the

models during collective inference.

Multiple Relations (MR): The MR baseline is a single model approach that

learns one model from the set of training graphs, using the multiple relation types

as features in the model. The learned model is applied collectively to the test graph,

producing a single set of predictions. This is used to evaluate the improvement

achieved by the relational ensemble approach, by comparing to just using a single

model approach that uses the link types as features for learning. MR is similar to

methods mentioned in the related work (section 6.4) that combine multiple data
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Fig. 4.2. Graphic illustration of merging multiple link sources on the same
network of objects.

sources into a single network for learning. Figure 4.2(c) shows an example merged

graph using the MR approach on three example link sources shown in figure 4.2(a).

Combined Relations (CR): The CR baseline is another single model approach

that learns one model from the set of training graphs. However this method ignores

the relation types and just uses the single-source (i.e., attribute) features. The model

is also applied collectively on a single, merged test graph that contains all link source

information but no link type features, resulting in a single set of predictions. The goal

of comparing to this simple method which does not consider the various link types

is to assess any gains achieved by considering link types as features in MR. Figure

4.2(b) shows an example merged graph using the CR approach on three example link

sources shown in figure 4.2(a).
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Single Relation (SR): The SR baseline learns one model from a single link source

and applies the model collectively to the test network from the same source. One SR

model is learned and evaluated for each link source separately. The goal of comparing

to this method is to assess the intrinsic value of each relationship in the network when

used for classification by itself. In the experimental results, the average performance

of the set of single models is reported.

4.4.2 Methodology

Each of the above methods is evaluated using a relational dependency network

(RDN) collective inference model [13]. RDNs use pseudolikelihood estimation to

e�ciently learn a full joint probability distribution over the labels of the data graph,

and are typically applied with Gibbs sampling for collective inference. Note that the

full joint distribution over the test data need not be estimated for accurate inference

and it is su�cient to accurately estimate the per instance conditional likelihoods,

which is easy to do with Gibbs sampling (i.e., has been shown to converge within

500-2000 Gibbs iterations [13]).

For each experiment, the proportion of the test set that is labeled before inference

is varied, and for each trial a random set of nodes is chosen to label. The labeling

process is repeated 5 times, then 5 rounds of inference are run for each random label-

ing. The area under the ROC (AUC) is measured to assess the prediction accuracy

of each model. The 5 ⇥ 5 = 25 trials are repeated for 5 training and testing pairs,

and the averages of the 125 AUC measurements from each approach are reported.

The robustness of the methods to missing labels (in the test set) is evaluated by

varying the proportion of labeled test data at 10% through 90%. For the synthetic

data experiment, results using 3 link sources, high autocorrelation, and low link

density setting are reported. For the Facebook dataset, 3 link sources are used:

friendship, wall, and photo graphs. For the IMDB dataset, 5 link sources are used:

actors, studios, producers, directors and editors graphs.
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The e↵ect of increasing the number of link sources is tested by generating synthetic

data with 1, 3, 6 and 9 sources. When there is one source, this corresponds to the SR

baseline. In this evaluation, the reported results use 10% labeled nodes in the test

set, high autocorrelation, and low link density setting. Note that the same nodes are

labeled across all the link graphs, and therefore increasing the number of link graphs

does not mean there is more labeled data available, just that more link information

is being considered.

Since collective inference in general, and the RDN specifically, have been shown

to exploit relational autocorrelation and linkage in relational data [13], the e↵ects of

increasing both levels are investigated. The autocorrelation level is varied at low and

high using 3 link graphs, each with low link density and 10% labeled test data. Then

the linkage level in the data is varied from low to high, using 3 sources, each with

high autocorrelation and 10% labeled test data.

4.4.3 Results

The main finding across all experiments is that CEC consistently and significantly

outperforms the baselines. To summarize the findings of this work:

• CEC has significantly higher classification accuracy than all the baselines.

• CEC is the most robust to missing labels (due to its ability to best exploit the

available label information).

• CEC best exploits the information from additional sources, as well as informa-

tion due to higher linkage and autocorrelation.

Figures 4.3, 4.4 and 4.5 show that as the proportion of labeled nodes increases,

accuracy increases. CEC is the most robust technique to missing labels across all

datasets. Moreover, CEC significantly (p < 0.01) outperforms RE at all label propor-

tions on the synthetic and Facebook datasets, and on the IMDb at labeled proportions
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through 50%. (significance is analyzed using paired t-tests). It is clear that CEC re-

sults in huge performance gains over other methods with very few labeled instances.

This is because when there is a limited number of labeled neighbors available, CEC

is able to best exploit the link information available from the multiple sources to

reduce inference error. Although the mean SR performance is plotted, the CEC also

outperforms the best SR model. Furthermore, CEC is able to improve performance

even when the SR models do not have similar performance (e.g., when some perform

poorly).

Fig. 4.3. Synthetic experiments show significant accuracy improvement
of proposed CEC ensemble model at various proportions of available true
labels in the test graph.

Figure 4.6 shows that the ensemble methods improve overall model performance

as more sources are considered, although again CEC achieves significantly higher

accuracies compared to RE (p < 0.01). On the other hand, the performance of the

single model baselines (MR, CR) degrade. This can be explained by the fact that
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Fig. 4.4. Facebook experiments show significant accuracy improvement
of proposed CEC ensemble model at various proportions of available true
labels in the test graph.

an ensemble approach (RE) reduces the learning variance, and that interleaving the

collective inference processes (CEC) reduces the inference variance on top of that.

In contrast, the degradation in performance for the single model baselines can be

attributed to the increased variance in the learned model due to the increased number

of links and features in the merged graph.

Table 4.1 shows that the ensemble methods better exploit autocorrelation and

link density than the single model baselines. CEC again significantly outperforms

RE at both low and high levels of autocorrelation and link density (p < 0.01). The

performance of SR models improve as autocorrelation and link density increase, be-

cause RDNs use collective inference, which exploits autocorrelation and link density

to use predictions of related instances to improve one another. As discussed briefly,

RE aggregates those improved predictions and hence improves the overall predictions
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Fig. 4.5. IMDB experiments show significant accuracy improvement of
proposed CEC ensemble model at various proportions of available true
labels in the test graph.

accuracy. CEC improves node predictions even further, using predictions made by

other models simultaneously during collective inference. While MR and CR also im-

prove as autocorrelation and link density increase, they are not able to achieve the

same gains as the ensemble methods.

The di↵erence between CEC and RE is due to the intermediate averaging of

predictions across the models that is used by CEC. We conjecture that this process

reduces the error due to inference variance and that the magnitude of the e↵ect

is related to the number of models/sources that are averaged during the inference

process. To investigate this, We evaluate a hybrid version of RE and CEC—where an

ensemble of 10 models is learned on 10 link sources, but vary the number of models

that are interleaved during the collective inference process. When 10 models are

interleaved, it corresponds to CEC, and when 0 models are interleaved, it corresponds
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Fig. 4.6. Synthetic experiments show significant accuracy improvement of
proposed CEC ensemble model as more link graphs are considered by the
ensemble.

Table 4.1
Experimental results for varying autocorrelation and linkage on synthetic
data, reporting AUC values.

Autocorrelation Linkage

Method Low High Low High

SR 0.51 0.58 0.58 0.630

CR 0.53 0.57 0.57 0.63

MR 0.52 0.56 0.56 0.68

RE 0.53 0.64 0.64 0.73

CEC 0.55 0.74 0.74 0.82
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to RE. In between these two extremes, the hybrid model performance shows the

e↵ect of propagating prediction information during inference. The blue, dashed line

in Figure 4.7 shows a smooth increment in the overall predictive performance as the

proportion of propagated predictions during inferences increases, which illustrates the

relationship between CEC and RE. The dotted red line shows the average inference

variance measured from the same set of experiments, indicating that the accuracy

improvement coincides with a similar reduction in inference variance.
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Fig. 4.7. AUC and inference variance for a hybrid model that uses CEC
on a limited number of models. As more models are applied using CEC,
accuracy increases and inference variance decreases.

4.5 Related work

Many studies have shown that ensembles of multiple classifiers can usually achieve

higher accuracy than individual classifiers [28]. These methods typically assume i.i.d.

data and a single information source, but some work has been done to extend ensemble
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techniques to structured and/or multi-source settings. For example, [51] propose

multi-view learning for i.i.d. data, while Gancchev et al, propose multi-view learning

for structured data [52]. However, none of these methods are suitable for collective

classification in a multi-source, relational domain—since they either assume i.i.d.

data, multiple structured examples, or a single source.

There are many machine learning methods that use multiple information sources

to improve classification—by either combining data sources (at the input to learning),

or by combining predictions (at the output of inference). Our method is the first to

combine information during inference instead of after inference.

Related to the approach we propose here, are methods that combine source in-

formation before learning, including work on integrating multiple networks for label

propagation methods [53, 54]. Since these methods combine multiple information

sources and exploit relational structure to propagate inferences via label propaga-

tion, they may seem similar to our work. However, in contrast to our method, these

approaches combine the source information before inference and focus on label prop-

agation to improve transductive inference within a single network—the methods do

not learn complex relational models to generalize to unseen networks, nor do they

combine information across networks during inference. There are several other works

in this category [55–57].

In statistical relational learning, there are general learning methods that treat

heterogeneous information of multiple object and link types as a single information

source and use a single model approach for classification [58–61]. There has also

been some work that augments the observed relational data with additional ‘sources’

of information to improve performance [62, 63]. However, once again, the methods

combine this information before learning. The MR results presented here are intended

to serve as a baseline to compare to this broad class of methods, while controlling for

model representation, since the MR models combine all the source information before

learning a single model.
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Another related line of research contains work that combines prediction informa-

tion at the output level. Preisach and Schmidt-Thieme [47] learn a separate classifier

from each relational source then combine the classifiers using voting and stacking.

This is similar to the proposed CEC method since it uses an ensemble approach to

combine multiple link sources. However, their method is intended to reduce learning

error, not inference error. The RE results presented here are intended to serve as a

baseline comparison to this straightforward relational ensemble method. The work

of [64] presents a method to maximize consensus among the decisions of multiple

supervised and unsupervised models. The method is similar to our approach since

it combines predictions from multiple models and use label propagation for predic-

tion. However, the label propagation is designed to maximize consensus among the

model outputs after inference, rather than during a collective inference process over

a relational network. In addition, the method is designed primarily for i.i.d. learners

where again, there will be no inference error. There are many other works in this

category [65–67].

Recent work [68] recently showed that stacking [69] improves collective classifi-

cation by reducing inference bias. Although this work evaluated model performance

in single source relational datasets, it is interesting to note that stacking reduces

inference bias, while our method reduces inference variance.

4.6 Conclusion

Ensemble techniques were initially developed for i.i.d. data, so they focus on

reducing error due to learning. However, collective inference methods, which are

widely used for classification of relational data, introduce a significant amount of

inference variance due to the use of approximate inference techniques. This chapter

presents a novel ensemble method for collective classification domains with multiple

link types, which can reduce the error due to inference variance (in addition to the

reduction in learning variance typically achieved by ensembles).
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The CEC method takes advantage of an opportunity unique to multi-source rela-

tional domains, which is that inferences can be propagated across a set of collective

inference processes running simultaneously on the various link sources. This approach

spans collective inference process across the component models to maximize agree-

ment between the predictions made by the models and stop errors due to inference

variance from propagating throughout the network. The experiments show that CEC

results in significant performance gains compared to more straightforward ensemble

and relational classification methods that do not attempt to reduce variance in the

collective inference process.
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5. RELATIONAL ENSEMBLE CLASSIFICATION

FRAMEWORK

5.1 Motivation

This chapter proposes a relational ensemble classification framework consisting

of a unified model that combines the first (ensemble learning) and second (ensemble

inference) components of this dissertation. The goal is to present a complete relational

ensemble framework that improves the accuracy of both learning and inference for

relational domains. Chapter 6 complements the proposed framework with theoretical

analysis.

The relational subgraph resampling (RSR) method presented in Chapter 3 as-

sumes a single-source network setting, where each model of the ensemble is learned

from a bootstrap sample from the original training graph. Then the models are ap-

plied independently for inference. Using RSR for constructing ensembles has been

shown to significantly improve classification performance by reducing more learning

variance than traditional bagging approaches which use independent sampling.

The collective ensemble classification (CEC) approach presented in Chapter 4

assumes a multi-source network setting, where each component model is learned from

a di↵erent link graph. The models are applied interdependently for inference to

reduce inference variance. This method has shown a significant impact on improving

classification accuracy for relational data, and therefore it is important to extend its

applicability to domains which do not necessarily have multiple link types.

The key observation that motivated the work presented here is that combining

RSR with CEC will provide two-fold benefits. RSR will extend the applicability of

CEC to single-source network settings, while CEC will complement the learning vari-

ance reduction achieved by RSR with an additional inference variance reduction. This
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can be achieved by a unified model that uses relational ensemble construction (with

RSR) for learning, and CEC for inference. The result is a novel ensemble framework

that can reduce the prediction error variance components associated with both learn-

ing and inference for relational data. The hypothesis here is that reduction in both

learning and inference variance will improve model performance the most. Further-

more, using RSR will broaden the applicability of the CEC approach to domains that

do not necessary have multi-source networks or multiple link types.

RSR is applied to a given training dataset to generatem bootstrap samples to learn

the ensemble set ofmmodels from. CEC is then applied for inference on the same test

set, by interleaving the m model. Recall that the learning method proposed for CEC

assumes multiple link types (one model is learned per type). However, using RSR

for learning allows generalization to domains that do not necessarily have multiple

link types. The bootstraps used for learning are sampled with replacement from the

nodes of the graph regardless of the link types present. The proposed framework is

evaluated using synthetic data experiments.

5.2 Problem formulation

The general relational learning and collective classification problem can be de-

scribed as follows. Given a fully-labeled training set composed of a graph Gtr =

(Vtr, Etr) with nodes Vtr and edges Etr; observed features Xtr; and observed class la-

bels Ytr, the relational learning procedure (RL) outlined in Algorithm 4.1, outputs a

model F composed of a joint probability distribution over the labels of Vtr, conditioned

on the observed attributes and graph structure in Gtr. Given a partially-labelled test

set composed of a graph Gte = (Vte, Ete) with nodes Vte and edges Ete; observed fea-

tures Xte; and partially-observed class labels Ỹte ⇢ Yte, and the model F learned using

RL, the collective classification procedure (CC) outlined in Algorithm 4.2, outputs a

set of marginal probability distributions P (i.e., predictions) over the labels of nodes

Vte. Note that Gtr used for RL is di↵erent from Gte used for CC. The collective classi-
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fication pseudocode primarily describes inference based on Gibbs sampling. However,

many other approximate inference methods (see e.g., [48]) are quite similar.

Algorithm 5.1 Relational Subgraph Resampling: RSR((G = (V,E), b))

1: VPS  ;; EPS  ;

2: for s := 1 to d |V |
b
e do

3: VS  ;; ES  ;; Q ;

4: vs = randomly select node from V

5: VS  VS [ vs

6: Q Q [ neighbors of vs

7: while (|VS| < b) ^ (|Q| > 0) do

8: v = pop (Q)

9: VS  VS [ v

10: Q Q [ neighbors of v

11: ES = {eij 2 E s.t. vi, vj 2 VS}; VPS  VPS + VS; EPS  EPS + ES

12: return GPS = (VPS, EPS)

Algorithm 5.2 EnsembleLearning(Gtr = (Vtr, Etr)),m)

1: Ensemble ;

2: for j := 1 to m do

3: Gpsj
= Resample(Gtr) {construct pseudosample}

4: Fj = LearnModel(Gpsj
) {learn model}

5: Ensemble = Ensemble [ {Fj} {add model to ensemble}

6: return Ensemble
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5.3 Relational ensemble framework

5.3.1 Ensemble learning

Given the setting described above, the general ensemble learning approach using

bootstrap sampling is outlined in Algorithm 5.2, showing how an ensemble of size m

models is constructed. A pseudosample Gps = (Vps, Eps) is generated by resampling

from Gtr (line 3) and a model F is learned from Gps (line 4). Where F is composed

of a joint probability distribution over the labels of Vps, conditioned on the observed

attributes and graph structure in Gps. The ensemble set of k learned models is

produced (line 6).

Note that any relational learner can be used in line 4. In this work, the relational

learning procedure (RL) outlined in Algorithm 4.1 is used. Moreover, any resampling

method can be used in line 3. Here the RSR method, which is a modified version of

the method described in Chapter 3, is used.

RSR is an approach for resampling relational data to learn more accurate ensem-

bles for relational classification task. Instead of the typical independent sampling,

RSR resamples subgraphs.

The procedure is outlined in Algorithm 5.2. Given a sample relational data graph

G = (V,E), it returns a pseudosample data graph GPS = (VPS, EPS).

A set of NS = d |V |
b
e subgraphs of size b are sampled from G, using breadth first

search from NS randomly selected seed nodes. As a node v is added to the sampled

subgraph node set Vs, v0s neighbors are added to a queue Q, from which the next

node v is popped. This continues until the subgraph size b is reached.

The key idea behind sampling in subgraphs is that when autocorrelation is high,

the e↵ective sample size is determined by the number of underlying groups in the data.

As such, this approach attempts to sample these groups instead of single instances,

thus preserving the e↵ective sample size of the data.

The main goal is to preserve the local relational dependencies among instances in

the subgraph by sampling subgraphs.
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Note that sampling is with replacement from the graph, so a node may appear

in multiple subgraphs, one subgraph, or none. The pseudosample node set (VPS)

consists of all the nodes selected in the subgraphs (suitably relabeled so multiple

copies of the same original node are distinguishable). The pseudosample edge set

(EPS) consists of all the edges within the selected subgraphs.

5.3.2 Ensemble inference

For inference, the Collective Ensemble Classification (CEC) presented in Chapter 4

is used. However, instead of learning the ensemble from multiple link graphs, here

the ensemble is learned using RSR as described above. For a quicker reference, the

procedure is outlined again in Algorithm 5.3. Recall that CEC uses an across-models

collective classification approach, which propagates inferences across the component

models during collective inference.

Given a test network G with partially labeled nodes V , and k base models

F1, F2, . . . , Fk learned as described in section 5.3.1, the models are applied simul-

taneously to collectively predict the values of unknown labels (lines 5-11). First, the

labels are randomly initialized (lines 1-4). Next, at each collective inference iteration,

the model Fi is used to infer a label for each node v conditioned on the current la-

bels of the neighbors of v (line 8). This corresponds to a typical collective inference

iteration. Then instead of using the prediction from Fi directly for the next round, it

is averaged with the inferences for v made by each other model Fj s.t. j 6= i (line 9).

This interleaves inferences across the component models and pushes the variance

reduction gains into the collective inference process itself. At the end, the predictions

are calculated for each model based on the stored prediction values from each collec-

tive inference iteration (lines 12-13). Finally, model outputs are averaged to produce

the final predictions (lines 15-16).

Note that the manner in which CEC uses inferences from other models (for the

same node) provides more information to the inference process that is not avail-
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Algorithm 5.3 Collective Ensemble Classification (CEC)

CEC(F1, F2, . . . , Fk, G=(V,E), X,Ỹ , Fk=P (Yi|G,X, Y ))

1: for all i in 1 to k do

2: Ŷ i = Ỹ ;Yi
T = ;

3: for all vj 2 V s.t. yj /2 Ỹ do

4: Randomly initialize ŷi
j
; Ŷ i = Ŷ i [ ŷi

j

5: repeat

6: for all i = 1 to k do

7: for all vj 2 V s.t. yj /2 Ỹ do

8: ŷinew
j

= F i : P i(Yj|Xi.j,Xi.R, Ŷi
R) where R = {vk : ejk 2 Ei}

9: ŷiagg
j

= 1
k

P
k

j=1 ŷ
inew
j

10: Ŷ i = Ŷ i � {ŷi
j
}+ {ŷiagg

j
} ; Yi

T = Yi
T [ ŷiagg

j

11: until terminating condition

12: for all i = 1 to k do

13: Compute Pi = {P i

j
: yj /2 Ỹ } using Yi

T

14: P = ;

15: for all vj 2 V do

16: pj =
1
k

P
k

i=1 p
i

j
; P = P [ {pj}

17: return P

able if the collective inference processes are run independently on each base model.

Since each collective inference process can experience error due to variance from ap-

proximate inference, the ensemble averaging during inference can reduce these errors

before they propagate throughout the network. This results in significant reduction

of inference variance, which is achieved solely by CEC.



52

5.4 Experimental evaluation

The proposed ensemble model is evaluated on both synthetic and real world

datasets, and the results show that combining RSR with CEC significantly outper-

forms using either approach alone.

Datasets For the synthetic experiment, we used a relational dataset with a high

level of autocorrelation, generated with a group structure as described in A.1. We in-

dependently constructed four training and test pairs of such datasets, each consisting

of 500 objects.

The Facebook dataset used in this work is a sample of Purdue University Face-

book network, described in A.2.2. For this experiment, we constructed four di↵erent

training and test pairs by testing on one subnetwork and training on two subnetworks

from the previous and preceding class networks. For example we learn the model from

Purdue Alum ’07 and Purdue ’09, and apply the model on Purdue ’08.

5.4.1 Baseline approaches

We use a number of baseline methods to compare the proposed model to alterna-

tive approaches while controlling for model representation.

SM A single model baseline is used to evaluate the improvement achieved by each

ensemble approach. Here, a collective classification model is learned from the original

training sample and applied once on the given test set. Note that all the ensembles

we discuss below, including the proposed model, generate the bootstrap samples from

this original training sample, and use the same collective classification algorithm as

the base component model.

IID-RE This model uses IID resampling for generating the training bootstrap sam-

ples and learns a relational model for each base classifier. IID resampling works by

sampling instances at random independently with replacement. A link in the original
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sample will only appear in the bootstrap sample if both nodes it connects were se-

lected. A simple relational ensemble (RE) approach is then used for inference, where

each base model is applied independently for collective inference to produce a set of

probability estimates for nodes predictions. Then for each node, the base models’

predictions are averaged to get the node’s final prediction. We compare to this ap-

proach to evaluate the combined improvement achieved by using RSR for resampling

and CEC for inference over a method that does not use either approach. The goal is

to show the total (learning and inference) variance reduction.

RSR-RE This baseline uses RSR for constructing the ensemble and RE for infer-

ence. Comparing the performance of our proposed model to this approach allows us

to evaluate the improvement achieved by CEC for inference, while controlling for the

resampling method (RSR) used by our proposed approach.

IID-CEC This baseline uses IID resampling for ensemble construction, and CEC

for inference. Comparing the performance of our proposed model to this approach

allows us to evaluate the improvement achieved by RSR for sampling, while controlling

for the inference method (CEC) used by our proposed approach.

5.4.2 Methodology

The RSR used a subgraph size of b = 50 for the synthetic experiment and b = 10

for the Facebook experiment. Each of the baseline methods described is learned and

evaluated using RDNs with 450 Gibbs iterations as the base collective classification

model. We expect our ensemble approach to be applicable using other collective

classification models as well. The following setting is used to compare the various

approaches.

For each experiment, the proportion of the test set that is labeled before inference

is specified, and for each trial a random set of nodes is chosen to label. The random

labeling process is repeated 10 times. The area under the ROC (AUC) is measured
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to assess the prediction accuracy of each model. The 10 trials are repeated for 4

training and test pairs, and the averages of the 10⇥ 4 = 40 AUC measurements from

each approach are reported. Note that, all methods are run on the same random

labeling of the test set. From each training test set, and for each sampling approach

5 bootstraps are constructed. This is repeated for 4 di↵erent random labelings in

each experiment. l = {10%, 30%, 50%, 70%} denotes the x-axis in the figures, while

the y-axis plots the AUC values.

5.4.3 Results

Figures 5.1 and 5.2 show the results of the synthetic and Facebook experiments,

respectively.

The main finding is that the proposed RSR-CEC has significantly higher classifi-

cation accuracy than all the baselines at all percent labelings for both experiments.

We measured significance using paired t-tests and all significance reported here cor-

respond to p < 0.0001 unless stated otherwise. The superior performance of our

proposed model can be explained by the combined benefit of learning and inference

variance reduction.

In addition, all ensemble models significantly outperform the single model baseline

at all percent labelings for both experiments.

Moreover, IID-CEC significantly outperforms IID-RE at all percent labelings for

both experiments. This is because CEC reduces inference variance while RE only

reduces learning variance. RE applies the models independently for inference which

does not reduce inference variance–since prediction aggregation happens after infer-

ence, possibly after inference variance has propagated through the graph.

Additionally, RSR-RE significantly outperforms IID-RE at all percent labelings

for both experiments, with p < 0.01 and p < 0.03 for the 50% and 70% synthetic

experiments. This is because RSR captures more variance in the data than IID

resampling. Therefore, RE can reduce more learning variance when used with RSR.
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Fig. 5.1. Synthetic experiments show significant accuracy improvement of
proposed RSR-CEC ensemble model at various proportions of available
true labels in the test graph.

Furthermore, IID-CEC significantly outperforms RSR-RE at {10%, 30%, 50%} for

the synthetic experiment. This shows that CEC can reduce both learning and infer-

ence variance, even when combined with IID resampling.

To summarize our findings. RSR allows ensembles to reduce more learning vari-

ance that IID resampling, CEC reduces learning variance which is not reduced by RE,

and combining RSR with CEC reduces the largest amount of learning and inference

variance.
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Fig. 5.2. Facebook experiments show significant accuracy improvement of
proposed RSR-CEC ensemble model at various proportions of available
true labels in the test graph.

5.5 Related work

Breiman [3] has shown that bagging reduces total classification error by reducing

the error due to variance. However, his work assumes i.i.d. data. Therefore, i.i.d.

resampling is used to generate the bootstrap samples from which the ensemble is

learned. Moreover, the models are assumed to use exact inference, so the only type

of variance is assumed to be due to learning.
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Consequently, bagging only aims at reducing variance due to learning. Further-

more, graph data has an increased variance due to linked objects interdependencies,

so i.i.d. resampling capture less amount of variance than that present in the data.

As a result, bagging does not reduce as much learning variance.

Chapter 3 has focused on developing methods to improve resampling from network

data so bagging can reduce more learning variance. Using these resampling methods

accounts for the increased variance of network data during ensemble learning. This

work has been evaluated for collective classification [13], which significantly improves

classification accuracy for network data.

However, Neville and Jensen [19] have shown that collective classification intro-

duces an additional source of error due to variation in the inference process, but

bagging only reduces learning variance because of the exact inference model assump-

tion.

Chapter 4 proposed collective classification ensembles that besides the common

learning variance reduction, can additionally reduce inference variance.

The work in this chapter uses the learning variance reduction method from Chap-

ter 3 for learning and the inference variance reduction method from Chapter 4 for

inference. Where both approaches are combined in a unified framework that can

improve classification accuracy for network data by reducing variance due to both

learning and inference.

Other related work [68] recently showed that stacking [69] improves collective

classification by reducing inference bias. This work compares to our framework as

it evaluated model performance in single source relational datasets. However, it is

interesting to note that stacking reduces inference bias, while our method reduces

inference variance.



58

5.6 Conclusion

This chapter presents a unified relational ensemble classification framework that

combines the benefits of the ensemble methods presented in this dissertation. RSR

is used for ensemble learning to reduce the error due to variance in learning, and

CEC is used for ensemble inference, to reduce error due to variance in inference.

Also, using RSR for ensemble learning extends the utility of CEC to single-graph

network settings. The framework significantly improves accuracy of collective classi-

fication models over several baselines. Chapter 6 presents a theoretical analysis for

the proposed framework to provide a theoretical foundation for this work.



59

6. THEORETICAL ANALYSIS

6.1 Motivation

This dissertation presents a relational ensemble classification framework for col-

lective inference. This chapter presents a theoretical analysis for the proposed frame-

work. The work presented so far has shown the significant impact of the proposed

methods. Furthermore, the theoretical conjectures of why the methods improve ac-

curacy have been confirmed empirically. The goal of the work in this chapter is to

justify the conjectures theoretically. Specifically, about why the proposed framework

improves performance. This is done using a bias/variance analysis of the error as-

sociated with the proposed relational ensemble classification framework. The goal

is to use the results of the analysis to draw more conclusions that can direct useful

improvements or modifications to the relevant state of the art methods, which can

ultimately lead to further classification accuracy improvement in relational domains.

Ensemble classifiers have been shown to improve classification performance by

reducing bias or variance components of expected loss. However, ensemble methods

were developed for exact inference models, where the only types of errors are those due

to learning. Therefore, ensemble techniques have a limited focus on the reduction of

errors associated with learning. Earlier work on ensemble classification [3] has limited

the analysis to reason about errors associated with i.i.d. models, and therefore only

focused on errors due to learning. This is because i.i.d. models use exact inference

techniques that have no associated inference error.

Earlier work has used conventional bias/variance analysis to evaluate model per-

formance [15–18]. However, the focus as been on errors in learning. More recently,

work on collective classification [19] introduced reasoning about inference errors,

which result from approximate inference techniques. However, the focus has been
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on single models. Some work [70] has recently shown that ensembles can take advan-

tage of collective inference to reduce additional errors due to inference. The goal of

the analysis presented here is to decompose the errors associated with an ensemble of

collective inference models, and explore how di↵erent ensemble mechanisms are able

to reduce more errors than can a single model.

In this chapter we use bias/variance analysis to explore the di↵erences between

single collective models and the various relational ensembles. Specifically, we focus

on squared loss as a measure of classification performance and show the error re-

duction o↵ered by the di↵erent types of ensembles. The analytical results confirm

our empirical findings presented in Chapter 5, and show how the simple relational

ensemble improves performance over the single collective classifier, as well as how the

CEC improves performance over the simple relational ensemble. To the best of our

knowledge, this is the first analytical exploration of classification error for relational

ensembles.

6.2 Framework

We formalize the collective classification task in order to describe the setting we

use for this analysis. Let D be a population of attributed graphs G. Each sample

D := [G=(V,E), XV , YV ] is drawn from D, where V is the set of instances in D, E

is the set of links, and |V | = g.

Let f := P (Yg|Xg, G) represent a model of the joint distribution over class labels

Y of instances in a graph G, given attributes of the instances X. Let DL 2 D be a

training graph. Let DI 2 D be a partially labeled test graph where T 2 VI is the set

of labeled instances in GI . LetYT be the set of known labels available to the inference

process. For this analysis, we assume that DL and DI are drawn independently from

D and that DI 6= DL.
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The goal is to learn f from the training set DL and apply it to the test set DI to

collectively predict class labels for each unlabeled instance i 2 VI/T :

yi
f
:= f(i, DI , T ) = P (Y i= ti|YT ,X, GI) (6.1)

Since relational models that use collective inference have an additional source of

error due to the inference process, we need to isolate the errors due to learning from

the errors due to inference. To achieve this, we also consider the performance an exact

inferencemodel, which does not use collective inference and simply makes a prediction

for i conditioned on the set of Bayes-optimal values for all instances except i. Below,

we use ỸVI/i
to refer to the Bayes-optimal prediction for all instances in the dataset

DI except i.

6.2.1 Model definitions

We consider four models in our analysis: a single collective inference model (fs), a

simple relational ensemble model (fe), our interleaved collective inference model (fc),

and the “true” model (f⇤). We define each of these models below.

True model: We define f⇤ as the “true” model for the population D, where P⇤ is

the “true” joint distribution, which can be estimated as the expected model fs that

will be learned over samples drawn from the population D:

f⇤ = P⇤(Yg|Xg, G) = E[fs] =
X

DL2D

fs ⇤ p(DL) (6.2)

Single model: Let fs be a single collective inference model learned from a sample

DL, which estimates Ps. Note that each fs learned from a di↵erent sample DL gives a

di↵erent estimate of the true joint distribution P⇤. The model fs is then used to make

predictions for each unlabeled instance i in a partially labeled dataset < DI , T >:

yi
fs
:= fs(i, DI , T )

= Ps(Y
i= ti|YT ,X, GI) (6.3)
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Simple relational ensemble model (RE): Let fe be a simple relational en-

semble model that aggregates predictions from m collective inference base models

that each run n Gibbs iterations independently. A prediction yi
fe

for an instance i

is calculated by averaging the final predictions for i from all m models. Each base

model makes its predictions as described for the single model above.

yi
fe
:=

1

m

mX

k=1

fk(i, DI , T )

=
1

m

mX

k=1

Pk(Y
i= ti|YT ,X, GI) (6.4)

Interleaved ensemble model (CEC): Let fc be an interleaved model that

aggregates predictions fromm collective inference base models at each Gibbs iteration

j 2 {1..n}. At each iteration j, predictions made by all the base models are aggregated

and used to make a prediction for each model k 2 {1..m}. These predictions are for

VI/T . For the instances in T , we use the true labels. The final prediction for an

instance i is estimated from the average of the component models’ predictions at the

last inference iteration n. This defines the interleaved model fc = f̌k,n.

y̌i
k,j

=
1

m

mX

k0=1

fk0,j(i, DI , T )

=
1

m

mX

k0=1

Pk0(Y
i= ti|YT , ŶVI/{T +i},j,X, GI)

yi
fc
= y̌i

k,n
(6.5)

6.2.2 Error decomposition

We decompose error of collective classification models into bias, variance and noise

components based on the work of Neville and Jensen [19]. Here we consider squared

loss as a measure of classification performance. The loss L for model f on instance i

is defined as the expected squared loss for prediction yi
f
given i’s true label of ti:

Loss: Li

f
= E

⇥
(ti � yi

f
)2
⇤

(6.6)
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Here E refers to the total expectation, which is taken over training sets (D 2 D) used

to learn the model f and subsets of true labels T available for inference. For ease of

reading, when it is clear from context, we drop the superscript i and the subscript f .

Note that in conventional settings, the expectation E would refer to aspects of

learning and represent the e↵ect of training sets on models/predictions. However, in

collective inference settings the relational inference process introduces another source

of error [19]. Thus, to reason about the performance of di↵erent relational ensembles,

we need to make a distinction between the expectation over learning and the expec-

tation over inference and the expectation over both. We define these expectations

below.

To analyze performance di↵erences, loss can be decomposed into bias, variance,

and noise components, and compared across models. For squared loss, the decompo-

sition is additive:

L = V +B +N (6.7)

We show the decomposition and define each component below.

E[L]

= E[(t� y)2]

= E[t2 � 2ty + y2]r

= E[y2]� 2E[t]E[y] + E[t2]

= E[y2]� 2E[t]E[y] + E[t2] + E[y]2 � E[y]2

= V + E[y]2 � 2E[t]E[y] + E[t2]

= V + E[y]2 � 2E[t]E[y] + E[t2] + E[t]2 � E[t]2

= V + (E[t]� E[y])2 � E[t]2 + E[t2]

= V +B + E[t2]� E[t]2

= V +B +N
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Variance: Here variance, V =E [(E[y]� y)2], is the average loss incurred by all

predictions y, relative to the mean prediction E[y].

Bias: Here bias, B=(E[t]� E[y])2, is the loss incurred by the mean prediction,

relative to the Bayes-optimal value for instance i: E[t] (the expected value of the true

label).

Noise: Here noise, N = E[(t� E[t])2], is the loss incurred due to noise in the

labels of the data, which is independent of the learning algorithm.

6.2.3 Expectations

We define the three types of expectations that will be used in the proofs—

expectations over learning, inference, and total. Note these expectations are defined

for the predictions that will be made by the single model fs for a test data set DI .

Expected learning prediction: This is the expectation over learning, where

the prediction for an instance i is estimated using exact inference based on the set of

Bayes-optimal predictions for the rest of the graph, ỸVI/i
:

EL[y
i

fs
|DI ] =

X

DL2D

Ps(Y
i= ti|ỸVI/i

,X, GI) ⇤ p(DL)

= P⇤(Y
i= ti|ỸVI/i

,X, GI) (6.8)

Expected inference prediction: This is the expectation over inference, where

the prediction for an instance i is estimated using the model fDL
s

learned from a single

training set DL:

EI [y
i

fs
|DI , f

DL
s

] =
X

T

Ps(Y
i= ti|YT ,X, GI) ⇤ p(YT )

= Ps(Y
i= ti|X, GI) (6.9)

Expected total prediction: This is the total expectation over learning and

inference, where the prediction for an instance i reflects the prediction that would be

made from the true distribution:
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ET [y
i

fs
|DI ] = ELI [y

i

fs
|DI ]

=
X

T

p(YT )
X

DL2D

Ps(Y
i= ti|YT ,X, GI) ⇤ p(DL)

= P⇤(Y
i= ti|X, GI) (6.10)

6.3 Analysis

Given the framework described above, we compare the performance of the en-

semble models to the single model and show how the ensembles reduce total loss.

Specifically, we decompose the error of the single collective inference model fs, the

simple relational ensemble model fe, and our proposed interleaved ensemble model

fc. Our analysis shows that the interleaved ensemble results in the greatest reduction

in error, through its reduction of both learning and inference variance.

We refer to ys as an arbitrary prediction from a single collective inference model

fs, ye as an arbitrary prediction from a simple relational ensemble fe, and yc as an

arbitrary prediction from an interleaved ensemble model fe. The proofs below make

use of the following assumptions.

6.3.1 Assumptions

Noise equivalence: We note that the noise component of error is dependent

upon the data set, and is independent of the classification algorithm. Therefore:

Ns = Ne = Nc (6.11)

Dataset independence: The data graph samples {DLs}s=1..m used for learning

the m models and DI used for inference are drawn independently from the popula-

tion of graphs D. When the datasets are independent, the total expectation can be

computed from the learning and inference expectations as follows:

ET [.] = EI [EL[.]] (6.12)
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Predictions from simple relational ensemble: In the simple relational en-

semble fe, when the number of base models m approaches1, the ensemble prediction

yi
fe

approaches the expected prediction of the single model fs, when the expectation

is over learning (i.e., EL[yis]). But since the predictions from fe are conditioned on

a single labeling T , the ensemble prediction does not approach the total expected

prediction of the single model (i.e., it does not reflect the variation over inference).

lim
m!1

ye = EL[ys] = P⇤(Y
i= ti|ỸVI/i

,X, GI) (6.13)

Predictions from interleaved relational ensemble: In the interleaved re-

lational ensemble fc, when both the number of base models m and the number of

inference iterations n approach 1, the interleaved prediction yi
fc

approaches the ex-

pected prediction of the single model fs, where the expectation is over both learning

and inference (i.e., ET [yis]). This is because the interleaving process, which conditions

on ŶDI/{T +i},j at each inference iteration j, simulates draws from alternative labelings

T over the course of inference.

lim
m,n!1

yc = ET [ys] = P⇤(Y
i= ti|X, GI) (6.14)

6.3.2 Variance reduction

When squared loss is decomposed into its variance, bias and noise components, the

is defined as VT = ET [(ET [y]� y)2]. Here we consider the expected total error, over

both learning and inference. We now show that a simple relational ensemble reduces

the variance of a single model, and an interleaved ensemble reduces the variance of a

simple relational ensemble.

Theorem 1: Let fs be a single collective inference model with variance Vs, fe

be a simple relational ensemble with variance Ve, and fc be an interleaved ensemble

model with variance Vc. Then Vs � Ve � Vc.

1.1 Vs � Ve � 0

1.2 Ve � Vc � 0
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Proof of Theorem 1.1
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Proof of Theorem 1.2
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Single collective models fs have two sources of variance in their predictions—

variance due to learning the models from di↵erent training graphs, and variance due

to applying the model for inference given di↵erent labeled subsets of the test graph.

Simple relational ensembles fe average models predictions from di↵erent learned mod-

els and reduce the variance due to learning. Thus, Vs � Ve.

Similar to simple relational ensembles, interleaved ensembles fc reduce the vari-

ance due to learning. Moreover, interleaving predictions across the base models during

each collective inference iteration simulates draws from alternative labeled subsets of

the inference graph, and prevents any of the base models from converging to extreme

state. This allows an additional reduction of the inference variance. Thus, Vc � Ve.

6.3.3 Bias reduction

When squared loss is decomposed, the bias component is BT = (ET [t]� ET [y])2.

Again we consider the expected total error, over both learning and inference. We

now show that the two relational ensembles have the same bias as the single model.

Since bias depends on how well the models can approximate the true model, it is not

corrected by the relational or interleaved ensemble.

Theorem 2: Let fs be a single collective inference model with variance Bs, fe

be a simple relational ensemble with variance Be, and fc be an interleaved ensemble

model with variance Bc. Then Bs = Be = Bc

2.1 Bs � Be = 0

2.2 Be � Bc = 0
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Proof of Theorem 2.1

Bs � Be

=(ET [t]� ET [ys])
2 � (ET [t]� ET [ye])

2

=(ET [t]� ET [ys])
2 � (ET [t]� ET [EL[ys]])

2 (by 6.13)

=(ET [t]� ET [ys])
2 � (ET [t]� ET [ys])

2

=0

Proof of Theorem 2.2

Be � Bc

=(ET [t]� ET [ys])
2�(ET [t]� ET [yc])

2

=(ET [t]�ET [EL[ys]])
2�(ET [t]�ET [ET [ys]])

2 (by 6.13, 6.14)

=(ET [t]� ET [ys])
2 � (ET [t]� ET [ys])

2

=0

6.3.4 Loss reduction

Now, given the reduction in variance and equivalent bias, we can analyze the

reduction in error that the ensembles o↵er. Recall that we define total loss as the

expected error over learning and inference L = ET [(ti � yi
f
)2] and this decomposes

additively into variance, bias and noise components: L = V +B +N . We now show

that a simple relational ensemble reduces the loss of a single model, and an interleaved

ensemble reduces the loss of a simple relational ensemble.
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Corollary 1: Let fs be a single collective inference model with variance Ls, fe

be a simple relational ensemble with variance Le, and fc be an interleaved ensemble

model with variance Lc. Then Ls � Le � Lc

1.1 Ls � Le � 0

1.2 Le � Lc � 0

Proof of Corollary 1.1

Ls � Le

=(Vs +Bs +Ns)� (Ve +Be +Ne)

=(Vs +Bs +Ns)� (Ve +Bs +Ns) (by 6.11, Thm 2)

=Vs � Ve

�0 (by Thm 1.1)

Proof of Corollary 1.2

Le � Lc

=(Ve +Be +Ne)� (Vc +Bc +Nc)

=(Ve +Bs +Ns)� (Vc +Bs +Ns) (by 6.11, Thm 2)

=Ve � Vc

�0 (by Thm 1.2)

Following the results of Theorems 1 and 2, and according to the definition of noise,

it is straightforward to make the above conclusion about reduction in error. A simple

relational ensemble model will reduce the error a single collective inference model by
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reducing the learning variance, and an interleaved ensemble will reduce the error even

further by reducing both learning variance and inference variance.

6.3.5 Learning variance reduction

In section 6.3.2 we presented the reduction of total variance component of error

of the two ensemble models. Total variance can be decomposed in learning and

inference variance components. Next, we analyze the learning and inference variance

components of the ensemble models, to show how they reduce total variance.

Learning variance: Here learning variance, VL = EL[(EL[y]�y)2], is the average

loss incurred by all predictions y, relative to the mean learning prediction EL[y]. This

measures the variance in predictions made for the same instances by models learned

from di↵erent training datasets.

Theorem 3: Let fe be a simple relational ensemble with learning variance VLe ,

and fc be an interleaved ensemble model with learning variance VLc . Then in the

limit, as the number of base models m approaches 1, both fe and fc are able to

eliminate learning variance components VLe and VLc .

3.1 VLe = 0

3.2 VLc = 0

Proof of Theorem 3.1

VLe

=EL

⇥
(EL[ye]�ye)2

⇤

=EL

⇥
EL[ye]

2�2yeEL[ye]+y2
e

⇤

=EL[ye]
2�2EL[ye]

2+EL[y
2
e
]

=� EL[ye]
2+EL[y

2
e
]

=� EL [EL[ys]]
2+EL

⇥
EL[ys]

2
⇤

(by 6.13)
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=� EL[ys]
2+EL[ys]

2

=0

Proof of Theorem 3.2

VLc

=EL

⇥
(EL[yc]�yc)2

⇤

=EL

⇥
EL[yc]

2�2ycEL[yc]+y2
c

⇤

=EL[yc]
2�2EL[yc]

2+EL[y
2
c
]

=� EL[yc]
2+EL[y

2
c
]

=� EL [ELI [ys]]
2+EL

⇥
ELI [ys]

2
⇤

(by 6.14)

=� ELI [ys]
2+ELI [ys]

2

=0

Learning variance measures the variation in predictions due to learning the models

from di↵erent training graphs. Both simple relational ensembles fe and interleaved

ensembles fc average models predictions from di↵erent learned models to eliminate

learning variance. Thus in the limit, VLs � VLe = VLc .

6.3.6 Inference variance reduction

Inference variance: Here inference variance is defined as VI = ↵ � �, where

↵ = ELI [(EL[y]� y)2] is the average loss incurred by all predictions y relative to the

mean learning prediction EL[y], while � = EL[(ELI [y]�y)2] is the average loss incurred

by the predictions for y that use exact inference (using Bayes-optimal predictions

for all other instances in the data), relative to the overall mean prediction ELI [y].
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Inference variance measures the variation in predictions made for the same instance

by the same model given di↵erent labeled subsets of the test graph.

Inference variance can also be defined as the di↵erence between total variance and

learning variance: VI = VT � VL.

VI

=↵� �

=ELI [(EL[y]� y)2]� EL[(ELI [y]� y)2]

=ELI [(EL[y])
2 � 2yEL[y] + y2]� EL[(ELI [y])

2 � 2yELI [y] + y2]

=(EL[y])
2 � 2ELI [y]EL[y] + ELI [y

2]� (ELI [y])
2 + 2EL[y]ELI [y]� EL[(y)

2]

=(ELI [y
2]� (ELI [y])

2)� (EL[(y)
2]� (EL[y])

2)

=VT � VL

Theorem 4: Let fe be a simple relational ensemble with inference variance VIe ,

and fc be an interleaved ensemble model with inference variance VIc . Then in the

limit, as the number of base models m and the number of inference iterations n

both approach 1, fe can not eliminate inference variance VIe , while fc can eliminate

inference variance VIc .

4.1 VIe � 0

4.2 VIc = 0

Proof of Theorem 4.1

VIe

=VTe � VLe

=(ELI [(ELI [ye]� ye)
2])� (EL[(EL[ye]� ye)

2])

=(ELI [y
2
e
]� (ELI [ye])

2)� (EL[(ye)
2]� (EL[ye])

2)
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=ELI [y
2
e
]� (ELI [ye])

2 � EL[(ye)
2] + (EL[ye])

2

=ELI [y
2
e
]� (ELI [ye])

2 � EL[(EL[ys])
2] + (EL[EL[ys]])

2 (by 6.13)

=ELI [y
2
e
]� (ELI [ye])

2 � (EL[ys])
2 + (EL[ys])

2

=ELI [y
2
e
]� (ELI [ye])

2

=ELI [(EL[ys])
2]� (ELI [EL[ys]])

2 (by 6.13)

� 0 (by Jensen’s Inequality)

Proof of Theorem 4.2

VIc

=VTc � VLc

=(ELI [y
2
c
]� (ELI [yc])

2)� (EL[(yc)
2]� (EL[yc])

2)

=ELI [y
2
c
]� (ELI [yc])

2 � EL[(yc)
2] + (EL[yc])

2

=ELI [y
2
c
]� (ELI [yc])

2 � EL[(ELI [ys])
2] + (EL[ELI [ys]])

2 (by 6.14)

=ELI [y
2
c
]� (ELI [yc])

2 � (ELI [ys])
2 + (ELI [ys])

2

=ELI [y
2
c
]� (ELI [yc])

2

=ELI [(ELI [ys])
2]� (ELI [ELI [ys]])

2 (by 6.14)

=(ELI [ys])
2 � (ELI [ys])

2

=0

Inference variance measures the variation in predictions due to applying the model

given di↵erent labeled subsets of the test graph. Interleaved ensembles fc eliminate

inference variance by interleaving predictions across the base models during each col-

lective inference iteration, which simulates draws from alternative labeled subsets of
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the inference graph, and prevents any of the base models from converging to extreme

state. However, simple relational ensembles fe can not achieve this inference vari-

ance elimination because they only average the predictions of the models after the

inference process is complete.

6.3.7 E↵ect of resampling method on error

The error analysis presented above applies to ensembles learned from bootstrap

pseudosamples generated using either IID resampling or RSR. In both sampling meth-

ods, when the number of pseudosamples m approaches 1, the bootstrap samples

approximate the true population distribution D. This indicates that for the ensem-

ble model fe, assumption 6.13 holds regardless of the resampling approach. In other

words, the ensemble prediction yi
fe

approaches the expected prediction of the single

model fs over learning (i.e., EL[yis]) for both IID and RSR sampling:

lim
m!1

yRSR

e
= lim

m!1
yIID
e

= EL[ys] (6.15)

However, yRSR

e
converges faster than yIID

e
. Thus, given a finite ensemble size m,

because RSR can more accurately capture the increased variance in network data,

predictions made by models learned from RSR pseudosamples will capture and re-

duce more learning variance. The same argument applies to fc. Thus assumption

6.14 holds regardless of the resampling approach, but in finite ensemble sizes, RSR

pseudosamples will capture and reduce more variance.

6.4 Related work

There are two main lines of research related to the analysis we present here. Error

analysis for ensemble classifiers and error analysis of collective classification models.

For error analysis of ensembles, Breiman [3] has shown theoretically that bagging

reduces total classification error by reducing the error due to variance. However, the

work is based on the assumption that the data is i.i.d. and therefore the models run
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exact inference. Consequently, Breiman’s work has focused on theoretical analysis

for this type of models where the error is only associated with the learning process.

Other work has presented an analytical framework to quantify the improvements in

classification results due to combining or integrating the outputs of several classi-

fiers [34]. Their work is based on analysis of decision boundaries and is applied on

linearly combined neural classifiers.

For error analysis of collective classification models, Neville and Jensen [19] have

shown that collective classification introduces an additional source of error due to

variation in the inference process. While other work has presented another type of

error decomposition for collective classification [71], by studying the propagation error

in collective inference with maximum pseudolikelihood estimation.

Related works [50,70,72] have extended ensembles to improve classification accu-

racy for relational domains. This includes a method for constructing ensembles while

accounting for the increased variance of network data [50], a method for ensemble

classification on multi-source networks [72], and an ensemble method for reducing

variance in the inference process for collective classification [70].

This work presents a theoretical analysis for the relational ensemble classification

framework proposed in this dissertation. The work follows the bias/variance analysis

direction in [19], but extends it for the ensemble setting. It is also based on the

theoretical analysis of why bagging works, presented by Breiman [3], but extends it

to decompose error into learning and inference components to account for inference

errors due to collective classification.

6.5 Conclusion

We showed that an interleaved ensemble model reduces total loss over a simple

relational ensemble model which reduces total loss over a single model (corollary 1).

We showed that this is achieved by the reduction of variance (theorem 1), without

an increase in bias (theorem 2).
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We have also shown that the reason why an interleaved ensemble has less variance

than a simple relational ensemble is the following. While both ensembles can eliminate

learning variance (theorem 3), only the interleaved ensemble is able to eliminate

inference variance, but the simple relational ensemble is not (theorem 4).
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7. CONTRIBUTIONS

This work studies the problem of ensemble classification for relational domains, by

focusing on the reduction of error due to variance. We have proposed a relational

ensemble framework which explicitly accounts for the structured nature of relational

data during both learning and inference. This research work consists of four compo-

nents. (1) A method for learning accurate ensembles from relational data, focusing

on the reduction of error due to variance in learning, while preserving the relational

characteristics in the data which can be exploited to improve both learning and in-

ference. (2) A method for applying ensembles for collective classification, focusing

on the additional reduction of error due to variance in inference, which is an error

specific to collective inference techniques and have been ignored by state of the art en-

semble methods. (3) A unified framework that puts the first and second components

together, to exploit both contributions. (4) A theoretical analysis for the presented

framework to validate the conjectures and support the empirical findings. This work

resulted in a number of publications [50, 70,72,73].
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8. CONCLUSION

8.1 Summary

This dissertation focuses on improving the quality of classification in relational

domains through the use of ensemble techniques. Ensemble methods can improve

classification accuracy by reducing bias or variance components of error. The methods

considered in this work focus on the reduction of variance.

While it is evident that ensemble approaches improve classification accuracy, cer-

tain characteristics of relational data and relational models that are crucial to clas-

sification accuracy have been overlooked by state of the art ensemble methods. In

particular, state of the art ensemble mechanisms have overlooked inference variance

which results from collective classification, and have underestimated learning variance

which results from learning models from relational data.

Focusing on unique characteristics of relational data and relational classification

models, we have developed ensemble methods that are able to significantly improve

classification accuracy in relational domains, over traditional ensemble approaches.

Figure 8.1 summarizes the contributions of our work with respect to the design choices

we discussed in the introduction.

Chapter 3 presents a novel method for constructing ensembles from relational

data. We have proposed a relational subgraph resampling (RSR) method that ac-

counts for the link structure and attribute dependencies of relational data. RSR is

necessary because relational data violates the assumptions of traditional resampling

approaches about the data being i.i.d. Therefore, applying traditional resampling

methods to relational data prevents ensemble mechanisms from achieving their goal

of reducing the variance component of prediction error that results from the learning

process. We use RSR to generates bootstrap samples that accurately capture the
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true variance in relational data. We learn the ensemble base models from the gen-

erated bootstrap samples. The ensemble algorithm can then reduce the variance in

the models’ predictions to improve classification performance. RSR is the first data

treatment method (Figure 8.1(a)) developed in this work.

Chapter 4 presents a novel technique that increases prediction accuracy for collec-

tive classification given multi-source network datasets, which can be represented by

multiple link graphs. The method learns an ensemble of models, one on each source,

then applies collective inference on each model of the ensemble in parallel. This en-

ables using inferences for one instance made by one model, to improve inferences for

the same instance made by other models. It is shown that while a basic ensemble

approach improves overall prediction accuracy by averaging final predictions of the

ensembles, the proposed collective ensemble classification (CEC) approach improves

predictions accuracies of each model of the ensemble during collective inference, which

further improves the overall prediction accuracy. The algorithm is: (1) novel, utilizing

neighborhood information from multiple link sources simultaneously during collective

inference; (2) e↵ective, achieving significant accuracy gains compared to three alter-

native approaches; (3) general, developed for collective inference algorithms using

Gibbs sampling but can be applied to various other iterative inference algorithms.

Learning the base models from multiple link graphs is the second data treatment

method (Figure 8.1(a)) used in this dissertation, while CEC is the first proposed

model interleaving approach (Figure 8.1(c)).

Chapter 5 combines the first and second components of this dissertation into a

larger framework that achieves both of their benefits to improve classification for

relational domains even further. Our framework uses RSR for learning CEC for

inference. This combination enables our ensembles to reduce the greatest amount of

learning and inference variance. In addition, using RSR enables the applicability of

CEC for networks that consist of single relations.

Finally, Chapter 6 completes the framework by thoroughly investigating how the

ensemble framework improves classification, which on top of the empirical justifica-
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tions, theoretically confirms the underlying conjectures for this work. Moreover, this

is the first theoretical analysis for errors associated with relational ensemble models.

model 1 predictions 1 

input data

model 2

test data

model 3

training samples

predictions 2 

predictions 3

test data

a) input data treatment
Relational subgraph resampling: ch. 3,5

Learn from multiple link graphs: ch. 4

b) choice of base models
Relational classifier: ch.3

Collective classifier: ch.4,5

d) output aggregation
Averaging: ch. 3,4,5

c) model interleaving
Collective ensemble classification: ch. 4,5

Fig. 8.1. Graphic illustration of our contributions with respect to the
various ensemble design dimensions.

8.2 Future work

This work has revolved around ensemble methods that independently construct

ensembles, and therefore the main focus has been variance reduction. It would be

interesting to use the same mindset to improve ensemble classification for relational

domains, using the other major family of ensemble models, which construct ensembles

in a coordinated manner to reduce bias.

Recent work [68] has shown that stacking [69] improves collective classification by

reducing inference bias. Although this work evaluated model performance in single

source relational datasets, it is interesting to note that stacking reduces inference

bias, while our proposed CEC method reduces inference variance. We plan to explore

whether the two can be combined in a larger ensemble framework that can reduce

both bias and variance error components.
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A. APPENDIX

A.1 Synthetic data

Synthetic datasets are generated with a latent group model [35] using the proce-

dure described in Table A.1. The data graphs are homogeneous (i.e., single object

type) data graphs with autocorrelation due to an underlying (hidden) group struc-

ture. Each object has a boolean class label C (that is determined by the type of

group to which it belongs), and two boolean attributes X0 and X1. The class label

C has an autocorrelation level of 0.5 and the probabilities of intra- and inter-group

linkage are 0.4 and 0.004 respectively. The attribute X0 is correlated with C, and X1

has no dependencies (i.e., it is random).

Table A.1
Algorithm for generating synthetic dataset with a relational group struc-
ture.

For each group g, 1  g  (NG = NO/GS):

Choose a value for group type tg from p(T ).

For each object i, 1  i  NO:

Choose a group gi uniformly in [1, NG].

Choose a class value Ci from p(C|TGi).

Choose a value for X0i from p(X0|C).

Choose a values for X1i from p(X1).

For each object j, 1  j  NO:

For each object k, j < k  NO:

Choose whether the two objects are linked from

p(E|Gj = Gk).
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A.2 Real world datasets

A.2.1 IMDB

The IMDb data set is drawn from the Internet Movie Database (www.imdb.com),

which contains movie release information. A sample of 1,382 movies released in

the United States between 1996 and 2007 was collected. In addition to movies, the

data set contains objects representing actors, directors, and studios. In total, this

sample contains approximately 42,000 objects and 61,000 links. Five link graphs

among movies were constructed. The actors graph links movies that share an actor.

Similarly, the studios, producers, directors and editors graphs were constructed. Seven

networks of movies (based on movie release years) were sampled: [2002, 2003, 2004,

2005, 2006, 2007] of sizes: [269, 253, 264, 314, 305, 249] movies respectively. Each

movie has a boolean class label which indicates whether the movie is a ‘Block buster’

(earnings > $60mil; inflation adjusted). The binary prediction task for movies is to

predict blockbuster movies.

A.2.2 Facebook

The facebook dataset used in this work is a sample of the Purdue University

Facebook network (www.facebook.com). Facebook is an online social network site

where users maintain a personal profile page and interact with ‘friends’. Four sampled

networks of users (based on users membership in various University subnetworks)

were used in the experiments: [University Alum ’07, University ’08, University ’09,

University ’10] of sizes: [921, 827, 1268, 1384] users respectively.

We constructed three link graphs. The friendship graph has undirected friendship

links. The wall graph has directed links extracted from users’ interactions through a

public message board on their profile page called wall. The photo graph has directed

links extracted from users tagging others in their profile photo page. Each user has

a boolean class label which indicates whether their political view is ‘Conservative’.
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In addition, we considered nine node features and two link features. The object

features record user profile information: ”interested in”, ”looking for”, ”relation”,

”sex”, ”home state”, ”home”, and boolean features ”profile public”, ”friends public”

and ”christian”. Wall links have one link feature that counts the number of wall posts

exchanged between any two users, while photo links have one link feature that counts

the number of photos shared between any two users.

A.2.3 WebKB

The WebKB data set was collected by the WebKB Project [74]. The data con-

sists of a set of 4,135 web pages from four computer science departments. The web

pages have been manually labeled with the categories: course, faculty, sta↵, student,

research project, or other. The collection contains approximately 4,000 web pages

and 8,000 hyperlinks among those pages. The classification task is to predict page

category. As in previous work on this dataset, the category ‘other’ is not predicted;

these instances are removed from the data after creating the co-citation graph. The

page features considered by our models are ”department name”, ”server information”,

”url hierarchy” and ”url protocol”. We constructed 12 training-test pairs based on

the four disjoint websites of the four departments.
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