Data Mining: Data

Lecture Notes for Chapter 2

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Outline

Attributes and Objects

Types of Data

- Data Quality
- Similarity and Distance
- Data Preprocessing

What is Data?

Collection of *data objects* and their *attributes*

- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Objects

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different

Measurement of Length

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

- The type of an attribute depends on which of the following properties/operations it possesses:
 - Distinctness: = \neq
 - Order: < >
 - Differences are + meaningful :
 - Ratios are meaningful
- * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & meaningful differences
- Ratio attribute: all 4 properties/operations

Difference Between Ratio and Interval

- Is it physically meaningful to say that a temperature of 10 ° is twice that of 5° on
 - the Celsius scale?
 - the Fahrenheit scale?
 - the Kelvin scale?
- Consider measuring the height above average
 - If Alice's height is three inches above average and Bob's height is six inches above average, then would we say that Bob is twice as tall as Alice?
 - Is this situation analogous to that of temperature?

	Attribute Type	Description	Examples	Operations
∳gorical llitative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: { <i>male,</i> <i>female</i> }	mode, entropy, contingency correlation, χ2 test
Cate Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, { <i>good, better, best</i> }, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
meric titative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Nu Quar	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation

This categorization of attributes is due to S. S. Stevens

	Attribute Type	Transformation	Comments
cal ve	Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Categori Qualitati	Ordinal	An order preserving change of values, i.e., <i>new_value = f(old_value)</i> where <i>f</i> is a monotonic function	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Numeric Jantitative	Interval	<i>new_value = a * old_value + b</i> where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
- 9 9	Ratio	new_value = a * old_value	Length can be measured in meters or feet.

This categorization of attributes is due to S. S. Stevens

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floatingpoint variables.

Asymmetric Attributes

- Only presence (a non-zero attribute value) is regarded as important
 - Words present in documents
 - Items present in customer transactions
- If we met a friend in the grocery store would we ever say the following?

"I see our purchases are very similar since we didn't buy most of the same things."

- We need two asymmetric binary attributes to represent one ordinary binary attribute
 - Association analysis uses asymmetric attributes
- Asymmetric attributes typically arise from objects that are sets

Key Messages for Attribute Types

- The types of operations you choose should be "meaningful" for the type of data you have
 - Distinctness, order, meaningful intervals, and meaningful ratios are only four properties of data
 - The data type you see often numbers or strings may not capture all the properties or may suggest properties that are not there
 - In the end, what is meaningful is determined by the domain

Important Characteristics of Data

- Dimensionality (number of attributes)
 - High dimensional data brings a number of challenges
- Distribution
 - Skewness and sparsity require special handling
- Resolution
 - Patterns depend on the scale
- Size
 - Type of analysis may depend on size of data

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an *m* by *n* matrix, where there are *m* rows, one for each object, and *n* columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Data

- Each document becomes a 'term' vector
 - Each term is a component (attribute) of the vector
 - The value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
 - Each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph, a molecule, and webpages

Ordered Data

Sequences of transactions

An element of the sequence

Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCGCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Ordered Data

Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean

Data Quality

- Poor data quality negatively affects many data processing efforts
- "The most important point is that poor data quality is an unfolding disaster.
 - Poor data quality costs the typical company at least ten percent (10%) of revenue; twenty percent (20%) is probably a better estimate."

Thomas C. Redman, DM Review, August 2004

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
 - Some credit-worthy candidates are denied loans
 - More loans are given to individuals that default

Data Quality ...

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - Missing values
 - Duplicate data
 - Wrong data

Noise

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of attribute values
 - Examples: distortion of a person's voice when talking on a poor quality phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

Outliers

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Case 1: Outliers are unwanted and interfere with data analysis
 - Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection

Missing Values

Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handling missing values

- Eliminate data objects or variables
- Estimate missing values
 - Example: time series of temperature
- Ignore the missing value during analysis

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Deduplication
 - Process of dealing with duplicate data issues

When should duplicate data not be removed?

Similarity and Dissimilarity Measures

Similarity measure

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Dissimilarity measure
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies

Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, *x* and *y*, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity		
Type				
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$		
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d		
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min_d}{max_d - min_d}$		

Euclidean Distance

• Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects **x** and **y**.

• Standardization is necessary, if scales differ.

Euclidean Distance

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) of data objects *x* and *y*.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0
L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0
	-			
Γ^{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

Distance Matrix
Visual Interpretation of Distances

- L1-norm(x, y) = a + b
- L2-norm(x, y) = $\sqrt{a^2 + b^2}$
- L^{∞} -norm(x, y) = max(a, b)

- L1-norm is robust to outliers in a few attributes
- L∞-norm is robust to noise in irrelevant attributes

Mahalanobis Distance

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Mahalanobis Distance

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all x and y and $d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$. (Positive definiteness)
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
 - 3. $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x}, \mathbf{y} , and \mathbf{z} . (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

 A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - *I*. $s(\mathbf{x}, \mathbf{y}) = 1$ (or maximum similarity) only if $\mathbf{x} = \mathbf{y}$.
 - 2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities f_{01} = the number of attributes where p was 0 and q was 1 f_{10} = the number of attributes where p was 1 and q was 0 f_{00} = the number of attributes where p was 0 and q was 0 f_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes = $(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$
 - J = number of 1-1 matches / number of non-zero attributes = $(f_{11}) / (f_{01} + f_{10} + f_{11})$

Cosine Similarity

• If \mathbf{d}_1 and \mathbf{d}_2 are two document vectors, then

 $\cos(\mathbf{d_{1}}, \mathbf{d_{2}}) = < \mathbf{d_{1}}, \mathbf{d_{2}} > / \|\mathbf{d_{1}}\| \|\mathbf{d_{2}}\| ,$

where $\langle d_1, d_2 \rangle$ indicates inner product or vector dot product of vectors, d_1 and d_2 , and || d || is the length of vector d.

Example:

 $\mathbf{d}_1 = \ \mathbf{3} \ \mathbf{2} \ \mathbf{0} \ \mathbf{5} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{2} \ \mathbf{0} \ \mathbf{0}$

 $\mathbf{d_2} = \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{2}$

 $<\mathbf{d_1}, \ \mathbf{d2} >= \ 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ | \ \mathbf{d_1} || = (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}} = 6.481 \\ || \ \mathbf{d_2} || = (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{\mathbf{0.5}} = (6)^{\mathbf{0.5}} = 2.449 \\ \cos(\mathbf{d_1}, \mathbf{d_2}) = 0.3150$

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
 - Reduces to Jaccard for binary attributes

$$EJ(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - \mathbf{x} \cdot \mathbf{y}}$$

Correlation measures the linear relationship between objects

 $\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y}, \quad (2.11)$

where we are using the following standard statistical notation and definitions

$$\operatorname{covariance}(\mathbf{x}, \mathbf{y}) = s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$
(2.12)

standard_deviation(
$$\mathbf{x}$$
) = $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \overline{x})^2}$
standard_deviation(\mathbf{y}) = $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (y_k - \overline{y})^2}$

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k \text{ is the mean of } \mathbf{x}$$
$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k \text{ is the mean of } \mathbf{y}$$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Tan, Steinbach, Karpatne, Kumar

Drawback of Correlation

•
$$\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$

• $\mathbf{y} = (9, 4, 1, 0, 1, 4, 9)$

 $y_i = x_i^2$

mean(x) = 0, mean(y) = 4 std(x) = 2.16, std(y) = 3.74

• corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / (6 * 2.16 * 3.74))= 0

Relation b/w Correlation and Cosine

$$\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})}{\sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2}} \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (y_k - \overline{y})^2}$$

• If we transform x and y by subtracting off their means,

$$- x_m = x - mean(x)$$

Differences Among Proximity Measures

 $\mathbf{x} = (1, 2, 4, 3, 0, 0, 0)$ $\mathbf{y} = (1, 2, 3, 4, 0, 0, 0)$

Scaling Operator:

 $\mathbf{y_s} = 2 \times \mathbf{y} = (2, 4, 6, 8, 0, 0, 0)$

Translation Operator:

 $\mathbf{y_t} = \mathbf{y} + 5 = (6, 7, 8, 9, 5, 5, 5)$

Proximity Measures

- Cosine
- Correlation
- Euclidean Distance

- Which proximity measure is invariant to scaling?
 i.e., Proximity (x, y) = Proximity (x, y_s)
- Which proximity measure is invariant to translation?

- i.e., Proximity $(x, y) = Proximity (x, y_t)$

Differences Among Proximity Measures

 $\mathbf{x} = (1, 2, 4, 3, 0, 0, 0)$ $\mathbf{y} = (1, 2, 3, 4, 0, 0, 0)$ $\mathbf{y}_{\mathbf{s}} = 2 \times \mathbf{y} = (2, 4, 6, 8, 0, 0, 0)$ $\mathbf{y}_{\mathbf{t}} = \mathbf{y} + 5 = (6, 7, 8, 9, 5, 5, 5)$

Measure	(\mathbf{x},\mathbf{y})	$(\mathbf{x}, \mathbf{y_s})$	$(\mathbf{x}, \mathbf{y_t})$
Cosine	0.9667	0.9667	0.7940
Correlation	0.9429	0.9429	0.9429
Euclidean Distance	1.4142	5.8310	14.2127

Property	Cosine	Correlation	Minkowski Distance
Invariant to scaling (multiplication)	Yes	Yes	No
Invariant to translation (addition)	No	Yes	No

Choice of suitable measure depends on the needs of the application domain

Mutual Information

- Measures similarity among two objects as the amount of information shared among them
 - How much information does an object X provide about another object Y, and vice-versa?
- General and can handle non-linear relationships
- Complicated (especially for objects with continuous attributes) and time-intensive to compute

Entropy: Measure of Information

- Information often measured using Entropy, H
- Assume objects X and Y contain discrete values
 - Values in X can range in u_1 , u_2 , u_3 , ... u_m
 - Values in Y can range in v_1 , v_2 , v_3 , ... v_n

$$H(X) = -\sum_{j=1}^{m} P(X = u_j) \log_2 P(X = u_j)$$

Individual Entropy

$$H(Y) = -\sum_{k=1}^{n} P(Y = v_k) \log_2 P(Y = v_k)$$

 $n_{\rm c}$

$$H(X,Y) = -\sum_{j=1}^{m} \sum_{k=1}^{n} P(X = u_j, Y = v_k) \log_2 P(X = u_j, Y = v_k)$$
 Joint Entropy

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

52

Computing Mutual Information

• Mutual Information, *I(X,Y)*, is defined as:

I(X,Y) = H(X) + H(Y) - H(X,Y)

- Minimum value: 0 (no similarity)
- Maximum value: $log_2(min(m,n))$
 - Where *m* and *n* are the number of possible values of *X* and *Y*, respectively
- Normalized Mutual Information =

 $I(X,Y)/\log_2(min(m,n))$

Mutual Information Example

$$\mathbf{x} = (-3, -2, -1, \ 0, \ 1, \ 2, \ 3) \\ \mathbf{y} = (\ 9, \ 4, \ 1, \ 0, \ 1, \ 4, \ 9)$$

Correlation = 0 Mutual Information = 1.9502Normalized Mutual Information = $1.9502/log_2(4) = 0.9751$

Table 2.14.Entropy for x

Table 2.15. Entropy for y

x_{j}	$P(\mathbf{x} = x_j)$	$-P(\mathbf{x} = x_j) \log_2 P(\mathbf{x} = x_j)$
-3	1/7	0.4011
-2	1/7	0.4011
-1	1/7	0.4011
0	1/7	0.4011
1	1/7	0.4011
2	1/7	0.4011
3	1/7	0.4011
	$H(\mathbf{x})$	2.8074

y_k	$P(\mathbf{y} = y_k)$	$-P(\mathbf{y} = y_k)\log_2(P(\mathbf{y} = y_k))$
9	2/7	0.5164
4	2/7	0.5164
1	2/7	0.5164
0	1/7	0.4011
	$H(\mathbf{y})$	1.9502

Table 2.16. Joint entropy for \mathbf{x} and \mathbf{y}

x_j	y_k	$P(\mathbf{x} = x_j, \mathbf{y} = x_k)$	$-P(\mathbf{x} = x_j, \mathbf{y} = x_k) \log_2 P(\mathbf{x} = x_j, \mathbf{y} = x_k)$
-3	9	1/7	0.4011
-2	4	1/7	0.4011
-1	1	1/7	0.4011
0	0	1/7	0.4011
1	1	1/7	0.4011
2	4	1/7	0.4011
3	9	1/7	0.4011
		$H(\mathbf{x}, \mathbf{y})$	2.8074

Data Preprocessing

- Discretization and Binarization
- Attribute Transformation
- Sampling
- Aggregation
- Dimensionality Reduction

Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
 - A potentially infinite number of values are mapped into a small number of categories
 - Discretization is used in both unsupervised and supervised settings

Data consists of four groups of points and two outliers. Data is onedimensional, but a random y component is added to reduce overlap.

Equal interval width approach used to obtain 4 values.

Equal frequency approach used to obtain 4 values.

K-means approach to obtain 4 values.

Discretization in Supervised Settings

- Many classification algorithms work best if both the independent and dependent variables have only a few values
- We give an illustration of the usefulness of discretization using the following example.

Figure 2.14. Discretizing x and y attributes for four groups (classes) of points.

Binarization

Binarization maps a continuous or categorical attribute into one or more binary variables

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
aw ful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1

Attribute Transformation

 An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values

- Simple functions: x^k , log(x), e^x , |x|

- Normalization
 - Refers to various techniques to adjust to differences among attributes in terms of mean, variance, range
 - Take out unwanted, common signal, e.g., seasonality
- In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

Example: Sample Time Series of Plant Growth

Net Primary Production (NPP) is a measure of plant growth used by ecosystem scientists.

Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.7591	-0.7581
Atlanta	0.7591	1.0000	-0.5739
Sao Paolo	-0.7581	-0.5739	1.0000

Seasonality Accounts for Much Correlation

Normalized using monthly Z Score:

Subtract off monthly mean and divide by monthly standard deviation

Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.0492	0.0906
Atlanta	0.0492	1.0000	-0.0154
Sao Paolo	0.0906	-0.0154	1.0000

Sampling

- Sampling is the main technique employed for data reduction.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians often sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is typically used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling ...

- The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data set, if the sample is representative
 - A sample is representative if it has approximately the same properties (of interest) as the original set of data
- Choosing a sampling scheme
 - Type of sampling technique
 - Sample size

Types of Sampling

Simple Random Sampling

- There is an equal probability of selecting any particular object
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sample Size

Sample Size

• What sample size is necessary to get at least one object from each of 10 equal-sized groups.

Aggregation

 Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc.
 - Days aggregated into weeks, months, or years
- More "stable" data
 - Aggregated data tends to have less variability

Example: Precipitation in Australia ...

 We want to study the variability in precip for 3,030 0.5° by 0.5° grid cells in Australia from the period 1982 to 1993.

Standard Deviation of Average Monthly Precipitation (in cm)

Standard Deviation of Average Yearly Precipitation (in cm)
Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which are critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Dimensionality Reduction

- Purpose:
 - Avoid curse of dimensionality
 - Reduce amount of time and memory required by data mining algorithms
 - Allow data to be more easily visualized
 - May help to eliminate irrelevant features or reduce noise
- Techniques
 - Principal Components Analysis (PCA)
 - Singular Value Decomposition
 - Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

 Goal is to find a projection that captures the largest amount of variation in data

 \mathbf{X}_1

Interactive tool for visualizing PCA: <u>http://setosa.io/ev/principal-component-analysis/</u>

Dimensionality Reduction: PCA

256

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar