DM-Group Meeting

Liangzhe Chen, Jan. 22 2015
Papers to be present

- SNOC: Streaming Network Node Classification
 - ICDM 2014, by Ting Guo et. al.

- Scalable SVM-based Classification in Dynamic Graphs
 - ICDM 2014, by Yibo Yao et. al.

- Multi-Graph-View Learning for Graph Classification
 - ICDM 2014, by Jia Wu et. al.
SNOC: Streaming Network Node Classification

ICDM 2014
Ting Guo, Xingquan Zhu, Jian Pei, and Chengqi Zhang
Motivation

- Networks are changing
 - New nodes are added.
 - New edges are created.
 - Node contents are changed.

- How can nodes be classified in such dynamic/streaming network?
Streaming network node classification aims to classify unlabeled nodes in the network, at any time t, with maximal accuracy.
Proposed Method

- The theme is to let:
 - Nodes sharing the same class and having a high structure similarity be close to each other
 - Nodes belonging to different classes and having a weak structure relationship be far away from each other

\[y^{u*} = \arg \min_{y^u \subseteq y} E(y^u) \]
Proposed Method

- Find a good set of features to capture the changes in the network.

\[y^u_* = \arg \min_{\forall y^u \in Y} E(y^u, S) \]
How to find S? It should take into account:

- The label-based node similarity in the Label Space
- The structure-based node similarity in the Structure Space

Laplacian based quality criterion

$$E(Y^u, S) = \frac{1}{2} \sum_{i \in X^u} \sum_{j \in X} h(i, j, y_i)(D_S x_i - D_S x_j)^2$$

subject to

$$\min \left(\frac{1}{2} \sum_{i, j \in X} h(i, j)(D_S x_i - D_S x_j)^2 \right), S \subseteq F, |S| = m$$
Experiments: Datasets

<table>
<thead>
<tr>
<th>Data sets</th>
<th># Nodes</th>
<th># Edges</th>
<th># Features</th>
<th># Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cora</td>
<td>2,708</td>
<td>5,429</td>
<td>1,433</td>
<td>7</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>3,312</td>
<td>4,732</td>
<td>3,703</td>
<td>6</td>
</tr>
<tr>
<td>PubMed Diabetes</td>
<td>19,717</td>
<td>44,338</td>
<td>500</td>
<td>3</td>
</tr>
<tr>
<td>DBLP</td>
<td>2,084,055</td>
<td>2,244,018</td>
<td>3,000</td>
<td>6</td>
</tr>
</tbody>
</table>
Experiments: Results

(a) Cora (b) CiteSeer (c) PubMed Diabetes

Accuracy %

of selected features (m)
Experiments: Results

(a) Maximal Path Length l

(b) Weight Parameter ξ

(c) Percentage of Labeled Nodes
Experiments: Results

(a) DBLP

(b) PubMed Diabetes
Experiment: Results

(a) DBLP

(b) PubMed Diabetes

(c) extended DBLP
Scalable SVM-based Classification in Dynamic Graphs

ICDM 2014

Yibo Yao and Lawrence Holder
Fig. 1. An example of a dynamic graph. Updates are received in the form of batches. For example, when B_2 comes in, case 2 happens since two new nodes F, H are connected to two old nodes B, E; case 4 also happens because a new edge connecting two new nodes H, G is inserted.
Fig. 2. An instance of a citation network. P_i represents a paper of interest while A_i represents an author associated to a paper. An edge label represents the relationship between the two nodes it connects.
Problem Definition

- Given a dynamic graph with central and side nodes, and each central node v_i has an associated class label y_i (+1/-1)
- Learn a classifier using available information up until the current time t, and predict the class labels of new central nodes from the next batch.
Framework of Solution

- When a new batch B_t comes
 - Extract subgraphs for the central nodes in B_t (entropy-based method)
 - If a sliding window is specified, delete the old information which is outside the current window
 - Combine the support vectors of the classification model learned from B_{t-1} with the subgraphs from B_t as a new training set, and learn a new model to predict the class labels of the central nodes from B_{t+1}
Algorithm 2 Incremental SVM (IncSVM)

Input:
- \mathcal{G}: A graph
- SV_{t-1}: A set of support vectors
- B_t: The current batch
- θ: The threshold for selecting neighbor nodes

Output:
- M_t: A SVM classification model for prediction

1. $Sub_{B_t} = \emptyset$
2. **for** each central node v_c in B_t **do**
3. \quad $Sub_{B_t} = Sub_{B_t} \cup \{\text{SubExtract}(\mathcal{G}, v_c, \theta)\}$
4. **end for**
5. construct a training set $TR_t = SV_{t-1} \cup Sub_{B_t}$
6. learn a classifier M_t on TR_t using W-L kernel
7. **return** M_t (including its support vectors SV_t)
Experiment: Datasets

- IMDB Network: The Internet Movie Database. The task is to predict whether a new movie will be successful.
- DBLP Network: The task is to predict whether a paper belongs to DBDM or CVPR
Experiment: Results

Fig. 8. Average accuracy across all batches and accumulated learning time on IMDB w.r.t. different values of θ.
Experiment: Results

Fig. 9. Average accuracy across all batches and accumulated learning time on DBLP w.r.t. different values of θ.
Multi-Graph-View Learning for Graph Classification

ICDM 2014

Jia Wu, Zhibin Hong, Shirui Pan, Xingquan Zhu, and Chengqi Zhang
There are different channels/views to describe objects, resulting in a new representation with multiple graphs generated from different feature views being used to describe one object.
Motivation
Definition 4: (Subgraph) Let $G = (\mathcal{V}, E, \mathcal{L}, l)$ and $g_i = (\mathcal{V}', E', \mathcal{L}', l')$ each denote a connected graph. g_i is a subgraph of G, i.e., $g_i \subseteq G$, iff there exists an injective function $\varphi : \mathcal{V}' \rightarrow \mathcal{V}$ s.t. (1) $\forall v \in \mathcal{V}', l'(v) = l(\varphi(v))$; (2) $\forall (u, v) \in E'$, $(\varphi(u), \varphi(v)) \in E$ and $l'(u, v) = l(\varphi(u), \varphi(v))$. If g_i is a subgraph of G, then G is a supergraph of g_i. In this paper, subgraphs and subgraph features are equivalent terms.

Definition 5: (Graph Feature Representation) Let $S_k = \{g_1, \cdots, g_{s_k}\}$ denote a set of subgraph features discovered from multi-graph-view graphs. For each graph G_k^i in the k^{th} view, we use a subgraph feature vector $x_i^k = [(x_i^{g_1})^k, \cdots, (x_i^{g_{s_k}})^k]^{\top}$ to represent G_k^i in the feature space, where $(x_i^{g_e})^k = 1, 1 \leq e \leq s_k$, iff g_e is a subgraph of G_k^i (i.e., $g_e \subseteq G_k^i$) and $(x_i^{g_e})^k = 0$ otherwise.
Goal:

To find the optimal subgraph features from the training graph set G to train classification models, and predict previously unseen multi-graph-view graphs with a maximum accuracy.
Subgraph Evaluation Criteria:
- Find informative-irredundant subgraph features across all graph-views

Cross Graph-View Subgraph Selection:
- Automatically assign weight values to different graph-views, and further optimize the weight values to ensure that high quality subgraphs are selected from important graph-views.

Multi-Graph-View Graph Representation:
- Concatenate subgraph features across all graph-views to form the final graph representation
Experiment: Datasets

- DBLP
- Images from Corel dataset
Figure 3. Comparisons on *DBLP dataset* on each single graph-view: (A) Reference Relationship view; (B) Abstract view.
Figure 4. Comparisons on DBLP dataset with multiple graph-views by using different view combination strategies.
Figure 6. Comparisons on *Image dataset* with multiple views by using different view combination strategies.