
Towards Efficient Python Interpreter for Tiered Memory Systems
Yuze Li1 Shunyu Yao 1 Jaiaid Mobin 2 M. Mustafa Rafique 2 Dimitrios Nikolopoulos 1 Kirshanthan Sundararajah 1 Huaicheng Li 1 Ali R. Butt 1

1Virginia Tech 2Rochester Institute of Technology

Tiered Memory Systems

Figure 1. Slowdown percent of different

workloads in CXL.
Figure 2. Workloads slowdown by static placing

different percent of hottest memory pages to

DRAM, the rest to CXL.

The emergence of low-latency non-DDR technologies offers cheaper $/GB

memory cost. Running modern data-intensive applications in tiered memory sys-

tems experiences different percentage of slowdown. The principle is to track

data access frequencies and automatically migrates them among tiered memory

resources. Thus, a good solution must be:

Accuracy: Be precise about the memory boundaries to be hot or cold.

Low overhead: Solutions should not interfere with applications that much.

Portability: Can readily be deployed to today’s cloud.

Transparency: No need for program re-writing, static analysis.

Problem of Existing Solutions

OS level: Page table entry checking, hardware event sampling, LRU, AutoNUMA,

etc.

Coarse-grained observation point: Sub-page information, and application

semantics cannot be extracted.

Unbalanced accuracy and overhead: By increasing the accuracy, overhead

will increase

Runtime level: Defines new programming models through APIs, source code

static analysis, and profiling.

lack of transparency: Involves non-trivial programmer efforts, or exhaustive

profiling.

None of the existing methods can be directly ported to the popular language,

Python, considering Python’s top-ranking position in 2023.

Challenges of Tracking Python Object Temperatures

Challenge 1: Method of Tracing

Unlike C++, CPython does not offer smart pointer and operator

overloading.

Unlike JVM-based runtime, CPython does not have read-write barriers to

instrument.

Challenge 2: Tracing Overhead

CPython only maintains the references of container PyObjects, obtaining

all PyObjects references requires the GIL held (application paused).

Challenge 3: Handling Native Calls

CPython does not capture runtime semantics in native executions (C/C++).

Major Insights

Insight 1: Reference counting can be a potential indicator to infer PyObjects

accesses (challenge 1).

Insight 2: The set of live PyObjects is not likely to change until a cyclic-GC is

triggered; selectively tracing based on object semantics (challenge 2).

Pypper Overview

Figure 3. Pypper’s workflow.

Pypper comprises a control layer and a metadata layer. The control layer popu-

lates and analyzes the metadata.

1. Invoked from Python API (Pypper.start()), tracing enabled within

CPython main thread.

2. Live trace cascade traverses the cyclic-GC list to get all PyObjects

references.

3. Pypper triggers a separate CPython thread for consecutive active traces,

and records refcnt changes for each observed PyObject.

4. Mapping algorithm inspects the captured refcnt changes to infer the real

PyObject temperatures.

5. Migration plane merges hot/cold objects into compact segregated memory

ranges, aligns them to page boundaries, before migrating to designated

areas.

6. Upon receiving stop signal (Pypper.end()), Pypper frees metadata, resets

states, stops tracing.

Preliminary Results

Figure 4. Inferred PyObj temperatures based on

refcnt changes.

Figure 5. Real heatmap from

OS-based profiling.

Takeaway: The reference counting in the GC scheme can also be used to infer

object temperatures by defining a mapping model.

WiP and FutureWork

Live Trace Overhead Mitigation (WiP)

Make the best use of CPython’s cyclic-GC module by only traversing newly

survived container PyObjs.

Filter live PyObjs by observing their semantics, e.g., length, depths.

Mapping Algorithm (WiP)

A fine-grained mapping module from refcnt-changing to real object

temperatures is yet to be defined.

Handling Native Executions (future work)

Pypper should distinguish and handle native execution that is not based on

refcnt changes.


