Towards Efficient Python Interpreter
for Tiered Memory Systems

Yuze Li', Shunyu Yao?, Jaiaid Mobin2, M. Mustafa Rafique?,
Dimitrios Nikolopoulos’, Kirshanthan Sundararajah', Huaicheng Li’, Ali R. Butt'

Virginia Tech, 2RIT

Memory Capacity Bottleneck

4)
Memory-intensive workloads

e—©O NP

,\ /7 b

2 e @
__

00 El'tﬁ 00 Ifl_Eﬁ

| T Loaassasnal

J

Tiered Memory Systems

Tiered Memory Systems

[CPU]<]:(> Smal]

DIMM \ DRAM

|_| >(Large]

DRAM
CXL/PCle -

CXL offers practical memory expansion @
e Load/Store access over PCle
® Large capacity with lower cost

Tiered Memory Systems

[CPU }m

—

CXL/PCle

CXL offers practical memory expansion @

Small } e Load/Store access over PCle
__ DRAM ® Large capacity with lower cost
e CXL has higher access latency than local DRAM @
Large] e With additional 70~90ns (~2x)
. DRAM

Tiered Memory Systems

DIMM
@] ¢ [Small
[CPU DRAM
promotion demotion

> Large
DRAM

CXL/PCle

State-of-the-art Data Migration on Tiered Memory System

e OS level
o Transparency@

State-of-the-art Data Migration on Tiered Memory System

e OS level
o Transparency@

O Hard to apply program-behavior-specific optimizations @

State-of-the-art Data Migration on Tiered Memory System

e OS level
o Transparency@

O Hard to apply program-behavior-specific optimizations@
o Coarse granularity at page level @

State-of-the-art Data Migration on Tiered Memory System

®
®

®

® Runtime level
o Explicitly control fine-grained object-level offloading @

10

State-of-the-art Data Migration on Tiered Memory System

®
®

®

® Runtime level
o Explicitly control fine-grained object-level offloading @

O Intrusive @

11

State-of-the-art Data Migration on Tiered Memory System

®
®

®

® Runtime level
o Explicitly control fine-grained object-level offloading @

O Intrusive @

o Supports only C/C++, JVM-based d ¢

12

Python Popularity
Top Programming Languages 2023

Click a button to see a differently weighted ranking

Jobs Trending

JavaScript
ot
oL
Go

*|EEE Spectrum

13

Can we achieve both transparency and object
level tracing in Python runtime?

Challenge 1: How to obtain Python object temperature?

15

Challenge 1: How to obtain Python object temperature?

JVM-based

S,

Pre-read Barrier

Read Operation a=b.f or a=bli]

Post-read Barrier

[

Pre-write Barrier

Write Operation b.f =a or bli]=a

Post-write Barrier

C++

CPython

16

Challenge 1: How to obtain Python object temperature?

JVM-based

{

e
e

(r

Pre-read Barrier

Read Operation a=b.f or a=Db[i]

Post-read Barrier
Pre-write Barrier

Write Operation b.f =a or bli]=a

Post-write Barrier

C++
L

"+t

b
Smart
Pointers

Hotness bits

L

Rsvd

Object Address

CPython

17

Challenge 1: How to obtain Python object temperature?

JVM-based

{

G
G

[

Pre-read Barrier

Read Operation a=b.f or a=bli]

Post-read Barrier
Pre-write Barrier

Write Operation b.f =a or bli]=a

Post-write Barrier

C++

L+

A " 4
Smart
Pointers

Hotness bits

L

Rsvd

Object Address

CPython

18

Address (MB)

Inferred hotness from refcnt changes OS PTE scans

10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80
Time (s) Time (s)

Key observation: Use CPython reference counting changes to
infer Python object accesses

45
40
35
30
25
20
15

10

19

Challenge 2: How to obtain live objects with low overhead?
e CPython GC holds only container objects

e Global Interpreter Lock

20

Blocking Time (s)

Cascade Tracing

= Max length = Max depth
15

10

o0 10 5 4 3 2 1

Max Confined Length/Depth

Real heatmap from OS-based profiling.

Cyclic-GC list
A

QOO0

|O‘; ?I non-iterable

) object
‘ O‘ O iterable object

21

Challenge 3: How to handle native executions (external libs)?
e Rely on existing OS-based solutions, or function call stack

inferences

22

4)
Memory-intensive workloads

0_/0 ' /,
A A
__\0~— Y,

/FDD CPython runtime \

-
Fine-grained

Live Object
/ Tracing \
Migration Temperature
o —
gooaoi- (0000
| T | T

Local DRAM CXL DRAM

-

23

4)
Memory-intensive workloads

0_/0 ' /,
A A
__\0~— Y,

/FDD CPython runtime \

Live Object
/ Tracing \
. : Temperature
Migration Sampling

-

0000 gooo

| NI | | NI |
Local DRAM CXL DRAM

A
v

4)
Fine-grained
Transparency

- /

24

4)
Memory-intensive workloads

0_/0 ' /,
A A
__\0~— Y,

/FDD CPython runtime \

-
Fine-grained

Transparency

Live Object
/ Tracing \
Migration Temperature
o —
gooaoi- (0000
| T | T

Local DRAM CXL DRAM

\CPU efficiency y

~

25

Challenge 1: How to obtain Python object temperature?
® In progress
Challenge 2: How to obtain live objects with low overhead?
e Completed
Challenge 3: How to handle native executions (external libs)?

e In progress

