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Memory Capacity Bottleneck
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Memory-intensive workloads
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Tiered Memory Systems
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Tiered Memory Systems
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State-of-the-art Data Migration on Tiered Memory System
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e OS level
o Transparency@

O Hard to apply program-behavior-specific optimizations@
o Coarse granularity at page level @
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State-of-the-art Data Migration on Tiered Memory System

®
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® Runtime level
o Explicitly control fine-grained object-level offloading @

O Intrusive @

o Supports only C/C++, JVM-based d ¢
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Can we achieve both transparency and object
level tracing in Python runtime?



Challenge 1: How to obtain Python object temperature?
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Address (MB)

Inferred hotness from refcnt changes OS PTE scans
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Challenge 2: How to obtain live objects with low overhead?
e CPython GC holds only container objects

e Global Interpreter Lock
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Challenge 3: How to handle native executions (external libs)?
e Rely on existing OS-based solutions, or function call stack

inferences
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Challenge 1: How to obtain Python object temperature?
® In progress
Challenge 2: How to obtain live objects with low overhead?
e Completed
Challenge 3: How to handle native executions (external libs)?

e In progress



